1
|
Lao T, Avalos I, Rodríguez EM, Zamora Y, Rodriguez A, Ramón A, Alvarez Y, Cabrales A, Andújar I, González LJ, Puente P, García C, Gómez L, Valdés R, Estrada MP, Carpio Y. Production and characterization of a chimeric antigen, based on nucleocapsid of SARS-CoV-2 fused to the extracellular domain of human CD154 in HEK-293 cells as a vaccine candidate against COVID-19. PLoS One 2023; 18:e0288006. [PMID: 37751460 PMCID: PMC10522030 DOI: 10.1371/journal.pone.0288006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/16/2023] [Indexed: 09/28/2023] Open
Abstract
Despite that more than one hundred vaccines against SARS-CoV-2 have been developed and that some of them were evaluated in clinical trials, the latest results revealed that these vaccines still face great challenges. Among the components of the virus, the N-protein constitutes an attractive target for a subunit vaccine because it is the most abundant, highly conserved and immunogenic protein. In the present work, a chimeric protein (N-CD protein) was constructed by the fusion of the N-protein to the extracellular domain of human CD154 as the molecular adjuvant. HEK-293 cells were transduced with lentiviral vector bearing the N-CD gene and polyclonal cell populations were obtained. The N-CD protein was purified from cell culture supernatant and further characterized by several techniques. Immunogenicity studies in mice and non-human primates showed the N-CD protein induced high IgG titers in both models after two doses. Moreover, overall health monitoring of non-human primates demonstrated that animals were healthy during 228 days after first immunization. Data obtained support further investigation in order to develop this chimeric protein as vaccine candidate against COVID-19 and other coronavirus diseases.
Collapse
Affiliation(s)
- Thailin Lao
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ileanet Avalos
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Elsa María Rodríguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Yasser Zamora
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Alianet Rodriguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ailyn Ramón
- Center for Genetic Engineering and Biotechnology, Laboratory of Molecular Oncology, Havana, Cuba
| | - Yanitza Alvarez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ania Cabrales
- Center for Genetic Engineering and Biotechnology, Systems Biology, Havana, Cuba
| | - Ivan Andújar
- Center for Genetic Engineering and Biotechnology, Systems Biology, Havana, Cuba
| | | | - Pedro Puente
- Center for Genetic Engineering and Biotechnology, Animal housing, Havana, Cuba
| | - Cristina García
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Leonardo Gómez
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Rodolfo Valdés
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Mario Pablo Estrada
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| |
Collapse
|
2
|
Calvet-Mirabent M, Claiborne DT, Deruaz M, Tanno S, Serra C, Delgado-Arévalo C, Sánchez-Cerrillo I, de Los Santos I, Sanz J, García-Fraile L, Sánchez-Madrid F, Alfranca A, Muñoz-Fernández MÁ, Allen TM, Buzón MJ, Balazs A, Vrbanac V, Martín-Gayo E. Poly I:C and STING agonist-primed DC increase lymphoid tissue polyfunctional HIV-1-specific CD8 + T cells and limit CD4 + T cell loss in BLT mice. Eur J Immunol 2021; 52:447-461. [PMID: 34935145 DOI: 10.1002/eji.202149502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022]
Abstract
Effective function of CD8+ T cells and enhanced innate activation of dendritic cells (DC) in response to HIV-1 is linked to protective antiviral immunity in controllers. Manipulation of DC targeting the master regulator TANK-binding Kinase 1 (TBK1) might be useful to acquire controller-like properties. Here, we evaluated the impact of the combination of 2´3´-c´diAM(PS)2 and Poly I:C as potential adjuvants capable of potentiating DC´s abilities to induce polyfunctional HIV-1 specific CD8+ T cell responses in vitro and in vivo using a humanized BLT mouse model. Adjuvant combination enhanced TBK-1 phosphorylation and IL-12 and IFNβ expression on DC and increased their ability to activate polyfunctional HIV-1-specific CD8+ T cells in vitro. Moreover, higher proportions of hBLT mice vaccinated with ADJ-DC exhibited less severe CD4+ T cell depletion following HIV-1 infection compared to control groups. This was associated with infiltration of CD8+ T cells in the white pulp from the spleen, reduced spread of infected p24+ cells to lymph node and with preserved abilities of CD8+ T cells from the spleen and blood of vaccinated animals to induce specific polyfunctional responses upon antigen stimulation. Therefore, priming of DC with Poly I:C and STING agonists might be useful for future HIV-1 vaccine studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marta Calvet-Mirabent
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | | | - Maud Deruaz
- Human Immune System Mouse Program from Massachusetts General Hospital, Boston.,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Serah Tanno
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Carla Serra
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona
| | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Ignacio de Los Santos
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Jesús Sanz
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Lucio García-Fraile
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Francisco Sánchez-Madrid
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón. Madrid, Spain
| | | | - Maria J Buzón
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona
| | - Alejandro Balazs
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Vladimir Vrbanac
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Enrique Martín-Gayo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| |
Collapse
|
3
|
Lundstrom K. Application of Viral Vectors for Vaccine Development with a Special Emphasis on COVID-19. Viruses 2020; 12:E1324. [PMID: 33218001 PMCID: PMC7698750 DOI: 10.3390/v12111324] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Viral vectors can generate high levels of recombinant protein expression providing the basis for modern vaccine development. A large number of different viral vector expression systems have been utilized for targeting viral surface proteins and tumor-associated antigens. Immunization studies in preclinical animal models have evaluated the elicited humoral and cellular responses and the possible protection against challenges with lethal doses of infectious pathogens or tumor cells. Several vaccine candidates for both infectious diseases and various cancers have been subjected to a number of clinical trials. Human immunization trials have confirmed safe application of viral vectors, generation of neutralizing antibodies and protection against challenges with lethal doses. A special emphasis is placed on COVID-19 vaccines based on viral vectors. Likewise, the flexibility and advantages of applying viral particles, RNA replicons and DNA replicon vectors of self-replicating RNA viruses for vaccine development are presented.
Collapse
|
4
|
A Zigzag but Upward Way to Develop an HIV-1 Vaccine. Vaccines (Basel) 2020; 8:vaccines8030511. [PMID: 32911701 PMCID: PMC7564621 DOI: 10.3390/vaccines8030511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023] Open
Abstract
After decades of its epidemic, the human immunodeficiency virus type 1 (HIV-1) is still rampant worldwide. An effective vaccine is considered to be the ultimate strategy to control and prevent the spread of HIV-1. To date, hundreds of clinical trials for HIV-1 vaccines have been tested. However, there is no HIV-1 vaccine available yet, mostly because the immune correlates of protection against HIV-1 infection are not fully understood. Currently, a variety of recombinant viruses-vectored HIV-1 vaccine candidates are extensively studied as promising strategies to elicit the appropriate immune response to control HIV-1 infection. In this review, we summarize the current findings on the immunological parameters to predict the protective efficacy of HIV-1 vaccines, and highlight the latest advances on HIV-1 vaccines based on viral vectors.
