1
|
Muraosa Y, Hino Y, Takatsuka S, Watanabe A, Sakaida E, Saijo S, Miyazaki Y, Yamasaki S, Kamei K. Fungal chitin-binding glycoprotein induces Dectin-2-mediated allergic airway inflammation synergistically with chitin. PLoS Pathog 2024; 20:e1011878. [PMID: 38170734 PMCID: PMC10763971 DOI: 10.1371/journal.ppat.1011878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Although chitin in fungal cell walls is associated with allergic airway inflammation, the precise mechanism underlying this association has yet to be elucidated. Here, we investigated the involvement of fungal chitin-binding protein and chitin in allergic airway inflammation. Recombinant Aspergillus fumigatus LdpA (rLdpA) expressed in Pichia pastoris was shown to be an O-linked glycoprotein containing terminal α-mannose residues recognized by the host C-type lectin receptor, Dectin-2. Chitin particles were shown to induce acute neutrophilic airway inflammation mediated release of interleukin-1α (IL-1α) associated with cell death. Furthermore, rLdpA-Dectin-2 interaction was shown to promote phagocytosis of rLdpA-chitin complex and activation of mouse bone marrow-derived dendritic cells (BMDCs). Moreover, we showed that rLdpA potently induced T helper 2 (Th2)-driven allergic airway inflammation synergistically with chitin, and Dectin-2 deficiency attenuated the rLdpA-chitin complex-induced immune response in vivo. In addition, we showed that serum LdpA-specific immunoglobulin levels were elevated in patients with pulmonary aspergillosis.
Collapse
Affiliation(s)
- Yasunori Muraosa
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yutaro Hino
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Shogo Takatsuka
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akira Watanabe
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Emiko Sakaida
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Katsuhiko Kamei
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Infection Control and Prevention, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Department of Infectious Diseases, Japanese Red Cross Ishinomaki Hospital, Miyagi, Japan
| |
Collapse
|
2
|
Noroozbeygi M, Keshavarzian N, Haji Molla Hoseini M, Haghdoust S, Yeganeh F. Comparison of the long-term and short-term protection in mouse model of Leishmania major infection following vaccination with Live Iranian Lizard Leishmania mixed with chitin microparticles. Parasite Immunol 2024; 46:e13018. [PMID: 37987175 DOI: 10.1111/pim.13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Inducing long-term immunity is the primary goal of vaccination. Leishmanisation using non-pathogenic to human Leishmania spp. could be considered a reliable approach to immunising subjects against Leishmania infection. Here, we evaluated the long-term immune responses (14 weeks) after immunisation with either live- or killed-Iranian Lizard Leishmania (ILL) mixed with chitin microparticles (CMPs) against L. major infection in BALB/c mice. In total, nine groups of mice were included in the study. To evaluate short-term immunity, mice were immunised with live-ILL and CMPs and 3 weeks later were challenged with L. majorEGFP . To evaluate the long-term immunity, mice were immunised with either live- or killed-ILL both mixed with CMPs, and 14 weeks after immunisation, mice were challenged with L. majorEGFP . A group of healthy mice who received no injection was also included in the study. Eight weeks after the challenge with L. majorEGFP , all subjects were sacrificed and the parasite burden (quantitative real-time PCR and in vivo imaging), cytokines levels (IFN-γ, IL-4 and IL-10), Leishmania-specific antibody concentration, and total levels of IgG1 and IgG2a were measured. In addition, nitric oxide concentration and arginase activity were evaluated. Results showed that in mice that were immunised using live-ILL+CMP, the induced protective immune response lasted at least 14 weeks; since they were challenged with L. majorEGFP at the 14th -week post-immunisation, no open lesion was formed during the 8-week follow-up, and the footpad swelling was significantly lower than controls. They also showed a significant reduction in the parasite burden in splenocytes, compared to the control groups including the group that received killed-ILL+CMP. The observed protection was associated with a higher IFN-γ and a lower IL-10 production by splenocytes. Additionally, the results demonstrated that arginase activity was decreased in the ILL+CMP group compared to other groups. Immunisation with ILL alone reduced the parasite burden compared to non-immunised control; however, it was still significantly higher than the parasite burden in the ILL+CMP groups. In conclusion, the long-term immune response against L. major infection induced by Live-ILL+CMP was more competent than the response elicited by killed-ILL+CMP to protect mice against infection with L. majorEGFP .
