1
|
Mosadegh S, Abtahi H, Amani J, Karizi SZ, Salmanian AH. Protective immunization against Enterohemorrhagic Escherichia coli and Shigella dysenteriae Type 1 by chitosan nanoparticle loaded with recombinant chimeric antigens comprising EIT and STX1B-IpaD. Microb Pathog 2023; 184:106344. [PMID: 37704060 DOI: 10.1016/j.micpath.2023.106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Increasing evidence demonstrated that Enterohemorrhagic Escherichia coli (EHEC) and Shigella dysenteriae type 1 (S. dysenteriae1) are considered pathogens, that are connected with diarrhea and are still the greatest cause of death in children under the age of five years, worldwide. EHEC and S. dysenteriae 1 infections can be prevented and managed using a vaccination strategy against pathogen attachment stages. In this study, the chitosan nanostructures were loaded with recombinant EIT and STX1B-IpaD polypeptides. The immunogenic properties of this nano-vaccine candidate were investigated. The EIT and STX1B-IpaD recombinant proteins were heterologous expressed, purified, and confirmed by western blotting. The chitosan nanoparticles, were used to encapsulate the purified proteins. The immunogenicity of recombinant nano vaccine candidate, was examined in three groups of BalB/c mice by injection, oral delivery, and combination of oral-injection. ELISA and antibody titer, evaluated the humoral immune response. Finally, all three mice groups were challenged by two pathogens to test the ability of the nano-vaccine candidate to protect against bacterial infection. The Sereny test in guinea pigs was used to confirm the neutralizing effect of immune sera in controlling S. dysenteriae 1, infections. SDS-PAGE and western blotting, confirmed the presence and specificity of 63 and 27 kDa recombinant EIT and STX1B-IpaD, respectively. The results show that the nanoparticles containing recombinant proteins could stimulate the systemic and mucosal immune systems by producing IgG and IgA, respectively. The challenge test showed that, the candidate nano-vaccine could protect the animal model from bacterial infection. The combination of multiple recombinant proteins, carrying several epitopes and natural nanoparticles could evocate remarkable humoral and mucosal responses and improve the protection properties of synthetic antigens. Furthermore, compared with other available antigen delivery methods, using oral delivery as immune priming and injection as a booster method, could act as combinatorial methods to achieve a higher level of immunity. This approach could present an appropriate vaccine candidate against both EHEC and S. dysenteriae 1.
Collapse
Affiliation(s)
- Shadi Mosadegh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva Branch, Islamic Azad University, Pishva, Varamin, Iran
| | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
2
|
Montero DA, Garcia-Betancourt R, Vidal RM, Velasco J, Palacios PA, Schneider D, Vega C, Gómez L, Montecinos H, Soto-Shara R, Oñate Á, Carreño LJ. A chimeric protein-based vaccine elicits a strong IgG antibody response and confers partial protection against Shiga toxin-producing Escherichia coli in mice. Front Immunol 2023; 14:1186368. [PMID: 37575242 PMCID: PMC10413102 DOI: 10.3389/fimmu.2023.1186368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that causes gastrointestinal infections, ranging from acute diarrhea and dysentery to life-threatening diseases such as Hemolytic Uremic Syndrome. Currently, a vaccine to prevent STEC infection is an unmet medical need. Results We developed a chimeric protein-based vaccine targeting seven virulence factors of STEC, including the Stx2B subunit, Tir, Intimin, EspA, Cah, OmpT, and AggA proteins. Immunization of mice with this vaccine candidate elicited significant humoral and cellular immune responses against STEC. High levels of specific IgG antibodies were found in the serum and feces of immunized mice. However, specific IgA antibodies were not detected in either serum or feces. Furthermore, a significantly higher percentage of antigen-specific CD4+ T cells producing IFN-γ, IL-4, and IL-17 was observed in the spleens of immunized mice. Notably, the immunized mice showed decreased shedding of STEC O157:H7 and STEC O91:H21 strains and were protected against weight loss during experimental infection. Additionally, infection with the STEC O91:H21 strain resulted in kidney damage in control unimmunized mice; however, the extent of damage was slightly lower in immunized mice. Our findings suggest that IgG antibodies induced by this vaccine candidate may have a role in inhibiting bacterial adhesion and complement-mediated killing. Conclusion This study provides evidence that IgG responses are involved in the host defense against STEC. However, our results do not rule out that other classes of antibodies also participate in the protection against this pathogen. Additional work is needed to improve the protection conferred by our vaccine candidate and to elucidate the relevant immune responses that lead to complete protection against this pathogen.
Collapse
Affiliation(s)
- David A. Montero
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Richard Garcia-Betancourt
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto M. Vidal
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A. Palacios
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Schneider
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina Vega
- Plataforma Experimental, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Leonardo Gómez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Hernán Montecinos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Soto-Shara
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ángel Oñate
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leandro J. Carreño
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Quinn C, Tomás-Cortázar J, Ofioritse O, Cosgrave J, Purcell C, McAloon C, Frost S, McClean S. GlnH, a Novel Antigen That Offers Partial Protection against Verocytotoxigenic Escherichia coli Infection. Vaccines (Basel) 2023; 11:175. [PMID: 36680019 PMCID: PMC9863631 DOI: 10.3390/vaccines11010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Verotoxin-producing Escherichia coli (VTEC) causes zoonotic infections, with potentially devastating complications, and children under 5 years old are particularly susceptible. Antibiotic treatment is contraindicated, and due to the high proportion of infected children that suffer from severe and life-changing complications, there is an unmet need for a vaccine to prevent VTEC infections. Bacterial adhesins represent promising candidates for the successful development of a vaccine against VTEC. Using a proteomic approach to identify bacterial proteins interacting with human gastrointestinal epithelial Caco-2 and HT-29 cells, we identified eleven proteins by mass spectrometry. These included a glutamine-binding periplasmic protein, GlnH, a member of the ABC transporter family. The glnH gene was identified in 13 of the 15 bovine and all 5 human patient samples tested, suggesting that it is prevalent. We confirmed that GlnH is involved in the host cell attachment of an O157:H7 prototype E. coli strain to gastrointestinal cells in vitro. Recombinant GlnH was expressed and purified prior to the immunisation of mice. When alum was used as an adjuvant, GlnH was highly immunogenic, stimulating strong serological responses in immunised mice, and it resulted in a modest reduction in faecal shedding but did not reduce colonisation. GlnH immunisation with a T-cell-inducing adjuvant (SAS) also showed comparable antibody responses and an IgG1/IgG2a ratio suggestive of a mixed Th1/Th2 response but was partially protective, with a 1.5-log reduction in colonisation of the colon and caecum at 7 days relative to the adjuvant only (p = 0.0280). It is clear that future VTEC vaccine developments should consider the contribution of adjuvants in addition to antigens. Moreover, it is likely that a combined cellular and humoral response may prove more beneficial in providing protective interventions against VTEC.