Collapse
|
5
|
A pilot clinical trial testing topical resiquimod and a xenopeptide as immune adjuvants for a melanoma vaccine targeting MART-1. Melanoma Res 2020; 29:420-427. [PMID: 30520800 DOI: 10.1097/cmr.0000000000000556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A vaccine that could expand melanoma-specific T cells might reduce the risk of recurrence of resected melanoma and could provide an alternative or adjunct to standard immunotherapy options. We tested the safety and immunogenicity of a vaccine coupling a melanoma-associated peptide with a xenogenic peptide (to promote epitope spreading) and/or resiquimod (to activate antigen-presenting cells). HLA-A2-positive patients with resected stage II, III, and IV melanoma were assigned to treatment on one of three schedules. All patients received three subcutaneous doses of the peptide MART-1a mixed with Montanide. In addition, patients on schedule 1 received the xenoantigen peptide Gag267-274, patients on schedule 2 received topical resiquimod, and patients on schedule 3 received both Gag267-274 and resiquimod. Blood samples were tested for the frequency of antigen-specific T cells by tetramer assay, as well as immune cell subtypes and plasma cytokine levels. Patients enrolled from October 2012 to December 2014, with 10 patients enrolling to each schedule. The most common adverse events were injection site reaction (26 patients) and fatigue (15 patients). Tetramer analysis revealed antigen-specific responses (defined as doubling of MART-1a-specific T cells from pretreatment to post-treatment) in 20, 60, and 40% of patients treated on schedules 1, 2, and 3, respectively. Vaccine treatment consisting of MART-1a peptide, Gag267-274, Montanide, and topical resiquimod was well-tolerated. The addition of the Gag267-274 xenoantigen was not associated with an increase in the response to MART-1a, whereas use of topical resiquimod was associated with a higher frequency of MART-1a-specific T-cell responses that did not meet statistical significance.
Collapse
|
6
|
Hashem AM, Algaissi A, Agrawal AS, Al-Amri SS, Alhabbab RY, Sohrab SS, S Almasoud A, Alharbi NK, Peng BH, Russell M, Li X, Tseng CTK. A Highly Immunogenic, Protective, and Safe Adenovirus-Based Vaccine Expressing Middle East Respiratory Syndrome Coronavirus S1-CD40L Fusion Protein in a Transgenic Human Dipeptidyl Peptidase 4 Mouse Model. J Infect Dis 2020; 220:1558-1567. [PMID: 30911758 PMCID: PMC7107499 DOI: 10.1093/infdis/jiz137] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/21/2019] [Indexed: 12/02/2022] Open
Abstract
Background Infection control measures have played a major role in limiting human/camel-to-human transmission of Middle East respiratory syndrome coronavirus (MERS-CoV); however, development of effective and safe human or camel vaccines is warranted. Methods We extended and optimized our previous recombinant adenovirus 5 (rAd5)–based vaccine platform characterized by in vivo amplified and CD40-mediated specific responses to generate MERS-CoV S1 subunit-based vaccine. We generated rAd5 constructs expressing CD40-targeted S1 fusion protein (rAd5-S1/F/CD40L), untargeted S1 (rAd5-S1), and Green Fluorescent Protein (rAd5-GFP), and evaluated their efficacy and safety in human dipeptidyl peptidase 4 transgenic (hDPP4 Tg+) mice. Results Immunization of hDPP4 Tg+ mice with a single dose of rAd5-S1/F/CD40L elicited as robust and significant specific immunoglobulin G and neutralizing antibodies as those induced with 2 doses of rAd5-S1. After MERS-CoV challenge, both vaccines conferred complete protection against morbidity and mortality, as evidenced by significantly undetectable/reduced pulmonary viral loads compared to the control group. However, rAd5-S1– but not rAd5-S1/F/CD40L–immunized mice exhibited marked pulmonary perivascular hemorrhage post–MERS-CoV challenge despite the observed protection. Conclusions Incorporation of CD40L into rAd5-based MERS-CoV S1 vaccine targeting molecule and molecular adjuvants not only enhances immunogenicity and efficacy but also prevents inadvertent pulmonary pathology after viral challenge, thereby offering a promising strategy to enhance safety and potency of vaccines.
Collapse
Affiliation(s)
- Anwar M Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Algaissi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston.,Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University
| | | | - Sawsan S Al-Amri
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Y Alhabbab
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah
| | - Sayed S Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman S Almasoud
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Naif Khalaf Alharbi
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Bi-Hung Peng
- Department of Neurosciences, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston
| | - Marsha Russell
- Center for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario
| | - Xuguang Li
- Center for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston.,Center of Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston
| |
Collapse
|
7
|
Expression of CD40L by the ALVAC-Simian Immunodeficiency Virus Vector Abrogates T Cell Responses in Macaques. J Virol 2020; 94:JVI.01933-19. [PMID: 31896599 DOI: 10.1128/jvi.01933-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Immunization with recombinant ALVAC/gp120 alum vaccine provided modest protection from human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) acquisition in humans and macaques. Vaccine-mediated protection was associated with the elicitation of IgG against the envelope V2 loop and of envelope-specific CD4+ T cell responses. We hypothesized that the simultaneous expression of the costimulatory molecule CD40L (CD154) by the ALVAC-HIV vector could increase both protective humoral and cellular responses. We engineered an ALVAC-SIV coexpressing CD40L with SIVmac251 (ALVAC-SIV/CD40L) gag, pol, and env genes. We compared its immunogenicity in macaques with that of a canonical ALVAC-SIV, with both given as a vector-prime/gp120 in alum boost strategy. The ALVAC-SIV/CD40L was superior to the ALVAC-SIV regimen in inducing binding and tier 1 neutralizing antibodies against the gp120. The increase in humoral responses was associated with the expression of the membrane-bound form of the CD40L by CD4+ T cells in lymph nodes. Unexpectedly, the ALVAC-SIV/CD40L vector had a blunting effect on CD4+ Th1 helper responses and instead favored the induction of myeloid-derived suppressor cells, the immune-suppressive interleukin-10 (IL-10) cytokine, and the down-modulatory tryptophan catabolism. Ultimately, this strategy failed to protect macaques from SIV acquisition. Taken together, these results underlie the importance of balanced vaccine-induced activating versus suppressive immune responses in affording protection from HIV.IMPORTANCE CD40-CD40 ligand (CD40L) interaction is crucial for inducing effective cytotoxic and humoral responses against pathogens. Because of its immunomodulatory function, CD40L has been used to enhance immune responses to vaccines, including candidate vaccines for HIV. The only successful vaccine ever tested in humans utilized a strategy combining canarypox virus-based vector (ALVAC) together with an envelope protein (gp120) adjuvanted in alum. This strategy showed limited efficacy in preventing HIV-1/SIV acquisition in humans and macaques. In both species, protection was associated with vaccine-induced antibodies against the HIV envelope and CD4+ T cell responses, including type 1 antiviral responses. In this study, we tested whether augmenting CD40L expression by coexpressing it with the ALVAC vector could increase the protective immune responses. Although coexpression of CD40L did increase humoral responses, it blunted type 1 CD4+ T cell responses against the SIV envelope protein and failed to protect macaques from viral infection.