Collapse
Affiliation(s)
- Mina Noroozbeygi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nafiseh Keshavarzian
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Haghdoust
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Yeganeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Farahtaj F, Gholami A, Khosravy MS, Gharibzadeh S, Niknam HM, Ghaemi A. Enhancement of immune responses by co-stimulation of TLR3 - TLR7 agonists as a potential therapeutics against rabies in mouse model. Microb Pathog 2021; 157:104971. [PMID: 34029660 DOI: 10.1016/j.micpath.2021.104971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/18/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Rabies is always fatal, when post-exposure prophylaxis is administered after the onset of clinical symptoms. To date, there is no effective treatment of rabies once clinical symptoms has initiated. Therefore, we aimed to provide evidences which indicate the promising effects of combination treatment with TLR agonists following rabies infection. Four groups of rabies infected-mice (10-mice/group) were treated with PolyI:C 50 μg (a TLR3 agonist), Imiquimod50 μg (a TLR7 agonist), (Poly + Imi)25 μg and (Poly + Imi)50 μg respectively. The immune responses in each experimental groups were investigated in the brain through evaluation of GFAP, MAP2, CD4, HSP70, TLR3, TLR7 and apoptotic cell expression as well as determination of IFN-γ, TNF-α and IL-4, levels. The treatment with combination of agonists (Poly + Imi)50 μg/mouse resulted a 75% decrease of mortality rate and better extended survival time following street rabies virus infection. Higher number of CD4+T cells, TLR3 and TLR7 expression in the brain parenchyma observed in the groups receiving both combined agonist therapies at the levels of 25 μg and 50 μg. In spite of decreased number of neuronal cell, significant higher number of astrocytes was shown in the group given (Poly + Imi)25 μg. The obtained results also pointed to the dramatic decrease of HSP70 expression in all groups of infected mice whereas higher number of apoptotic cells and Caspase 8 expression were recorded in (Poly + Imi)25 μg treated group. Furthermore, the cytokine profile consisting the increased levels of TNF-α, IFN-γ and IL-4 revealed that both humoral and cellular responses were highly modulated in combination therapy of 50 μg of Imiquimod and Poly I:C. Reduced viral load as quantified by real-time PCR of rabies N gene expression in the brain also correlated with the better survival of agonist-treated groups of mice. Based on obtained results, we have presented evidences of beneficial utilization of combined agonist therapy composed of TLR3/TLR7 ligands. This treatment regimen extended survival of infected mice and decreased significantly their mortality rate. We believe that the results of synergy-inducing protection of both TLR3/TLR7 agonists lead to the enhancement of innate immune responses cells residing in the CNS which warrant the studies to further understanding of crosstalk mechanisms in cellular immunity against rabies in the future.
Collapse
Affiliation(s)
- Firouzeh Farahtaj
- Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Gholami
- Viral Vaccine Production, Pasteur Institute of Iran, Karaj, Iran
| | | | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging of Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Safarzadeh M, Sadeghi S, Azizi M, Rastegari-Pouyani M, Pouriran R, Haji Molla Hoseini M. Chitin and chitosan as tools to combat COVID-19: A triple approach. Int J Biol Macromol 2021; 183:235-244. [PMID: 33930442 PMCID: PMC8078037 DOI: 10.1016/j.ijbiomac.2021.04.157] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/18/2022]
Abstract
The progressive and fatal outbreak of the newly emerged coronavirus, SARS-CoV-2, necessitates rigorous collaboration of all health care systems and researchers from all around the world to bring such a devastating pandemic under control. As there is so far no officially approved drug or ideal vaccine for this disease, investigations on this infectious disease are actively pursued. Chitin and chitosan have shown promising results against viral infections. In this review, we first delve into the problematic consequences of viral pandemics followed by an introduction on SARS-CoV-2 taxonomical classification. Then, we elaborate on the immunology of COVID-19. Common antiviral therapies and their related limitations are described and finally, the potential applicability of chitin and chitosan to fight this overwhelming viral pandemic is addressed.