Collapse
Affiliation(s)
- Conor Quinn
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
- APC Ltd., Building 11, Cherrywood Business Park, Loughlinstown, D18 DH5 Co. Dublin, Ireland
| | - Julen Tomás-Cortázar
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
| | - Oritsejolomi Ofioritse
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Cosgrave
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Purcell
- Children’s Health Ireland (CHI) at Tallaght, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Catherine McAloon
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Susanna Frost
- Children’s Health Ireland (CHI) at Tallaght, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
| |
Collapse
|
4
|
Samiei H, Nazarian S, Hajizade A, Kordbacheh E. In silico design, production and immunization evaluation of a recombinant bivalent fusion protein candidate vaccine against E. coli O157:H7. Int Immunopharmacol 2023; 114:109464. [PMID: 36450206 DOI: 10.1016/j.intimp.2022.109464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/20/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022]
Abstract
In silico techniques are highly suited for both the discovery of new and development of available vaccines. Escherichia coli O157: H7, a main cause of food poisoning can infect humans through the consumption of contaminated water or food. Vaccination is a choice strategy to combat the bacterium. In the present study, we designed, expressed and purified a chimeric protein comprising two antigens of Escherichia coli O157: H7, including intimin and flagellin proteins, as a vaccine candidate and evaluated its immunization ability in mice. Thein silicoresults showed that the proposed antigen has a high antigenicity and conformation to be used as a potent vaccine candidate. The protein was successfully expressed in E. coli expression system with a proper level of expression (0/8g/L). Immunization evaluation showed that the protein is able to evoke the mice's humoral immunity and can confer a protective immunity against E. coli O157:H7, so that 80 % of the immunized animals were survived following the intraperitoneal injection of 100 LD50 of the live bacteria. Shedding analysis also showed the protectivity power of the protein. Bacterial excretion in control animals remained stable at about 108 CFU after 15 days, while the excreted bacteria in the feces of immunized mice's decreased to about 102 after the same time. According to the results, the proposed protein is able to stimulate the immune responses of mice and protect them against E. coli O157:H7.
Collapse
Affiliation(s)
- Hossein Samiei
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences Mashhad, Iran
| | - Shahram Nazarian
- (b)Faculty of Science, Department of Biology, Imam Hossein University, Tehran, Iran.
| | - Abass Hajizade
- (b)Faculty of Science, Department of Biology, Imam Hossein University, Tehran, Iran.
| | - Emad Kordbacheh
- (b)Faculty of Science, Department of Biology, Imam Hossein University, Tehran, Iran
| |
Collapse
|
5
|
Molecular Lipopolysaccharide Di-Vaccine Protects from Shiga-Toxin Producing Epidemic Strains of Escherichia coli O157:H7 and O104:H4. Vaccines (Basel) 2022; 10:vaccines10111854. [DOI: 10.3390/vaccines10111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Shiga toxin-producing Escherichia coli (STEC) O157:H7 and O104:H4 strains are important causative agents of food-borne diseases such as hemorrhagic colitis and hemolytic–uremic syndrome, which is the leading cause of kidney failure and death in children under 5 years as well as in the elderly. Methods: the native E. coli O157:H7 and O104:H4 lipopolysaccharides (LPS) were partially deacylated under alkaline conditions to obtain apyrogenic S-LPS with domination of tri-acylated lipid A species—Ac3-S-LPS. Results: intraperitoneal immunization of BALB/c mice with Ac3-S-LPS antigens from E. coli O157:H7 and O104:H4 or combination thereof (di-vaccine) at single doses ranging from 25 to 250 µg induced high titers of serum O-specific IgG (mainly IgG1), protected animals against intraperitoneal challenge with lethal doses of homologous STEC strains (60–100% survival rate) and reduced the E. coli O157:H7 and O104:H4 intestinal colonization under an in vivo murine model (6–8-fold for monovalent Ac3-S-LPS and 10-fold for di-vaccine). Conclusions: Di-vaccine induced both systemic and intestinal anti-colonization immunity in mice simultaneously against two highly virulent human STEC strains. The possibility of creating a multivalent STEC vaccine based on safe Ac3-S-LPS seems to be especially promising due to a vast serotype diversity of pathogenic E. coli.