Collapse
|
8
|
Pérez P, Marín MQ, Lázaro-Frías A, Sorzano CÓS, Gómez CE, Esteban M, García-Arriaza J. Deletion of Vaccinia Virus A40R Gene Improves the Immunogenicity of the HIV-1 Vaccine Candidate MVA-B. Vaccines (Basel) 2020; 8:vaccines8010070. [PMID: 32041218 PMCID: PMC7158668 DOI: 10.3390/vaccines8010070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Development of a safe and efficacious vaccine against the HIV/AIDS pandemic remains a major scientific goal. We previously described an HIV/AIDS vaccine based on the modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120 and Gag-Pol-Nef (GPN) of clade B (termed MVA-B), which showed moderate immunogenicity in phase I prophylactic and therapeutic clinical trials. Here, to improve the immunogenicity of MVA-B, we generated a novel recombinant virus, MVA-B ΔA40R, by deleting in the MVA-B genome the vaccinia virus (VACV) A40R gene, which encodes a protein with unknown immune function. The innate immune responses triggered by MVA-B ΔA40R in infected human macrophages, in comparison to parental MVA-B, revealed an increase in the mRNA expression levels of interferon (IFN)-β, IFN-induced genes, and chemokines. Compared to priming with DNA-B (a mixture of DNA-gp120 plus DNA-GPN) and boosting with MVA-B, mice immunized with a DNA-B/MVA-B ΔA40R regimen induced higher magnitude of adaptive and memory HIV-1-specific CD4+ and CD8+ T-cell immune responses that were highly polyfunctional, mainly directed against Env. and of an effector memory phenotype, together with enhanced levels of antibodies against HIV-1 gp120. Reintroduction of the A40R gene into the MVA-B ΔA40R genome (virus termed MVA-B ΔA40R-rev) promoted in infected cells high mRNA and protein A40 levels, with A40 protein localized in the cell membrane. MVA-B ΔA40R-rev significantly reduced mRNA levels of IFN-β and of several other innate immune-related genes in infected human macrophages. In immunized mice, MVA-B ΔA40R-rev reduced the magnitude of the HIV-1-specific CD4+ and CD8+ T cell responses compared to MVA-B ΔA40R. These results revealed an immunosuppressive role of the A40 protein, findings relevant for the optimization of poxvirus vectors as vaccines.
Collapse
Affiliation(s)
- Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - María Q. Marín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - Adrián Lázaro-Frías
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
- Correspondence: ; Tel.: +34-915-854-560
| |
Collapse
|
9
|
Improved immune response against HIV-1 Env antigen by enhancing EEV production via a K151E mutation in the A34R gene of replication-competent vaccinia virus Tiantan. Antiviral Res 2018; 153:49-59. [DOI: 10.1016/j.antiviral.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
|
10
|
HIV/AIDS Vaccine Candidates Based on Replication-Competent Recombinant Poxvirus NYVAC-C-KC Expressing Trimeric gp140 and Gag-Derived Virus-Like Particles or Lacking the Viral Molecule B19 That Inhibits Type I Interferon Activate Relevant HIV-1-Specific B and T Cell Immune Functions in Nonhuman Primates. J Virol 2017; 91:JVI.02182-16. [PMID: 28179536 DOI: 10.1128/jvi.02182-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4+ and CD8+ T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4+ and CD8+ T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4+ and CD8+ T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions.IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1 protection. Here we developed novel replicating poxvirus NYVAC-based HIV/AIDS vaccine candidates expressing clade C HIV-1 antigens, with one of them lacking the vaccinia virus B19 protein, an inhibitor of the type I interferon response. Immunization of nonhuman primates with these novel NYVAC-C-KC vectors and the protein component gp120 elicited high levels of T cell and humoral immune responses, with the vector containing a deletion in B19R inducing a trend toward a higher magnitude of CD4+ and CD8+ T cell responses and neutralization of some HIV-1 strains. These poxvirus vectors could be considered HIV/AIDS vaccine candidates based on their activation of potential immune correlates of protection.
Collapse
|
11
|
Fernández-Escobar M, Baldanta S, Reyburn H, Guerra S. Use of functional genomics to understand replication deficient poxvirus-host interactions. Virus Res 2016; 216:1-15. [PMID: 26519757 DOI: 10.1016/j.virusres.2015.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
High-throughput genomics technologies are currently being used to study a wide variety of viral infections, providing insight into which cellular genes and pathways are regulated after infection, and how these changes are related, or not, to efficient elimination of the pathogen. This article will focus on how gene expression studies of infections with non-replicative poxviruses currently used as vaccine vectors provide a global perspective of the molecular events associated with the viral infection in human cells. These high-throughput genomics approaches have the potential to lead to the identification of specific new properties of the viral vector or novel cellular targets that may aid in the development of more effective pox-derived vaccines and antivirals.
Collapse
Affiliation(s)
- Mercedes Fernández-Escobar
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain
| | - Sara Baldanta
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain
| | - Hugh Reyburn
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| |
Collapse
|
12
|
Li D, Huang Y, Du Q, Wang Z, Chang L, Zhao X, Tong D. CD40 Ligand and GMCSF Coexpression Enhance the Immune Responses and Protective Efficacy of PCV2 Adenovirus Vaccine. Viral Immunol 2016; 29:148-58. [DOI: 10.1089/vim.2015.0109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Delong Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhenyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
13
|
Generation of a soluble recombinant trimeric form of bovine CD40L and its potential use as a vaccine adjuvant in cows. Vet Immunol Immunopathol 2015; 168:1-13. [PMID: 26553560 DOI: 10.1016/j.vetimm.2015.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/11/2015] [Accepted: 09/22/2015] [Indexed: 11/24/2022]
Abstract
Vaccination is the most cost-effective way to control infectious diseases in cattle. However, many infectious diseases leading to severe economical losses worldwide still remain for which a really effective and safe vaccine is not available. These diseases are most often due to intracellular pathogens such as bacteria or viruses, which are, by their localization, protected from antibiotics and/or CD4(+) T cell-dependent humoral responses. We therefore postulated that strategies leading to induction of not only CD4(+) T cell responses but also CD8(+) cytotoxic T lymphocyte (CTL) responses against infected cells should be privileged in the development of new vaccines against problematic intracellular pathogens in bovines. CD40 signaling in antigen-presenting cells may lead to the induction of robust CD4-independent CTL responses and several studies, especially in mice, have used CD40 stimulation to promote CD8(+) T cell-mediated immunity. For example, we have recently shown that immunization of mice with heat-killed Staphylococcus aureus (HKSA) and agonistic anti-CD40 monoclonal antibodies elicits strong CTL responses capable of protecting mice from subsequent staphylococcal mastitis. Unfortunately, there is at present no tool available to efficiently stimulate CD40 in cattle. In this study, we therefore first produced a soluble recombinant trimeric form of the natural bovine CD40 ligand (sboCD40LT). We then observed that sboCD40LT was able to potently stimulate bovine cells in vitro. Finally, we provide evidence that immunization of cows with sboCD40LT combined with HKSA was able to significantly increase the number of both HKSA-specific CD4(+) and CD8(+) T cells in the draining lymph nodes. In conclusion, we suggest that this new molecular tool could help in the development of vaccine strategies against bovine diseases caused by intracellular pathogens.