Collapse
Affiliation(s)
- Mehrnoush Safarzadeh
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Schulze K, Ebensen T, Riese P, Prochnow B, Lehr CM, Guzmán CA. New Horizons in the Development of Novel Needle-Free Immunization Strategies to Increase Vaccination Efficacy. Curr Top Microbiol Immunol 2017; 398:207-234. [PMID: 27370343 DOI: 10.1007/82_2016_495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The young twenty-first century has already brought several medical advances, such as a functional artificial human liver created from stem cells, improved antiviral (e.g., against HIV) and cancer (e.g., against breast cancer) therapies, interventions controlling cardiovascular diseases, and development of new and optimized vaccines (e.g., HPV vaccine). However, despite this substantial progress and the achievements of the last century, humans still suffer considerably from diseases, especially from infectious diseases. Thus, almost one-fourth of all deaths worldwide are caused directly or indirectly by infectious agents. Although vaccination has led to the control of many diseases, including smallpox, diphtheria, and tetanus, emerging diseases are still not completely contained. Furthermore, pathogens such as Bordetella pertussis undergo alterations making adaptation of the respective vaccine necessary. Moreover, insufficient implementation of vaccination campaigns leads to re-emergence of diseases which were believed to be already under control (e.g., poliomyelitis). Therefore, novel vaccination strategies need to be developed in order to meet the current challenges including lack of compliance, safety issues, and logistic constraints. In this context, mucosal and transdermal approaches constitute promising noninvasive vaccination strategies able to match these demands.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Blair Prochnow
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Braunschweig, Germany.,Department of Pharmacy, Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| |
Collapse
|
6
|
Mifsud EJ, Tan AC, Short KR, Brown LE, Chua BY, Jackson DC. Reducing the impact of influenza-associated secondary pneumococcal infections. Immunol Cell Biol 2015; 94:101-8. [PMID: 26134269 DOI: 10.1038/icb.2015.71] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 01/19/2023]
Abstract
When administered prophylactically, we show that the Toll-like receptor-2 (TLR-2) agonist PEG-Pam2Cys (pegylated-S-(2,3-bis(palmitoyloxy)propyl)cysteine) not only mediates potent anti-viral activity against influenza virus but also reduces the impact of secondary infections with Streptococcus pneumoniae (the pneumococcus) by reducing (i) pulmonary viral and bacterial burdens, (ii) the levels of proinflammatory cytokines that normally accompany influenza and S. pneumoniae secondary infections and (iii) the vascular permeability of the pulmonary tract that can allow bacterial invasion of the blood in mice. We also show that an inactivated detergent-disrupted influenza virus vaccine formulated with the Pam2Cys-based adjuvant R4-Pam2Cys provides the host with both immediate and long-term protection against secondary pneumococcal infections following influenza virus infection through innate and specific immune mechanisms, respectively. Vaccinated animals generated influenza virus-specific immune responses that provided the host with long-term protection against influenza virus and its sequelae. This vaccine, which generates an immediate response, provides an additional countermeasure, which is ideal for use even in the midst of an influenza outbreak.
Collapse
Affiliation(s)
- Edin J Mifsud
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Amabel C Tan
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Kirsty R Short
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Lorena E Brown
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - David C Jackson
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Mifsud EJ, Tan ACL, Brown LE, Chua BYL, Jackson DC. Generation of Adaptive Immune Responses Following Influenza Virus Challenge is Not Compromised by Pre-Treatment with the TLR-2 Agonist Pam2Cys. Front Immunol 2015; 6:290. [PMID: 26097481 PMCID: PMC4457020 DOI: 10.3389/fimmu.2015.00290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
Immunostimulatory agents provide a new category of anti-microbial agents that activate the host’s innate immune system allowing control of viral and/or bacterial infections. The TLR-2 agonist PEG-Pam2Cys has been shown to mediate potent anti-viral activity against influenza viruses when administered prophylactically (1). Here, we demonstrate that the treatment of mice with PEG-Pam2Cys does not compromise their ability to generate adaptive immune responses following subsequent challenge with influenza virus. The antibody induced in mice pre-treated with Pam2Cys possessed hemagglutination-inhibiting activities and the CD8+ T-cell responses that were elicited provided protection against heterologous viral challenge. In the absence of an effective influenza vaccine, an agent that provides immediate protection against the virus and does not compromise the induction of influenza-specific immunity on exposure to infectious virus provides an opportunity for population immunity to be achieved through natural exposure to virus.