Collapse
|
6
|
Mozafari A, Amani J, Shahsavandi S, Hatef Salmanian A. A Novel Multi-Epitope Edible Vaccine Candidate for Newcastle Disease Virus: In Silico Approach. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3119. [PMID: 36337069 PMCID: PMC9583821 DOI: 10.30498/ijb.2022.298822.3119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Newcastle disease, is one of the most important illnesses in the aviculture industry which shows a constant threat. In this case, the vaccine could be considered an important solution to prevent and control this disease. So, the development of a new and more effective vaccine against Newcastle disease is an urgent need. Immune informatics is an important field that provides insight into the experimental procedure and could facilitate the analysis of large amounts of immunological data generated by experimental research and help to design a new vaccine candidate. Objectives This study is aimed at bioinformatics to investigate and select the most immunogenic and conserved epitopes derived from F and HN glycoproteins, which play a key role in pathogenesis and immunity. This strategy could cover a wide range of Newcastle disease viruses. Materials and Method For expression in both E. coli (as an injectable recombinant vaccine candidate) and maize plant (as an edible vaccine candidate) host, two constructs were designed and analyzed separately. Furthermore, the role of LTB as an effective bio-adjuvant for general eliciting of the immune system and simultaneous expressions with those two antigens was evaluated. Hence, here a multimeric recombinant protein with the abbreviation LHN2F from the highly immunogenic part of HN, F and LTB proteins were designed. The synthetic construct was analyzed based on different bioinformatics tools. Results The proper immunogenicity and stability of this multimeric fusion protein have been shown by immunoinformatic methods from various servers. To confirm the function of the designed protein, the final molecule was docked to chicken MHC class I using the Pyrex-python 0.8 program. the results of Immune Epitope analysis were confirmed by the docking results between protein and receptor. Conclusions The results of structural and immunological computational studies proposed that the protein deduced from this novel construct could act as a vaccine candidate for Newcastle disease virus control and prophylactic.
Collapse
Affiliation(s)
- Atena Mozafari
- Department of Agricultural Biotechnology. National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahla Shahsavandi
- Razi Vaccine & Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology. National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
7
|
Roghanian P, Zare Karizi S, Motamedi MJ, Kazemi R, Khoobbakht D, Amani J. Designing and determining immunogenicity of a recombinant protein due to producing a new vaccine against Enterotoxigenic Escherichia coli containing CfaE and CotD subunits. J Immunoassay Immunochem 2021; 42:525-542. [PMID: 33834940 DOI: 10.1080/15321819.2021.1906890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the most common bacterial causes of mortalities in developing countries due to diarrhea. Since mucosal immune responses to CFs can prevent the disease, a chimeric protein containing ETEC's CFA/I (CfaE) tip subunits and CS2 (CotD) sub-structural units is developed to produce effective vaccine. Using bioinformatics tools, the chimeric construct was analyzed and then the optimized gene was synthesized and expressed in E. coli. The recombinant protein was expressed and purified by the Ni-NTA chromatography column and confirmed by anti-his tag antibody by western blotting. Mice were immunized with recombinant protein, and the IgG and IgA antibodies' titrations of the sera were analyzed by ELISA. In addition, the immunogenicity and protective efficacy against the live ETEC bacteria in the challenge test were determined. Western blot analysis verified the chimeric protein expression of CotD-CfaE. The outcome of ELISA was a substantial improvement in the IgG antibody titer in immunized mice. In a live ETEC challenge, the survival percentage of 30% was shown for immunized mice. The developed recombinant chimeric protein could be suggested as an effective component in producing an efficient vaccine against Enterotoxigenic E. coli with other crucial subunits, different immunization route, and other factors.
Collapse
Affiliation(s)
- Pooneh Roghanian
- Department of Genetics, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva, Branch Islamic Azad University, Varamin, Iran
| | | | | | - Dorna Khoobbakht
- Department of Genetics, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Asmani F, Khavari-Nejad RA, Salmanian AH, Amani J. In Silico designing and immunogenic production of the multimeric CfaB*ST, CfaE, LTB antigen as a peptide vaccine against Enterotoxigenic Escherichia coli. Microb Pathog 2021; 158:105087. [PMID: 34256098 DOI: 10.1016/j.micpath.2021.105087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most frequent bacterial cause of diarrhea particularly reported in children of developing countries and also travelers. Enterotoxins and colonization factor antigens (CFAs) are two major virulence factors in ETEC pathogenesis. Colonization factor antigen I (CFA/I) includes major pilin subunit CfaB, and a minor adhesive subunit (CfaE), and enterotoxins consisting of heat-labile toxin subunit B (LTB) and heat-stable toxin (ST). Chimeric proteins (CCL) carrying epitopes and adjuvant sequences increase the possibility of eliciting a broad cellular or effective immune response. In the present study, a chimeric candidate vaccine containing CfaB*ST, CfaE, and LTB (CCL) was designed via in silico techniques. This chimeric gene was synthesized by using codon usage of E. coli for increasing the expression of the recombinant protein. After designing the chimeric construct, it showed a high antigenicity index estimated by the vaxiJen server. Linear and conformational B-cell epitopes were identified and indicated suitable immunogenicity of this multimeric recombinant protein. Thermodynamic analyses for mRNA structures revealed the appropriate folding of the RNA representative good stability of this molecule. In silico scanning was done to predict the 3D structure of the protein, and modeling was validated using the Ramachandran plot analysis. The chimeric protein (rCCL) was expressed in a prokaryotic expression system (E. coli), purified, and analyzed for their immunogenic properties. It was revealed that the production of a high titer of antibody produced in immunized mice could neutralize the ETEC using the rabbit ileal loop tests. The results indicated that the protein inferred from the recombinant protein (rCCL) construct could act as a proper vaccine candidate against three critical causative agents of diarrheal bacteria at the same time.