Collapse
|
14
|
García-Arriaza J, Esteban M. Enhancing poxvirus vectors vaccine immunogenicity. Hum Vaccin Immunother 2015; 10:2235-44. [PMID: 25424927 DOI: 10.4161/hv.28974] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought.
Collapse
Affiliation(s)
- Juan García-Arriaza
- a Department of Molecular and Cellular Biology; Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| | | |
Collapse
|
15
|
Miller EA, Gopal R, Valdes V, Berger JS, Bhardwaj N, O'Brien MP. Soluble CD40 ligand contributes to dendritic cell-mediated T-cell dysfunction in HIV-1 infection. AIDS 2015; 29:1287-96. [PMID: 26091297 PMCID: PMC4478195 DOI: 10.1097/qad.0000000000000698] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Plasma soluble CD40 ligand (sCD40L) is increased during HIV-1 infection, but it is unknown whether it circulates in monomeric or multimeric forms, and whether the circulating forms have differential effects on myeloid dendritic cell function and adaptive regulation. DESIGN sCD40L forms were measured in plasma samples from HIV-infected donors. The effects of sCD40L forms on dendritic cell function were measured in vitro. METHODS To delineate which forms of sCD40L are present in plasma from HIV-infected donors, immunoblots were performed following enrichment of plasma for medium and low-abundance proteins. Dendritic cells from seronegative donors were exposed to multiple forms of sCD40L prior to Toll-like receptor stimulation and dendritic cell function and adaptive regulation was assessed in vitro. RESULTS Monomeric and multimeric forms of sCD40L were identified in plasma from antiretroviral therapy-treated HIV-infected donors. Although monomeric and multimeric forms of sCD40L had differential effects on dendritic cell activation when given alone, both strongly suppressed secretion of the Th1 skewing cytokine, interleukin-12, upon subsequent Toll-like receptor stimulation. Furthermore, dendritic cells exposed to both monomeric and multimeric sCD40L induced regulatory T-cell formation and T-cell anergy. CONCLUSION Elevated sCD40L during HIV infection impairs dendritic cell function, contributing to innate and adaptive immune dysfunction. Antiretroviral adjunctive therapies that decrease sCD40L may provide immune modulatory benefits.
Collapse
Affiliation(s)
- Elizabeth A Miller
- aDivision of Infectious Diseases, Department of Medicine bDivision of Hematology and Oncology, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai cDivision of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
16
|
Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates. J Virol 2015; 89:8525-39. [PMID: 26041302 DOI: 10.1128/jvi.01265-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/29/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4(+) T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8(+) T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that NYVAC may represent an alternative candidate to ALVAC in the development of a future HIV-1 vaccine. IMPORTANCE The finding of a safe and effective HIV/AIDS vaccine immunogen is one of the main research priorities. Here, we generated two poxvirus-based HIV vaccine candidates (NYVAC and ALVAC vectors) expressing the same clade C HIV-1 antigens in separate vectors, and we analyzed in nonhuman primates their immunogenicity profiles. The results showed that immunization with NYVAC-C induced a trend toward higher HIV-1-specific cellular and humoral immune responses than did ALVAC-C, indicating that this new NYVAC vector could be a novel optimized HIV/AIDS vaccine candidate for human clinical trials.
Collapse
|
17
|
Du S, Wang Y, Liu C, Wang M, Zhu Y, Tan P, Ren D, Li X, Tian M, Yin R, Li C, Jin N. Immunogenicity and virulence of attenuated vaccinia virus Tian Tan encoding HIV-1 muti-epitope genes, p24 and cholera toxin B subunit in mice. J Virol Methods 2015; 219:1-9. [PMID: 25796990 DOI: 10.1016/j.jviromet.2015.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/16/2015] [Accepted: 03/12/2015] [Indexed: 11/19/2022]
Abstract
No effective prophylactic or therapeutic vaccine against HIV-1 in humans is currently available. This study analyzes the immunogenicity and safety of a recombinant attenuated vaccinia virus. A chimeric gene of HIV-1 multi-epitope genes containing CpG ODN and cholera toxin B subunit (CTB) was inserted into Chinese vaccinia virus Tian Tan strain (VTT) mutant strain. The recombinant virus rddVTT(-CCMp24) was assessed for immunogenicity and safety in mice. Results showed that the protein CCMp24 was expressed stably in BHK-21 infected with rddVTT(-CCMp24). And the recombinant virus induced the production of HIV-1 p24 specific immunoglobulin G (IgG), IL-2 and IL-4. The recombinant vaccine induced γ-interferon secretion against HIV peptides, and elicited a certain levels of immunological memory. Results indicated that the recombinant virus had certain immunogenicity to HIV-1. Additionally, the virulence of the recombinant virus was been attenuated in vivo of mice compared with wild type VTT (wtVTT), and the introduction of CTB and HIV Mp24 did not alter the infectivity and virulence of defective vaccinia virus.
Collapse
Affiliation(s)
- Shouwen Du
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Yuhang Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China; Changchun Bioxun Biotech Co., Ltd., Changchun 130122, China
| | - Cunxia Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Maopeng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Yilong Zhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Peng Tan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Dayong Ren
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Xiao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Mingyao Tian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Ronglan Yin
- Academy of Animal Science and Veterinary Medicine in Jilin Province, Changchun 130062, China
| | - Chang Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China.
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China.
| |
Collapse
|
18
|
Targeting the HA2 subunit of influenza A virus hemagglutinin via CD40L provides universal protection against diverse subtypes. Mucosal Immunol 2015; 8:211-20. [PMID: 25052763 PMCID: PMC4269809 DOI: 10.1038/mi.2014.59] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 05/30/2014] [Indexed: 02/04/2023]
Abstract
The influenza viral hemagglutinin (HA) is comprised of two subunits. Current influenza vaccine predominantly induces neutralizing antibodies (Abs) against the HA1 subunit, which is constantly evolving in unpredictable fashion. The other subunit, HA2, however, is highly conserved but largely shielded by the HA head domain. Thus, enhancing immune response against HA2 could potentially elicit broadly inhibitory Abs. We generated a recombinant adenovirus (rAd) encoding secreted fusion protein, consisting of codon-optimized HA2 subunit of influenza A/California/7/2009(H1N1) virus fused to a trimerized form of murine CD40L, and determined its ability of inducing protective immunity upon intranasal administration. We found that mice immunized with this recombinant viral vaccine were completely protected against lethal challenge with divergent influenza A virus subtypes including H1N1, H3N2, and H9N2. Codon-optimization of HA2 as well as the use of CD40L as a targeting ligand/molecular adjuvant were indispensable to enhance HA2-specific mucosal IgA and serum IgG levels. Moreover, induction of HA2-specific T-cell responses was dependent on CD40L, as rAd secreting HA2 subunit without CD40L failed to induce any significant levels of T-cell cytokines. Finally, sera obtained from immunized mice were capable of inhibiting 13 subtypes of influenza A viruses in vitro. These results provide proof of concept for a prototype HA2-based universal influenza vaccine.