Collapse
Affiliation(s)
- Edin Jessica Mifsud
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Parkville, VIC , Australia
| | - Amabel C L Tan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Parkville, VIC , Australia
| | - Lorena Elizabeth Brown
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Parkville, VIC , Australia
| | - Brendon Yew Loong Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Parkville, VIC , Australia
| | - David C Jackson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
8
|
Savelkoul HFJ, Ferro VA, Strioga MM, Schijns VEJC. Choice and Design of Adjuvants for Parenteral and Mucosal Vaccines. Vaccines (Basel) 2015; 3:148-71. [PMID: 26344951 PMCID: PMC4494243 DOI: 10.3390/vaccines3010148] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/11/2014] [Accepted: 02/24/2015] [Indexed: 11/16/2022] Open
Abstract
The existence of pathogens that escape recognition by specific vaccines, the need to improve existing vaccines and the increased availability of therapeutic (non-infectious disease) vaccines necessitate the rational development of novel vaccine concepts based on the induction of protective cell-mediated immune responses. For naive T-cell activation, several signals resulting from innate and adaptive interactions need to be integrated, and adjuvants may interfere with some or all of these signals. Adjuvants, for example, are used to promote the immunogenicity of antigens in vaccines, by inducing a pro-inflammatory environment that enables the recruitment and promotion of the infiltration of phagocytic cells, particularly antigen-presenting cells (APC), to the injection site. Adjuvants can enhance antigen presentation, induce cytokine expression, activate APC and modulate more downstream adaptive immune reactions (vaccine delivery systems, facilitating immune Signal 1). In addition, adjuvants can act as immunopotentiators (facilitating Signals 2 and 3) exhibiting immune stimulatory effects during antigen presentation by inducing the expression of co-stimulatory molecules on APC. Together, these signals determine the strength of activation of specific T-cells, thereby also influencing the quality of the downstream T helper cytokine profiles and the differentiation of antigen-specific T helper populations (Signal 3). New adjuvants should also target specific (innate) immune cells in order to facilitate proper activation of downstream adaptive immune responses and homing (Signal 4). It is desirable that these adjuvants should be able to exert such responses in the context of mucosal administered vaccines. This review focuses on the understanding of the potential working mechanisms of the most well-known classes of adjuvants to be used effectively in vaccines.
Collapse
Affiliation(s)
- Huub F J Savelkoul
- Cell Biology and Immunology, Wageningen University, Wageningen, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Marius M Strioga
- Department of Immunology, Center of Oncosurgery, National Cancer Institute, P. Baublio Str. 3b-321, LT-08406 Vilnius, Lithuania.
| | - Virgil E J C Schijns
- Cell Biology and Immunology, Wageningen University, Wageningen, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
- ERC-Belgium and ERC-The Netherlands, 5374 RE Schaijk, The Netherlands.
| |
Collapse
|
9
|
Immunomodulatory effects of chitin microparticles on Leishmania major-infected BALB/c mice. Parasitol Int 2014; 64:219-21. [PMID: 25543078 DOI: 10.1016/j.parint.2014.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 11/24/2014] [Accepted: 12/19/2014] [Indexed: 11/20/2022]
Abstract
Chitin and its some derivatives are known to be non-allergic and non-toxic substances. It has been shown that chitin microparticles have immunomodulatory activities. In the present study, we investigated the in vivo immunomodulatory activities of chitin microparticles (CMPs) on Leishmania major-infected BALB/c mice. BALB/c mice were infected with L. major promastigotes at their base of the tail. CMPs (100μg/100μl) were injected into the site of infection from 3days before to 2 or 8 weeks after infection at two-day intervals. Cytokine concentrations (TNF-α, IFN-γ, IL-5 and IL-10) were measured using ELISA assays. Compared to the untreated group, production of TNF-α was significantly elevated in the CMPs-treated group. Moreover, the IFN-γ/IL-5 ratio was significantly elevated in CMPs-treated infected mice (P=0.023). Notably, the concentration of IL-10 was higher in CMPs-treated mice. These results showed that CMPs have in vivo immunomodulatory effects via the production of IFN-γ and IL-10. We also measured the onset and size of lesions in both treated and untreated mice. The average times taken for the onset of the lesion formation were 35 and 29days for CMPs-treated and untreated mice (P=0.023), respectively. The mean size of the lesions was smaller in CMPs-treated group. Our study serves as a basis for future investigations on the application of CMPs as a prophylactic (vaccine adjuvant) and/or therapeutic modality against leishmaniasis.