Collapse
Affiliation(s)
- Farzaneh Asmani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Nikam PS, Kingston JJ, Belagal Motatis AK. Oral co-administration of bivalent protein r-BL with U-Omp19 elicits mucosal immune responses and reduces S. Typhimurium shedding in BALB/c mice. Immunol Lett 2021; 231:61-67. [PMID: 33460704 DOI: 10.1016/j.imlet.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 01/18/2023]
Abstract
The increase in international food trade and travel has dramatically increased the global incidences of Salmonellosis. In the light of widespread resistance to frontline antibiotics, oral vaccines remain the most reliable alternative. In this study, the fusion protein, r-BL was rationally constructed by splicing the Salmonella Typhimurium sseB and ompL genes through G4S linker by over-lap extension PCR. The oral coadministration of r-BL with B. abortus U-Omp19 protein with known protease inhibitor activity resulted in significant increase of mucosal IgA titres to antilog 4.5051 (p < 0.0001) and 4.806 (p < 0.0001) in the fecal samples and intestinal washes respectively. Antibody isotyping of the intestinal washes demonstrated increase in mucosal IgM, IgG1 and IgG2a isotypes also and demonstrated a significant reduction in fecal shedding of S. Typhimurium in challenge study. The r-BL + U-Omp19 treated mice demonstrated a complete termination of Salmonella fecal shedding by the 12th day of challenge as compared to other study groups. In summary, the bivalent protein r-BL when administered with the mucosal adjuvant U-Omp19 was successful in triggering mucosal arm of the immune system which forms the first line of defence in combating the infections caused by the enteric pathogen like Salmonella.
Collapse
Affiliation(s)
- Pradnya Sukhadev Nikam
- Department of Microbiology, Defence Food Research Laboratory, Siddarthanagar, Mysuru, Karnataka, 570011, India.
| | - Joseph J Kingston
- Department of Microbiology, Defence Food Research Laboratory, Siddarthanagar, Mysuru, Karnataka, 570011, India.
| | - Anil Kumar Belagal Motatis
- Department of Microbiology, Defence Food Research Laboratory, Siddarthanagar, Mysuru, Karnataka, 570011, India.
| |
Collapse
|
10
|
Khoobbakht D, Zare Karizi S, Motamedi MJ, Kazemi R, Roghanian P, Amani J. Immunogenicity Evaluation of Chimeric Subunit Vaccine Comprising Adhesion Coli Surface Antigens from Enterotoxigenic Escherichia coli. J Mol Microbiol Biotechnol 2020; 29:91-100. [PMID: 32645695 DOI: 10.1159/000509708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/24/2020] [Indexed: 11/19/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common agent of diarrhea morbidity in developing countries. ETEC adheres to host intestinal epithelial cells via various colonization factors. The CooD and CotD proteins play a significant role in bacteria binding to the intestinal epithelial cells as adhesin tip subunits of CS1 and CS2 pili. The purpose here was to design a new construction containing cooD and cotD genes and use several types of bioinformatics software to predict the structural and immunological properties of the designed antigen. The fusion gene was synthesized with codon bias of E. coli in order to increase the expression level of the protein. The amino acid sequences, protein structure, and immunogenicity properties of potential antigens were analyzed in silico. The chimeric protein was expressed in E. coliBL21 (DE3). The antigenicity of the recombinant proteins was verified by Western blotting and ELISA. In order to assess the induced immunity, the immunized mice were challenged with wild-type ETEC by an intraperitoneal route. Immunological analyses showed the production of a high titer of IgG serum with no sign of serum-mucosal IgA antibody response. The result of the challenge assay showed that 30% of immunized mice survived. The results of this study showed that CooD-CotD recombinant protein can stimulate immunity against ETEC. The designed chimera could be a prototype for the subunit vaccine, which is worthy of further consideration.
Collapse
Affiliation(s)
- Dorna Khoobbakht
- Department of Genetics, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva, Branch of Islamic Azad University, Varamin, Iran
| | | | | | - Pooneh Roghanian
- Department of Genetics, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
11
|
Heterologous expression of Intimin and IpaB fusion protein in Lactococcus lactis and its mucosal delivery elicit protection against pathogenicity of Escherichia coli O157 and Shigella flexneri in a murine model. Int Immunopharmacol 2020; 85:106617. [PMID: 32464569 DOI: 10.1016/j.intimp.2020.106617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022]
Abstract
Escherichia coli O157:H7 and Shigella flexneri are the predominant diarrhoeal pathogens and those strains producing Shiga toxins cause life-threatening sequelae including hemolytic uremic syndrome (HUS) upon their entry into the host. Intimate adherence of E. coli O157 and invasion of S. flexneri in the host intestinal epithelial cells is mainly mediated by Intimin and IpaB proteins, respectively. In this study, we have synthesized chimera of immunodominant regions of Intimin (eae) and IpaB (ipaB) designated as EI and expressed it in Lactococcus lactis (LL-EI) to develop a combinatorial oral vaccine candidate. Immune parameters and protective efficacy of orally administered LL-EI were assessed in the murine model. Significant EI-specific serum IgG, IgA, and fecal IgA antibody titer were observed in the LL-EI group. Considerable increase in EI-specific splenocyte proliferation and a concurrent upregulation of both Th1 and Th2 cytokines was observed in LL-EI immunized mice. Flow cytometry analysis also revealed a significant increase in CD4 and CD8 cell counts in LL-EI immunized group compared to PBS, LL control group.In vitro studies using LL-EI immunized mice sera showed substantial protection against bacterial adhesion and invasion caused by E. coli O157 and Shigella flexneri¸ respectively. LL-EI immunized group challenged with E. coli O157 ceased fecal shedding within 6 days, and mice challenged with S. flexneri showed 93% survival with minimal bacterial load in the lungs. Our results indicate that LL-EI immunization elicits systemic, mucosal and cell-mediated immune responses, and can be a promising candidate for oral vaccine development against these pathogens.
Collapse
|
12
|
Mühlen S, Dersch P. Treatment Strategies for Infections With Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2020; 10:169. [PMID: 32435624 PMCID: PMC7218068 DOI: 10.3389/fcimb.2020.00169] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 01/07/2023] Open
Abstract
Infections with Shiga toxin-producing Escherichia coli (STEC) cause outbreaks of severe diarrheal disease in children and the elderly around the world. The severe complications associated with toxin production and release range from bloody diarrhea and hemorrhagic colitis to hemolytic-uremic syndrome, kidney failure, and neurological issues. As the use of antibiotics for treatment of the infection has long been controversial due to reports that antibiotics may increase the production of Shiga toxin, the recommended therapy today is mainly supportive. In recent years, a variety of alternative treatment approaches such as monoclonal antibodies or antisera directed against Shiga toxin, toxin receptor analogs, and several vaccination strategies have been developed and evaluated in vitro and in animal models. A few strategies have progressed to the clinical trial phase. Here, we review the current understanding of and the progress made in the development of treatment options against STEC infections and discuss their potential.