Collapse
|
19
|
Abstract
Purpose of review To summarize the role of adjuvants in eliciting desirable antibody responses against HIV-1 with particular emphasis on both historical context and recent developments. Recent findings Increased understanding of the role of pattern recognition receptors such as Toll-like receptors in recruiting and directing the immune system has increased the variety of adjuvant formulations being tested in animal models and humans. Across all vaccine platforms, adjuvant formulations have been shown to enhance desirable immune responses such as higher antibody titers and increased functional activity. Although no vaccine formulation has yet succeeded in eliciting broad neutralizing antibodies against HIV-1, the ability of adjuvants to direct the immune response to immunogens suggests they will be critically important in any successful HIV-1 vaccine. Summary The parallel development of adjuvants along with better HIV-1 immunogens will be needed for a successful AIDS vaccine. Additional comparative testing will be required to determine the optimal adjuvant and immunogen regimen that can elicit antibody responses capable of blocking HIV-1 transmission.
Collapse
|
20
|
Hashem AM, Gravel C, Chen Z, Yi Y, Tocchi M, Jaentschke B, Fan X, Li C, Rosu-Myles M, Pereboev A, He R, Wang J, Li X. CD40 ligand preferentially modulates immune response and enhances protection against influenza virus. THE JOURNAL OF IMMUNOLOGY 2014; 193:722-34. [PMID: 24928989 DOI: 10.4049/jimmunol.1300093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CD40L, a key regulator of the immune system, was studied as both a targeting ligand and a molecular adjuvant in nucleoprotein (NP)-based host defense against influenza in mouse models with different genetic backgrounds. Adenoviral vectors secreting NP-CD40L fusion protein (denoted as rAd-SNP40L) afforded full protection of immunocompetent and immunocompromised mice (CD40L(-/-) and CD4(-/-)) against lethal influenza infection. Mechanistically, rAd-SNP40L preferentially induced early and persistent B cell germinal center formation, and accelerated Ig isotype-switching and Th1-skewed, NP-specific Ab response. Moreover, it drastically augmented primary and memory NP-specific CTL activity and polyfunctional CD8(+) T cells. The markedly enhanced nonneutralizing Abs and CTLs significantly reduced viral burdens in the lungs of mice upon lethal virus challenge. Data generated from CD40L(-/-) and CD4(-/-) mice revealed that the protection was indeed CD40L mediated but CD4(+) T cell independent, demonstrating the viability of the fusion Ags in protecting immunodeficient hosts. Notably, a single dose of rAd-SNP40L completely protected mice from lethal viral challenge 4 mo after immunization, representing the first report, to our knowledge, on NP in conjunction with a molecular adjuvant inducing a robust and long-lasting memory immune response against influenza. This platform is characterized by an increased in vivo load of CD40-targeted Ag upon the secretion of the fusion protein from adenovirus-infected cells and may represent a promising strategy to enhance the breadth, durability, and potency of Ag-specific immune responses.
Collapse
Affiliation(s)
- Anwar M Hashem
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Caroline Gravel
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai 200231, China
| | - Yinglei Yi
- Shanghai Institute of Biological Products, Shanghai 200231, China
| | - Monika Tocchi
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Bozena Jaentschke
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Xingliang Fan
- National Institutes for the Control of Food and Drug, Beijing 10050, People's Republic of China
| | - Changgui Li
- National Institutes for the Control of Food and Drug, Beijing 10050, People's Republic of China
| | - Michael Rosu-Myles
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Alexander Pereboev
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294; Department of Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL 35294; Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Runtao He
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada; and
| | - Junzhi Wang
- National Institutes for the Control of Food and Drug, Beijing 10050, People's Republic of China;
| | - Xuguang Li
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
21
|
Iyer SS, Amara RR. DNA/MVA Vaccines for HIV/AIDS. Vaccines (Basel) 2014; 2:160-78. [PMID: 26344473 PMCID: PMC4494194 DOI: 10.3390/vaccines2010160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/31/2014] [Accepted: 02/06/2014] [Indexed: 11/16/2022] Open
Abstract
Since the initial proof-of-concept studies examining the ability of antigen-encoded plasmid DNA to serve as an immunogen, DNA vaccines have evolved as a clinically safe and effective platform for priming HIV-specific cellular and humoral responses in heterologous "prime-boost" vaccination regimens. Direct injection of plasmid DNA into the muscle induces T- and B-cell responses against foreign antigens. However, the insufficient magnitude of this response has led to the development of approaches for enhancing the immunogenicity of DNA vaccines. The last two decades have seen significant progress in the DNA-based vaccine platform with optimized plasmid constructs, improved delivery methods, such as electroporation, the use of molecular adjuvants and novel strategies combining DNA with viral vectors and subunit proteins. These innovations are paving the way for the clinical application of DNA-based HIV vaccines. Here, we review preclinical studies on the DNA-prime/modified vaccinia Ankara (MVA)-boost vaccine modality for HIV. There is a great deal of interest in enhancing the immunogenicity of DNA by engineering DNA vaccines to co-express immune modulatory adjuvants. Some of these adjuvants have demonstrated encouraging results in preclinical and clinical studies, and these data will be examined, as well.
Collapse
Affiliation(s)
- Smita S Iyer
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Rama R Amara
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
22
|
Deletion of the vaccinia virus N2L gene encoding an inhibitor of IRF3 improves the immunogenicity of modified vaccinia virus Ankara expressing HIV-1 antigens. J Virol 2014; 88:3392-410. [PMID: 24390336 DOI: 10.1128/jvi.02723-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED A modified vaccinia virus Ankara poxvirus vector expressing the HIV-1 Env, Gag, Pol, and Nef antigens from clade B (MVA-B) is currently being tested in clinical trials. To improve its immunogenicity, we have generated and characterized the immune profile of MVA-B containing a deletion of the vaccinia viral gene N2L, which codes for an inhibitor of IRF3 (MVA-B ΔN2L). Deletion of N2L had no effect on virus growth kinetics or on the expression of HIV-1 antigens; hence, the N2 protein is not essential for MVA replication. The innate immune responses triggered by MVA-B ΔN2L revealed an increase in beta interferon, proinflammatory cytokines, and chemokines. Mouse prime-boost protocols showed that MVA-B ΔN2L improves the magnitude and polyfunctionality of HIV-1-specific CD4(+) and CD8(+) T cell adaptive and memory immune responses, with most of the HIV-1 responses mediated by CD8(+) T cells. In the memory phase, HIV-1-specific CD8(+) T cells with an effector phenotype were predominant and in a higher percentage with MVA-B ΔN2L than with MVA-B. In both immunization groups, CD4(+) and CD8(+) T cell responses were directed mainly against Env. Furthermore, MVA-B ΔN2L in the memory phase enhanced levels of antibody against Env. For the vector immune responses, MVA-B ΔN2L induced a greater magnitude and polyfunctionality of VACV-specific CD8(+) T memory cells than MVA-B, with an effector phenotype. These results revealed the immunomodulatory role of N2L, whose deletion enhanced the innate immunity and improved the magnitude and quality of HIV-1-specific T cell adaptive and memory immune responses. These findings are relevant for the optimization of poxvirus vectors as vaccines. IMPORTANCE On the basis of the limited efficacy of the RV144 phase III clinical trial, new optimized poxvirus vectors as vaccines against HIV/AIDS are needed. Here we have generated and characterized a new HIV/AIDS vaccine candidate on the basis of the poxvirus MVA vector expressing HIV-1 Env, Gag, Pol, and Nef antigens (MVA-B) and containing a deletion in the vaccinia virus N2L gene. Our findings revealed the immunomodulatory role of N2L and proved that its deletion from the MVA-B vector triggered an enhanced innate immune response in human macrophages and monocyte-derived dendritic cells. Furthermore, in immunized mice, MVA-B ΔN2L induced improvements in the magnitude and quality of adaptive and memory HIV-1-specific CD4(+) and CD8(+) T cell immune responses, together with an increase in the memory phase of levels of antibody against Env. Thus, the selective deletion of the N2L viral immunomodulatory gene is important for the optimization of MVA vectors as HIV-1 vaccines.