Collapse
|
10
|
Mifsud EJ, Tan ACL, Jackson DC. TLR Agonists as Modulators of the Innate Immune Response and Their Potential as Agents Against Infectious Disease. Front Immunol 2014; 5:79. [PMID: 24624130 PMCID: PMC3939722 DOI: 10.3389/fimmu.2014.00079] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/13/2014] [Indexed: 12/28/2022] Open
Abstract
Immunotherapies that can either activate or suppress innate immune responses are being investigated as treatments against infectious diseases and the pathology they can cause. The objective of these therapies is to elicit protective immune responses thereby limiting the harm inflicted by the pathogen. The Toll-like receptor (TLR) signaling pathway plays critical roles in numerous host immune defenses and has been identified as an immunotherapeutic target against the consequences of infectious challenge. This review focuses on some of the recent advances being made in the development of TLR-ligands as potential prophylactic and/or therapeutic agents.
Collapse
Affiliation(s)
- Edin J. Mifsud
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Amabel C. L. Tan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - David C. Jackson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Shastri PN, Kim MC, Quan FS, D'Souza MJ, Kang SM. Immunogenicity and protection of oral influenza vaccines formulated into microparticles. J Pharm Sci 2012; 101:3623-35. [PMID: 22711602 DOI: 10.1002/jps.23220] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/28/2012] [Accepted: 05/10/2012] [Indexed: 01/22/2023]
Abstract
Influenza is a deadly disease affecting humans and animals. It is recommended that every individual should be vaccinated annually against influenza. Considering the frequency of administration of this vaccine, we have explored the oral route of vaccination with a microparticulate formulation. Microparticles containing inactivated influenza A/PR/34/8 H1N1 virus with Eudragit S and trehalose as a matrix were prepared using the Buchi spray dryer. Particle size distribution of microparticles was measured and the bioactivity of vaccine in a microparticle form was analyzed using a hemagglutination activity test. Furthermore, the efficacy of microparticle vaccines was evaluated in vivo in Balb/c mice. Analysis of serum samples showed that microparticles resulted in enhanced antigen-specific immunoglobulin G (IgG), IgG1, and IgG2a antibodies. Upon challenge with homologous and heterologous influenza viruses, microparticle vaccines showed significantly increased levels of protection. Use of microparticles to deliver vaccines could be a promising tool for the development of an oral influenza vaccine.
Collapse
Affiliation(s)
- Prathap Nagaraja Shastri
- Nanotechnology Laboratory, College of Pharmacy and Health Sciences, Mercer University, Atlanta, Georgia 30341, USA
| | | | | | | | | |
Collapse
|
12
|
Kang H, Wang H, Yu Q, Yang Q. Effect of intranasal immunization with inactivated avian influenza virus on local and systemic immune responses in ducks. Poult Sci 2012; 91:1074-80. [DOI: 10.3382/ps.2011-01817] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
13
|
Abstract
Mucosal surfaces are a major portal of entry for many human pathogens that are the cause of infectious diseases worldwide. Vaccines capable of eliciting mucosal immune responses can fortify defenses at mucosal front lines and protect against infection. However, most licensed vaccines are administered parenterally and fail to elicit protective mucosal immunity. Immunization by mucosal routes may be more effective at inducing protective immunity against mucosal pathogens at their sites of entry. Recent advances in our understanding of mucosal immunity and identification of correlates of protective immunity against specific mucosal pathogens have renewed interest in the development of mucosal vaccines. Efforts have focused on efficient delivery of vaccine antigens to mucosal sites that facilitate uptake by local antigen-presenting cells to generate protective mucosal immune responses. Discovery of safe and effective mucosal adjuvants are also being sought to enhance the magnitude and quality of the protective immune response.