Collapse
Affiliation(s)
- Sabrina Mühlen
- Institute for Infectiology, University of Münster, Münster, Germany.,German Center for Infection Research (DZIF), Associated Site University of Münster, Münster, Germany
| | - Petra Dersch
- Institute for Infectiology, University of Münster, Münster, Germany.,German Center for Infection Research (DZIF), Associated Site University of Münster, Münster, Germany
| |
Collapse
|
13
|
Montero DA, Del Canto F, Salazar JC, Céspedes S, Cádiz L, Arenas-Salinas M, Reyes J, Oñate Á, Vidal RM. Immunization of mice with chimeric antigens displaying selected epitopes confers protection against intestinal colonization and renal damage caused by Shiga toxin-producing Escherichia coli. NPJ Vaccines 2020; 5:20. [PMID: 32194997 PMCID: PMC7067774 DOI: 10.1038/s41541-020-0168-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause diarrhea and dysentery, which may progress to hemolytic uremic syndrome (HUS). Vaccination has been proposed as a preventive approach against STEC infection; however, there is no vaccine for humans and those used in animals reduce but do not eliminate the intestinal colonization of STEC. The OmpT, Cah and Hes proteins are widely distributed among clinical STEC strains and are recognized by serum IgG and IgA in patients with HUS. Here, we develop a vaccine formulation based on two chimeric antigens containing epitopes of OmpT, Cah and Hes proteins against STEC strains. Intramuscular and intranasal immunization of mice with these chimeric antigens elicited systemic and local long-lasting humoral responses. However, the class of antibodies generated was dependent on the adjuvant and the route of administration. Moreover, while intramuscular immunization with the combination of the chimeric antigens conferred protection against colonization by STEC O157:H7, the intranasal conferred protection against renal damage caused by STEC O91:H21. This preclinical study supports the potential use of this formulation based on recombinant chimeric proteins as a preventive strategy against STEC infections.
Collapse
Affiliation(s)
- David A Montero
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,2Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Del Canto
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan C Salazar
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sandra Céspedes
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leandro Cádiz
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mauricio Arenas-Salinas
- 3Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - José Reyes
- 4Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ángel Oñate
- 4Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M Vidal
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,5Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
In silico design and in vitro analysis of a recombinant trivalent fusion protein candidate vaccine targeting virulence factor of Clostridium perfringens. Int J Biol Macromol 2020; 146:1015-1023. [DOI: 10.1016/j.ijbiomac.2019.09.227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 11/23/2022]
|
15
|
Khanifar J, Salmanian AH, Haji Hosseini R, Amani J, Kazemi R. Chitosan nano-structure loaded with recombinant E. coli O157:H7 antigens as a vaccine candidate can effectively increase immunization capacity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2593-2604. [DOI: 10.1080/21691401.2019.1629947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jaleh Khanifar
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rohoallah Kazemi
- Department of Molecular Biology, Green Gene Company, Tehran, Iran
| |
Collapse
|
16
|
Khanifar J, Hosseini RH, Kazemi R, Ramandi MF, Amani J, Salmanian AH. Prevention of EHEC infection by chitosan nano-structure coupled with synthetic recombinant antigen. J Microbiol Methods 2019; 157:100-107. [PMID: 30633949 DOI: 10.1016/j.mimet.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
Abstract
One of highly effective methods for prevention and control of Entrohemorragic Esherichia coli (EHEC) infections is to use vaccination against extremely immunogenic part of attachment factors. In this study rEIT (EspA, Intimin, Tir) was produced in bacteria and then encapsulated with chitosan nanoparticle as a candidate nanovaccine. A chimeric trivalent recombinant protein which was previously found to provide reasonable immunogenicity against E.coli O157:H7 was used as a base. Mice immunized orally with chitosan based nanoparticle containing rEIT antigen. The rEIT-specific immune responses (IgG and IgA) were measured by indirect ELISA. In challenging tests different groups of immunized mice were infected orally with E.coli O157:H7. The results showed that the recombinant nanovaccine candidate could induce the strong humoral and mucosal immune responses and protect the mice from live EHEC O157:H7 challenge. Higher titers of serum anti rEIT IgG were achieved after the last immunization in all of the groups. Comparison of the amount of IgA titers in serum and feces showed higher values for the latter. In vitro study of binding inhibition assay on Caco-2 cell monolayers by pre-incubated antisera with EHEC bacteria, showed that immunized mice antibody could reduce adhesion properties of E. coli O157:H7. In a challenging study with EHEC bacteria, reduction in number of colonies was observed in all of the immunized groups for over two weeks. Results from the present study prove that nanovaccine candidate with rEIT can reduce signs and symptoms of EHEC infections. This novel approach can be a new strategy for inducing immunity against E. coli O157:H7. This study suggests the use of oral -injection combined vaccination routes comparing to other methods available in order to achieve higher humoral and mucosal immunogenicity levels.