Collapse
|
23
|
García-Arriaza J, Arnáez P, Gómez CE, Sorzano CÓS, Esteban M. Improving Adaptive and Memory Immune Responses of an HIV/AIDS Vaccine Candidate MVA-B by Deletion of Vaccinia Virus Genes (C6L and K7R) Blocking Interferon Signaling Pathways. PLoS One 2013; 8:e66894. [PMID: 23826170 PMCID: PMC3694958 DOI: 10.1371/journal.pone.0066894] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/13/2013] [Indexed: 02/01/2023] Open
Abstract
Poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (termed MVA-B) is a promising HIV/AIDS vaccine candidate, as confirmed from results obtained in a prophylactic phase I clinical trial in humans. To improve the immunogenicity elicited by MVA-B, we have generated and characterized the innate immune sensing and the in vivo immunogenicity profile of a vector with a double deletion in two vaccinia virus (VACV) genes (C6L and K7R) coding for inhibitors of interferon (IFN) signaling pathways. The innate immune signals elicited by MVA-B deletion mutants (MVA-B ΔC6L and MVA-B ΔC6L/K7R) in human macrophages and monocyte-derived dendritic cells (moDCs) showed an up-regulation of the expression of IFN-β, IFN-α/β-inducible genes, TNF-α, and other cytokines and chemokines. A DNA prime/MVA boost immunization protocol in mice revealed that these MVA-B deletion mutants were able to improve the magnitude and quality of HIV-1-specific CD4+ and CD8+ T cell adaptive and memory immune responses, which were mostly mediated by CD8+ T cells of an effector phenotype, with MVA-B ΔC6L/K7R being the most immunogenic virus recombinant. CD4+ T cell responses were mainly directed against Env, while GPN-specific CD8+ T cell responses were induced preferentially by the MVA-B deletion mutants. Furthermore, antibody levels to Env in the memory phase were slightly enhanced by the MVA-B deletion mutants compared to the parental MVA-B. These findings revealed that double deletion of VACV genes that act blocking intracellularly the IFN signaling pathway confers an immunological benefit, inducing innate immune responses and increases in the magnitude, quality and durability of the HIV-1-specific T cell immune responses. Our observations highlighted the immunomodulatory role of the VACV genes C6L and K7R, and that targeting common pathways, like IRF3/IFN-β signaling, could be a general strategy to improve the immunogenicity of poxvirus-based vaccine candidates.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pilar Arnáez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
24
|
García-Arriaza J, Arnáez P, Jiménez JL, Gómez CE, Muñoz-Fernández MÁ, Esteban M. Vector replication and expression of HIV-1 antigens by the HIV/AIDS vaccine candidate MVA-B is not affected by HIV-1 protease inhibitors. Virus Res 2012; 167:391-6. [PMID: 22659488 DOI: 10.1016/j.virusres.2012.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 02/07/2023]
Abstract
MVA-B is an attenuated poxvirus vector expressing human immunodeficiency virus type 1 Env, Gag, Pol, and Nef antigens from clade B, and is considered a promising HIV/AIDS vaccine candidate. Recently, a phase I clinical trial in human healthy volunteers has shown that MVA-B is safe and highly immunogenic, inducing broad, polyfunctional, and long-lasting CD4(+) and CD8(+) T cell responses to HIV-1 antigens, with preference for effector memory T cells; and it also triggers the induction of specific antibodies to Env in most of the vaccines. While MVA recombinants expressing HIV-1 antigens are being used or plan to use in therapeutic clinical trials, little is known on the effect of HIV-1 highly active antiretroviral therapy in MVA life cycle. To define this role, here we have evaluated in established cell cultures and human dendritic cells to what extent different HIV-1 protease inhibitors affect virus replication and expression of HIV-1 antigens during MVA-B infection. The results obtained revealed that the most commonly used HIV-1 protease inhibitors (atazanavir, ritonavir, and lopinavir) had no effect on MVA-B virus growth kinetics, even at higher concentrations than those normally used on HAART. Furthermore, expression of gp120 and the fused Gag-Pol-Nef polyprotein in permissive and non-permissive cells infected with MVA-B were also not affected. These findings are relevant information for the therapeutic use of MVA-B as an HIV-1/AIDS vaccine.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Rodríguez AM, Pascutti MF, Maeto C, Falivene J, Holgado MP, Turk G, Gherardi MM. IL-12 and GM-CSF in DNA/MVA immunizations against HIV-1 CRF12_BF Nef induced T-cell responses with an enhanced magnitude, breadth and quality. PLoS One 2012; 7:e37801. [PMID: 22655069 PMCID: PMC3360004 DOI: 10.1371/journal.pone.0037801] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/27/2012] [Indexed: 01/12/2023] Open
Abstract
In Argentina, the HIV epidemic is characterized by the co-circulation of subtype B and BF recombinant viral variants. Nef is an HIV protein highly variable among subtypes, making it a good tool to study the impact of HIV variability in the vaccine design setting. We have previously reported a specific cellular response against NefBF with low cross-reactivity to NefB in mice. The aim of this work was to analyze whether the co-administration of IL-12 and GM-CSF, using DNA and MVA vaccine vectors, could improve the final cellular response induced. Mice received three DNA priming doses of a plasmid that express NefBF plus DNAs expressing IL-12 and/or GM-CSF. Afterwards, all the groups were boosted with a MVAnefBF dose. The highest increase in the magnitude of the NefBF response, compared to that induced in the control was found in the IL-12 group. Importantly, a response with higher breadth was detected in groups which received IL-12 or GM-CSF, evidenced as an increased frequency of recognition of homologous (BF) and heterologous (B) Nef peptides, as well as a higher number of other Nef peptide pools representing different viral subtypes. However, these improvements were lost when both DNA cytokines were simultaneously administered, as the response was focused against the immunodominant peptide with a detrimental response towards subdominant epitopes. The pattern of cytokines secreted and the specific-T-cell proliferative capacity were improved in IL-12 and IL-12+GM-CSF groups. Importantly IL-12 generated a significant higher T-cell avidity against a B heterologous peptide. This study indicates that the incorporation of DNA expressing IL-12 in DNA/MVA schemes produced the best results in terms of improvements of T-cell-response key properties such as breadth, cross-reactivity and quality (avidity and pattern of cytokines secreted). These relevant results contribute to the design of strategies aimed to induce T-cell responses against HIV antigens with higher quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - María Magdalena Gherardi
- Centro Nacional de Referencia para el SIDA, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
26
|