Collapse
Affiliation(s)
- Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
14
|
Bradley LM, Douglass MF, Chatterjee D, Akira S, Baaten BJG. Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling. PLoS Pathog 2012; 8:e1002641. [PMID: 22496659 PMCID: PMC3320598 DOI: 10.1371/journal.ppat.1002641] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 02/29/2012] [Indexed: 12/11/2022] Open
Abstract
The early inflammatory response to influenza virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which neutrophils gain entry to the respiratory tract and their role during pathogenesis remain unclear. Here, we report that neutrophils significantly contributed to morbidity in a pathological mouse model of influenza virus infection. Using extensive immunohistochemistry, bone marrow transfers, and depletion studies, we identified neutrophils as the predominant pulmonary cellular source of the gelatinase matrix metalloprotease (MMP) 9, which is capable of digesting the extracellular matrix. Furthermore, infection of MMP9-deficient mice showed that MMP9 was functionally required for neutrophil migration and control of viral replication in the respiratory tract. Although MMP9 release was toll-like receptor (TLR) signaling-dependent, MyD88-mediated signals in non-hematopoietic cells, rather than neutrophil TLRs themselves, were important for neutrophil migration. These results were extended using multiplex analyses of inflammatory mediators to show that neutrophil chemotactic factor, CCL3, and TNFα were reduced in the Myd88−/− airways. Furthermore, TNFα induced MMP9 secretion by neutrophils and blocking TNFα in vivo reduced neutrophil recruitment after infection. Innate recognition of influenza virus therefore provides the mechanisms to induce recruitment of neutrophils through chemokines and to enable their motility within the tissue via MMP9-mediated cleavage of the basement membrane. Our results demonstrate a previously unknown contribution of MMP9 to influenza virus pathogenesis by mediating excessive neutrophil migration into the respiratory tract in response to viral replication that could be exploited for therapeutic purposes. Influenza-associated morbidity and mortality due to yearly epidemics and sporadic, devastating pandemics are a significant health and economic burden. Severe complications arising from highly virulent viruses are associated with rapid, massive inflammatory cell infiltration. Although neutrophils are the predominant cell population recruited to the lung in response to pandemic influenza viruses, the mechanisms by which they gain entry to the respiratory tract remain unclear. In this study, we show a previously unknown contribution of MMP9 to influenza pathogenesis by mediating excessive neutrophil migration into the lung, which not only controls viral replication, but also contributes to morbidity. The in vivo relevance of MMP9-derived enzymatic activity in neutrophils is controversial and understudied, but our data provide new evidence that innate recognition of influenza virus attracts neutrophils that secrete MMP9, which enables them to traverse the basement membrane of the lung by digesting the extracellular matrix. The dichotomy of MMP9 function in immunity versus pathology provides real challenges for targeting MMP9 for therapeutic purposes. Nevertheless, finding the balance to modulate neutrophil numbers following influenza virus infection will allow for innate immunity to be boosted whilst preventing pathology associated with pandemic strains.
Collapse
Affiliation(s)
- Linda M. Bradley
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Mia F. Douglass
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Dhrubamitra Chatterjee
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Bas J. G. Baaten
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
An overview on the field of micro- and nanotechnologies for synthetic Peptide-based vaccines. JOURNAL OF DRUG DELIVERY 2011; 2011:181646. [PMID: 21773041 PMCID: PMC3134826 DOI: 10.1155/2011/181646] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/05/2011] [Indexed: 11/17/2022]
Abstract
The development of synthetic peptide-based vaccines has many advantages in comparison with vaccines based on live attenuated organisms, inactivated or killed organism, or toxins. Peptide-based vaccines cannot revert to a virulent form, allow a better conservation, and are produced more easily and safely. However, they generate a weaker immune response than other vaccines, and the inclusion of adjuvants and/or the use of vaccine delivery systems is almost always needed. Among vaccine delivery systems, micro- and nanoparticulated ones are attractive, because their particulate nature can increase cross-presentation of the peptide. In addition, they can be passively or actively targeted to antigen presenting cells. Furthermore, particulate adjuvants are able to directly activate innate immune system in vivo. Here, we summarize micro- and nanoparticulated vaccine delivery systems used in the field of synthetic peptide-based vaccines as well as strategies to increase their immunogenicity.
Collapse
|