Collapse
Affiliation(s)
- Jaleh Khanifar
- Department of Biology, Faculty of Basic Sciences Tehran Shargh, Payaam Noor University, Biochemistry Research Center, Iran
| | - Reza Haji Hosseini
- Department of Biology, Faculty of Basic Sciences Tehran Shargh, Payaam Noor University, Biochemistry Research Center, Iran
| | | | - Mahdi Fasihi Ramandi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ali Hatef Salmanian
- Department of agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
17
|
Chen W, Zuo H, Rolfe B, Schembri MA, Cobbold RN, Zhang B, Mahony TJ, Xu ZP. Clay nanoparticles co-deliver three antigens to promote potent immune responses against pathogenic Escherichia coli. J Control Release 2018; 292:196-209. [DOI: 10.1016/j.jconrel.2018.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 01/02/2023]
|
18
|
Intranasal co-administration of recombinant active fragment of Zonula occludens toxin and truncated recombinant EspB triggers potent systemic, mucosal immune responses and reduces span of E. coli O157:H7 fecal shedding in BALB/c mice. Med Microbiol Immunol 2018; 208:89-100. [PMID: 30209565 DOI: 10.1007/s00430-018-0559-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
Escherichia coli O157:H7 with its traits such as intestinal colonization and fecal-oral route of transmission demands mucosal vaccine development. E. coli secreted protein B (EspB) is one of the key type III secretory system (TTSS) targets for mucosal candidate vaccine due to its indispensable role in the pathogenesis of E. coli O157:H7. However, mucosally administered recombinant proteins have low immunogenicity which could be overcome by the use of mucosal adjuvants. The quest for safe, potent mucosal adjuvant has recognized ΔG fragment of Zonula occludens toxin of Vibrio cholerae with such properties. ΔG enhances mucosal permeability via the paracellular route by altering epithelial tight junction structure in a reversible, ephemeral and non-toxic manner. Therefore, we tested whether recombinant ΔG intranasally co-administered with truncated EspB (EspB + ΔG) could serve as an effective mucosal adjuvant. Results showed that EspB + ΔG group induced higher systemic IgG and mucosal IgA than EspB alone. Moreover, EspB alone developed Th2 type response with IgG1/IgG2a ratio (1.64) and IL-4, IL-10 cytokines whereas that of EspB + ΔG group generated mixed Th1/Th2 type immune response evident from IgG1/IgG2a ratio (1.17) as well as IL-4, IL-10 and IFN-γ cytokine levels compared to control. Sera of EspB + ΔG group inhibited TTSS mediated haemolysis of murine RBCs more effectively compared to EspB, control group and sera of both EspB + ΔG, EspB group resulted in similar levels of efficacious reduction in E. coli O157:H7 adherence to Caco-2 cells compared to control. Moreover, vaccination with EspB + ΔG resulted in significant reduction in E. coli O157:H7 fecal shedding compared to EspB and control group in experimentally challenged streptomycin-treated mice. These results demonstrate mucosal adjuvanticity of ΔG co-administered with EspB in enhancing overall immunogenicity to reduce E. coli O157:H7 shedding.
Collapse
|
19
|
Shekar A, Ramlal S, Jeyabalaji JK, Sripathy MH. Intranasal immunization of cocktail/fusion protein containing Tir along with ΔG active fragment of Zot as mucosal adjuvant confers enhanced immunogenicity and reduces E. coli O157:H7 shedding in mice. Int Immunopharmacol 2018; 63:211-219. [PMID: 30103196 DOI: 10.1016/j.intimp.2018.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/19/2018] [Accepted: 08/02/2018] [Indexed: 11/17/2022]
Abstract
Ruminants are the major reservoirs of Escherichia coli O157:H7 and its fecal shedding mainly act as a source of entry of this pathogen into the human food chain. In humans, E. coli O157:H7 infection causes diarrhea, hemorrhagic colitis and hemolytic uremic syndrome. Intimate adherence of E. coli O157:H7 is mediated by Translocated intimin receptor (Tir) to which intimin binds in the host cell. Since E. coli O157:H7 colonizes intestinal epithelium, the mucosal vaccine has a potential to prevent its colonization. Zonula occludens toxin (Zot) of Vibrio cholerae transiently, reversibly alters epithelial tight junction structure to increase mucosal permeability of macromolecules via paracellular route. The C-terminal region of Zot (ΔG) responsible for this function could be used for mucosal antigen delivery. Therefore, we employed individual (Tir), cocktail (ΔG + Tir), fusion protein (ΔG-Tir) and assessed the efficacy of its intranasal immunization on immunogenicity and fecal shedding of E. coli O157:H7 in streptomycin treated mouse model. Compared to control, ΔG + Tir, ΔG-Tir immunized mice elicited significant antigen specific antibody titers in serum (IgG, IgA) and feces (IgA), whereas Tir immunized mice induced only serum IgG titer. Cytokine analysis revealed mixed Th1/Th2 type immune response in case of ΔG + Tir, ΔG-Tir group while that of Tir group was solely Th2 type. Tir, ΔG + Tir and ΔG-Tir immunized mice showed reduction in shedding of E. coli O157:H7 compared to control group. However, ΔG-Tir immunized group performed better than ΔG + Tir, Tir group in reducing fecal shedding. Overall, our results demonstrate that intranasal immunization of ΔG-Tir induces effective systemic, mucosal, cellular immune responses and represents a promising mucosal subunit vaccine to prevent E. coli O157:H7 colonization.
Collapse
|
20
|
Rojas-Lopez M, Monterio R, Pizza M, Desvaux M, Rosini R. Intestinal Pathogenic Escherichia coli: Insights for Vaccine Development. Front Microbiol 2018; 9:440. [PMID: 29615989 PMCID: PMC5869917 DOI: 10.3389/fmicb.2018.00440] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Diarrheal diseases are one of the major causes of mortality among children under five years old and intestinal pathogenic Escherichia coli (InPEC) plays a role as one of the large causative groups of these infections worldwide. InPECs contribute significantly to the burden of intestinal diseases, which are a critical issue in low- and middle-income countries (Asia, Africa and Latin America). Intestinal pathotypes such as enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC) are mainly endemic in developing countries, while ETEC strains are the major cause of diarrhea in travelers to these countries. On the other hand, enterohemorrhagic E. coli (EHEC) are the cause of large outbreaks around the world, mainly affecting developed countries and responsible for not only diarrheal disease but also severe clinical complications like hemorrhagic colitis and hemolytic uremic syndrome (HUS). Overall, the emergence of antibiotic resistant strains, the annual cost increase in the health care system, the high incidence of traveler diarrhea and the increased number of HUS episodes have raised the need for effective preventive treatments. Although the use of antibiotics is still important in treating such infections, non-antibiotic strategies are either a crucial option to limit the increase in antibiotic resistant strains or absolutely necessary for diseases such as those caused by EHEC infections, for which antibiotic therapies are not recommended. Among non-antibiotic therapies, vaccine development is a strategy of choice but, to date, there is no effective licensed vaccine against InPEC infections. For several years, there has been a sustained effort to identify efficacious vaccine candidates able to reduce the burden of diarrheal disease. The aim of this review is to summarize recent milestones and insights in vaccine development against InPECs.