Vijayan A, Gómez CE, Espinosa DA, Goodman AG, Sanchez-Sampedro L, Sorzano COS, Zavala F, Esteban M. Adjuvant-like effect of vaccinia virus 14K protein: a case study with malaria vaccine based on the circumsporozoite protein. THE JOURNAL OF IMMUNOLOGY 2012; 188:6407-17. [PMID: 22615208 DOI: 10.4049/jimmunol.1102492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of subunit vaccines for malaria that elicit a strong, long-term memory response is an intensive area of research, with the focus on improving the immunogenicity of a circumsporozoite (CS) protein-based vaccine. In this study, we found that a chimeric protein, formed by fusing vaccinia virus protein 14K (A27) to the CS of Plasmodium yoelii, induces strong effector memory CD8(+) T cell responses in addition to high-affinity Abs when used as a priming agent in the absence of any adjuvant, followed by an attenuated vaccinia virus boost expressing CS in murine models. Moreover, priming with the chimeric protein improved the magnitude and polyfunctionality of cytokine-secreting CD8(+) T cells. This fusion protein formed oligomers/aggregates that led to activation of STAT-1 and IFN regulatory factor-3 in human macrophages, indicating a type I IFN response, resulting in NO, IL-12, and IL-6 induction. Furthermore, this vaccination regimen inhibited the liver stage development of the parasite, resulting in sterile protection. In summary, we propose a novel approach in designing CS based pre-erythrocytic vaccines against Plasmodium using the adjuvant-like effect of the immunogenic vaccinia virus protein 14K.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Departamento de Biología Celular y Molecular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gómez CE, Perdiguero B, Jiménez V, Filali-Mouhim A, Ghneim K, Haddad EK, Quakkerlaar ED, Delaloye J, Harari A, Roger T, Dunhen T, Sékaly RP, Melief CJM, Calandra T, Sallusto F, Lanzavecchia A, Wagner R, Pantaleo G, Esteban M. Systems analysis of MVA-C induced immune response reveals its significance as a vaccine candidate against HIV/AIDS of clade C. PLoS One 2012; 7:e35485. [PMID: 22536391 PMCID: PMC3334902 DOI: 10.1371/journal.pone.0035485] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/16/2012] [Indexed: 02/04/2023] Open
Abstract
Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C). MVA-C infection of human monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | - Victoria Jiménez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | - Abdelali Filali-Mouhim
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Khader Ghneim
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Elias K. Haddad
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Esther D. Quakkerlaar
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Julie Delaloye
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Thomas Dunhen
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Rafick P. Sékaly
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Cornelis J. M. Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | - Ralf Wagner
- University of Regensburg, Regensburg, Germany
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
28
|
Auten MW, Huang W, Dai G, Ramsay AJ. CD40 ligand enhances immunogenicity of vector-based vaccines in immunocompetent and CD4+ T cell deficient individuals. Vaccine 2012; 30:2768-77. [PMID: 22349523 DOI: 10.1016/j.vaccine.2012.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 01/05/2012] [Accepted: 02/06/2012] [Indexed: 12/11/2022]
Abstract
Impairment of host immunity, particularly CD4+ T cell deficiency, presents significant complications for vaccine immunogenicity and efficacy. CD40 ligand (CD40L or CD154), a member of the tumor necrosis factor superfamily (TNFSF), is an important co-stimulatory molecule and, through interactions with its cognate receptor CD40, plays a pivotal role in the generation of host immune responses. Exploitation of CD40L and its receptor CD40 could provide a means to enhance and potentially restore protective immune responses in CD4+ T cell deficiency. To investigate the potential adjuvanticity of CD40L, we constructed recombinant plasmid DNA and adenoviral (Ad) vaccine vectors expressing murine CD40L and the mycobacterial protein antigen 85B (Ag85B). Co-immunization of mice with CD40L and Ag85B by intranasal or intramuscular prime-boosting led to route-dependent enhancement of the magnitude of vaccine-induced circulating and lung mucosal CD4+ and CD8+ T cell responses in both normal (CD4-replete) and CD4+ T cell deficient animals, including polyfunctional T cell responses. The presence of CD40L alone was insufficient to enhance or restore CD4+ T cell responses in CD4-ablated animals; however, in partially depleted animals, co-immunization with Ag85B and CD40L was capable of eliciting enhanced T cell responses, similar to those observed in normal animals, when compared to those given vaccine antigen alone. In summary, these findings show that CD40L has the capacity to enhance the magnitude of vaccine-induced polyfunctional T cell responses in CD4+ T cell deficient mice, and warrants further study as an adjuvant for immunization against opportunistic pathogens in individuals with CD4+ T cell deficiency.
Collapse
Affiliation(s)
- Matthew W Auten
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Despite many years of research, human DNA vaccines have yet to fulfill their early promise. Over the past 15 years, multiple generations of DNA vaccines have been developed and tested in preclinical models for prophylactic and therapeutic applications in the areas of infectious disease and cancer, but have failed in the clinic. Thus, while DNA vaccines have achieved successful licensure for veterinary applications, their poor immunogenicity in humans when compared with traditional protein-based vaccines has hindered their progress. Many strategies have been attempted to improve DNA vaccine potency including use of more efficient promoters and codon optimization, addition of traditional or genetic adjuvants, electroporation, intradermal delivery and various prime-boost strategies. This review summarizes these advances in DNA vaccine technologies and attempts to answer the question of when DNA vaccines might eventually be licensed for human use.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
- Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia
| |
Collapse
|
30
|
Lousberg EL, Diener KR, Brown MP, Hayball JD. Innate immune recognition of poxviral vaccine vectors. Expert Rev Vaccines 2012; 10:1435-49. [PMID: 21988308 DOI: 10.1586/erv.11.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The study of poxviruses pioneered the field of vaccinology after Jenner's remarkable discovery that 'vaccination' with the phylogenetically related cowpox virus conferred immunity to the devastating disease of smallpox. The study of poxviruses continues to enrich the field of virology because the global eradication of smallpox provides a unique example of the potency of effective immunization. Other poxviruses have since been developed as vaccine vectors for clinical and veterinary applications and include modified vaccinia virus strains such as modified vaccinia Ankara and NYVAC as well as the avipox viruses, fowlpox virus and canarypox virus. Despite the empirical development of poxvirus-based vectored vaccines, it is only now becoming apparent that we need to better understand how the innate arm of the immune system drives adaptive immunity to poxviruses, and how this information is relevant to vaccine design strategies, which are the topics addressed in this article.
Collapse
Affiliation(s)
- Erin L Lousberg
- Experimental Therapeutics Laboratory, Hanson Institute, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | | | | | | |
Collapse
|
31
|
García-Arriaza J, Nájera JL, Gómez CE, Tewabe N, Sorzano COS, Calandra T, Roger T, Esteban M. A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses. PLoS One 2011; 6:e24244. [PMID: 21909386 PMCID: PMC3164197 DOI: 10.1371/journal.pone.0024244] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022] Open
Abstract
The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Luis Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Nolawit Tewabe
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
32
|
Yao Q, Fischer KP, Li L, Agrawal B, Berhane Y, Tyrrell DL, Gutfreund KS, Pasick J. Immunogenicity and protective efficacy of a DNA vaccine encoding a chimeric protein of avian influenza hemagglutinin subtype H5 fused to CD154 (CD40L) in Pekin ducks. Vaccine 2010; 28:8147-56. [PMID: 20937323 DOI: 10.1016/j.vaccine.2010.09.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 09/23/2010] [Accepted: 09/26/2010] [Indexed: 11/24/2022]
Abstract
The potential of CD154 (CD40L) as a powerful immunological adjuvant has been shown in various strategies. In this study we examine the immunogenicity and protective efficacy of a CD40-targeting avian influenza hemagglutinin (HA) subunit DNA vaccine in ducks. DNA constructs encoded the ectodomain of the HA protein of LPAI A/mallard/BC/373/2005 (H5N2) with or without fusion to the ectodomain of duck CD154. CD40-targeting significantly accelerated and enhanced humoral responses to the vector-encoded HA protein. In viral challenge experiments with A/chicken/Vietnam/14/2005 (H5N1), DNA immunization conferred partial protection against the genetically distant HPAI. The observed improved kinetics and magnitude of immune induction suggest that CD40-targeting holds promise for influenza A vaccine development.
Collapse
Affiliation(s)
- Qingxia Yao
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cao J, Wang X, Du Y, Li Y, Wang X, Jiang P. CD40 ligand expressed in adenovirus can improve the immunogenicity of the GP3 and GP5 of porcine reproductive and respiratory syndrome virus in swine. Vaccine 2010; 28:7514-22. [PMID: 20851084 DOI: 10.1016/j.vaccine.2010.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 08/16/2010] [Accepted: 09/01/2010] [Indexed: 01/11/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has recently caused heavy economic losses in swine industry worldwide. Current vaccination strategies only provide a limited protective efficacy, thus immune modulators are being considered to enhance the effectiveness of PRRSV vaccines. In this study, the recombinant adenoviruses expressing porcine CD40 ligand (CD40L) and GP3/GP5 of PRRSV were constructed and the immune responses were examined in pigs. The results showed that rAd-CD40L-GP35 (co-expressing CD40L and GP3-GP5) or rAd-GP35 (expressing GP3-GP5) plus rAd-CD40L (expressing CD40L) could provide significant higher specific anti-PRRSV ELISA antibody and neutralizing antibody. And the levels of proliferative responses of peripheral blood mononuclear cells (PBMC), IFN-γ and IL-4 were markedly increased in rAd-CD40L-GP35 and rAd-CD40L plus rAd-GP35 groups than those in rAd-GP35 group. Following homologous challenge with Chinese isolate of the North-American genotype of PRRSV, pigs inoculated with recombinant rAd-CD40L-GP35 and rAd-CD40L plus rAd-GP35 showed lighter clinical signs and lower viremia, as compared to those in rAd-GP35 group. It indicated that porcine CD40L could effectively increase humoral and cell-mediated immune responses of GP3 and GP5 of PRRSV. Porcine CD40L might be used as an attractive adjuvant or immunotargeting strategies to enhance the PRRSV subunit vaccine responses in swine.
Collapse
Affiliation(s)
- Jun Cao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
34
|
García-Arriaza J, Nájera JL, Gómez CE, Sorzano COS, Esteban M. Immunogenic profiling in mice of a HIV/AIDS vaccine candidate (MVA-B) expressing four HIV-1 antigens and potentiation by specific gene deletions. PLoS One 2010; 5:e12395. [PMID: 20811493 PMCID: PMC2927552 DOI: 10.1371/journal.pone.0012395] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (referred as MVA-B), that induced HIV-1-specific immune responses in different animal models and gene signatures in human dendritic cells (DCs) with immunoregulatory function. Methodology/Principal Findings In an effort to characterize in more detail the immunogenic profile of MVA-B and to improve its immunogenicity we have generated a new vector lacking two genes (A41L and B16R), known to counteract host immune responses by blocking the action of CC-chemokines and of interleukin 1β, respectively (referred as MVA-B ΔA41L/ΔB16R). A DNA prime/MVA boost immunization protocol was used to compare the adaptive and memory HIV-1 specific immune responses induced in mice by the parental MVA-B and by the double deletion mutant MVA-B ΔA41L/ΔB16R. Flow cytometry analysis revealed that both vectors triggered HIV-1-specific CD4+ and CD8+ T cells, with the CD8+ T-cell compartment responsible for >91.9% of the total HIV-1 responses in both immunization groups. However, MVA-B ΔA41L/ΔB16R enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell immune responses. HIV-1-specific CD4+ T-cell responses were polyfunctional and preferentially Env-specific in both immunization groups. Significantly, while MVA-B induced preferentially Env-specific CD8+ T-cell responses, MVA-B ΔA41L/ΔB16R induced more GPN-specific CD8+ T-cell responses, with an enhanced polyfunctional pattern. Both vectors were capable of producing similar levels of antibodies against Env. Conclusions/Significance These findings revealed that MVA-B and MVA-B ΔA41L/ΔB16R induced in mice robust, polyfunctional and durable T-cell responses to HIV-1 antigens, but the double deletion mutant showed enhanced magnitude and quality of HIV-1 adaptive and memory responses. Our observations are relevant in the immune evaluation of MVA-B and on improvements of MVA vectors as HIV-1 vaccines.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Luis Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
35
|
Choi SY, Suh YS, Cho JH, Jin HT, Chang J, Sung YC. Enhancement of DNA Vaccine-induced Immune Responses by Influenza Virus NP Gene. Immune Netw 2009; 9:169-78. [PMID: 20157605 PMCID: PMC2816951 DOI: 10.4110/in.2009.9.5.169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 08/24/2009] [Accepted: 09/02/2009] [Indexed: 12/22/2022] Open
Abstract
DNA immunization induces B and T cell responses to various pathogens and tumors. However, these responses are known to be relatively weak and often transient. Thus, novel strategies are necessary for enhancing immune responses induced by DNA immunization. Here, we demonstrated that co-immunization of influenza virus nucleoprotein (NP) gene significantly enhances humoral and cell-mediated responses to codelivered antigens in mice. We also found that NP DNA coimmunization augments in vivo proliferation of adoptively transferred antigen-specific CD4 and CD8 T cells, which enhanced protective immunity against tumor challenge. Our results suggest that NP DNA can serve as a novel genetic adjuvant in cocktail DNA vaccination.
Collapse
Affiliation(s)
- So Young Choi
- Research Institute, Genexine Co. Ltd., Pohang, Korea
| | | | | | | | | | | |
Collapse
|