Collapse
Affiliation(s)
- Maricarmen Rojas-Lopez
- GSK, Siena, Italy.,Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | - Ricardo Monterio
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | | | - Mickaël Desvaux
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | | |
Collapse
|
21
|
Lawan A, Jesse FFA, Idris UH, Odhah MN, Arsalan M, Muhammad NA, Bhutto KR, Peter ID, Abraham GA, Wahid AH, Mohd-Azmi ML, Zamri-Saad M. Mucosal and systemic responses of immunogenic vaccines candidates against enteric Escherichia coli infections in ruminants: A review. Microb Pathog 2018; 117:175-183. [PMID: 29471137 DOI: 10.1016/j.micpath.2018.02.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 02/06/2023]
Abstract
Innumerable Escherichia coli of animal origin are identified, which are of economic significance, likewise, cattle, sheep and goats are the carrier of enterohaemorrhagic E. coli, which are less pathogenic, and can spread to people by way of direct contact and through the contamination of foodstuff or portable drinking water, causing serious illness. The immunization of ruminants has been carried out for ages and is largely acknowledged as the most economical and maintainable process of monitoring E. coli infection in ruminants. Yet, only a limited number of E. coli vaccines are obtainable. Mucosal surfaces are the most important ingress for E. coli and thus mucosal immune responses function as the primary means of fortification. Largely contemporary vaccination processes are done by parenteral administration and merely limited number of E. coli vaccines are inoculated via mucosal itinerary, due to its decreased efficacy. Nevertheless, aiming at maximal mucosal partitions to stimulate defensive immunity at both mucosal compartments and systemic site epitomises a prodigious task. Enormous determinations are involved in order to improve on novel mucosal E. coli vaccines candidate by choosing apposite antigens with potent immunogenicity, manipulating novel mucosal itineraries of inoculation and choosing immune-inducing adjuvants. The target of E. coli mucosal vaccines is to stimulate a comprehensive, effective and defensive immunity by specifically counteracting the antibodies at mucosal linings and by the stimulation of cellular immunity. Furthermore, effective E. coli mucosal vaccine would make vaccination measures stress-free and appropriate for large number of inoculation. On account of contemporary advancement in proteomics, metagenomics, metabolomics and transcriptomics research, a comprehensive appraisal of the immeasurable genes and proteins that were divulged by a bacterium is now in easy reach. Moreover, there exist marvellous prospects in this bourgeoning technologies in comprehending the host bacteria affiliation. Accordingly, the flourishing knowledge could massively guarantee to the progression of immunogenic vaccines against E. coli infections in both humans and animals. This review highlight and expounds on the current prominence of mucosal and systemic immunogenic vaccines for the prevention of E. coli infections in ruminants.
Collapse
Affiliation(s)
- A Lawan
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Nigeria.
| | - F F A Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Farm & Exotic Animals Medicine & Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 UPM, Serdang, Selangor, Malaysia
| | - U H Idris
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Nigeria
| | - M N Odhah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, Thamar University, Yemen
| | - M Arsalan
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Malaysia; Livestock and Dairy Development Department Baluchistan, Pakistan
| | - N A Muhammad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Malaysia
| | - K R Bhutto
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Veterinary Research & Diagnosis, Livestock and Fisheries Department, Sindh, Pakistan
| | - I D Peter
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Theriogenology, Faculty of Veterinary Medicine, University of Maiduguri, Nigeria
| | - G A Abraham
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Farm & Exotic Animals Medicine & Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 UPM, Serdang, Selangor, Malaysia
| | - A H Wahid
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - M L Mohd-Azmi
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | - M Zamri-Saad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| |
Collapse
|
22
|
Hosseini ZS, Amani J, Baghbani Arani F, Nazarian S, Motamedi MJ, Shafighian F. Immunogenicity of the nanovaccine containing intimin recombinant protein in the BALB/c mice. Clin Exp Vaccine Res 2018; 7:51-60. [PMID: 29399580 PMCID: PMC5795045 DOI: 10.7774/cevr.2018.7.1.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
Purpose Escherichia coli O157:H7 is one of the most important pathogens which create hemorrhagic colitis and hemolytic uremic syndrome in human. It is one of the most prevalent causes of diarrhea leading to death of many people every year. The first diagnosed gene in the locus of enterocyte effacement pathogenicity island is eae gene. The product of this gene is a binding protein called intimin belonging to the group of external membrane proteins regarded as a good stimulants of the immune system. Chitosan with its lipophilic property is an environmentally friendly agent able to return to the environment. Materials and Methods Intimin recombinant protein was expressed in pET28a vector with eae gene and purification was performed using Ni-NTA and finally the recombinant protein was approved through western blotting. This protein was encapsulated using chitosan nanoparticles and the size of nanoparticles was measured by Zetasizer. Intimin encapsulated was prescribed for three sessions among three groups of oral, injection, and oral-injection using Chitosan nanoparticles. Challenge was performed for all three groups with 108E. coli O157:H7 bacteria. Results Intimin produced by chitosan nanoparticles improves immunological responses through the adjuvant nature of chitosan nanoparticles. Chitosan may be used as a carrier for transportation of the prescribed vaccine. Among the mice, encapsulated intimin could be able to provide suitable titers of IgG and IgA by the aid of chitosan nanoparticles. Results of mice challenge showed that decreased the bacterial shedding significantly. Conclusion Results showed that the chitosan nanovaccine with intimin protein may be used as a suitable candidate vaccine against E. coli O157:H7.
Collapse
Affiliation(s)
- Zahra Sadat Hosseini
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fahimeh Baghbani Arani
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Science, Imam Hossain University, Tehran, Iran
| | | | - Fatemeh Shafighian
- Pharmaceutical Sciences Branch, Pharmaceutical Sciences Research Center, Islamic Azad University (IAUPS), Tehran, Iran
| |
Collapse
|
23
|
Zeinalzadeh N, Salmanian AH, Goujani G, Amani J, Ahangari G, Akhavian A, Jafari M. A Chimeric protein of CFA/I, CS6 subunits and LTB/STa toxoid protects immunized mice against enterotoxigenic Escherichia coli. Microbiol Immunol 2017; 61:272-279. [PMID: 28543534 DOI: 10.1111/1348-0421.12491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 05/02/2017] [Accepted: 05/18/2017] [Indexed: 01/21/2023]
Abstract
Enterotoxigenic Escherichia Coli (ETEC) strains are the commonest bacteria causing diarrhea in children in developing countries and travelers to these areas. Colonization factors (CFs) and enterotoxins are the main virulence determinants in ETEC pathogenesis. Heterogeneity of CFs is commonly considered the bottleneck to developing an effective vaccine. It is believed that broad spectrum protection against ETEC would be achieved by induced anti-CF and anti-enterotoxin immunity simultaneously. Here, a fusion antigen strategy was used to construct a quadrivalent recombinant protein called 3CL and composed of CfaB, a structural subunit of CFA/I, and CS6 structural subunits, LTB and STa toxoid of ETEC. Its anti-CF and antitoxin immunogenicity was then assessed. To achieve high-level expression, the 3CL gene was synthesized using E. coli codon bias. Female BALB/C mice were immunized with purified recombinant 3CL. Immunized mice developed antibodies that were capable of detecting each recombinant subunit in addition to native CS6 protein and also protected the mice against ETEC challenge. Moreover, sera from immunized mice also neutralized STa toxin in a suckling mouse assay. These results indicate that 3CL can induce anti-CF and neutralizing antitoxin antibodies along with introducing CFA/I as a platform for epitope insertion.
Collapse
Affiliation(s)
- Narges Zeinalzadeh
- Department of Animal Science, Faculty of Natural Science, University of Tabriz, Tabriz
| | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Shahrak-e- Pajoohesh, km 15, Tehran-Karaj Highway
| | - Goli Goujani
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Shahrak-e- Pajoohesh, km 15, Tehran-Karaj Highway
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences
| | - Ghasem Ahangari
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Asal Akhavian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Shahrak-e- Pajoohesh, km 15, Tehran-Karaj Highway
| | - Mahyat Jafari
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Shahrak-e- Pajoohesh, km 15, Tehran-Karaj Highway
| |
Collapse
|
24
|
Efficient induction of comprehensive immune responses to control pathogenic E. coli by clay nano-adjuvant with the moderate size and surface charge. Sci Rep 2017; 7:13367. [PMID: 29042573 PMCID: PMC5645426 DOI: 10.1038/s41598-017-13570-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
In recent decades, diseases caused by pathogenic Escherichia coli (E. coli), enterohaemorrhagic E. coli (EHEC) O26 have been increasingly reported worldwide, which are as severe as those caused by EHEC strain O157:H7 and require effective intervention strategies. Herein, we report the application of clay nanoparticles, i.e. hectorites as effective nano-adjuvants for vaccination against EHEC O26 colonization. We show that medium size HEC (hectorite, around 73~77 nm diameter) is able to induce efficient humoral and cellular immune responses against EHEC antigen - intimin β (IB), which are significantly higher than those triggered by commercially used adjuvants - QuilA and Alum. We also demonstrate that mice immunized with IB adjuvanted with HEC nanoparticles elicit sufficient secretion of mucosal IgA, capable of providing effective protection against EHEC O26 binding to ruminant and human cells. In addition, we demonstrate for the first time that hectorites are able to initiate maturation of RAW 264.7 macrophages, inducing expression of co-stimulatory cytokines at a low nanoparticle concentration (10 μg/mL). Together these data strongly suggest that hectorite with optimized size is a highly efficient vaccine nano-adjuvant.
Collapse
|
25
|
Khalouie F, Mousavi SL, Nazarian S, Amani J, Pourfarzam P. Immunogenic evaluation of chimeric recombinant protein against ETEC, EHEC and Shigella. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2017; 6:101-112. [PMID: 29071279 PMCID: PMC5640892 DOI: 10.22099/mbrc.2017.4081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diarrheal diseases still remain health problem worldwide and out of many bacteria responsible for, Shigella and pathogenic Escherichia cause the most diarrheas in the world. Shigellacause bacterial dysenteries and shigellosis through invasion where the most effective proteins for pathogenesis is Ipac. Critical virulence protein for ETEC infection is CFA/I with two subunits called cfab and cfae. . Attachment of EHEC is the main step of infection and the protein Intimin plays the key role in this function. Protection against the vast majority of responsible pathogens of diarrheas requires development of the combination vaccine against Shigella, ETEC and EHEC. In the present study, a multisubunitprotein (CII) containing immunologically significant parts of CfaB, IpaC and Intimin was designed. The chimeric gene (CII) was codon optimized and analyzed with different bioinformatic servers, then synthesized and expressed in E. coli. Mice, Guinea pig and, Caco-2 Cell line were used as challenge models for EHEC, shigella and ETEC respectively. The chimeric protein induced significant immune response and therefore could be a suitable vaccine candidate against these three pathogens.
Collapse
Affiliation(s)
- Farzane Khalouie
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Seyed Latif Mousavi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Sciences, Imam Hossein University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Poune Pourfarzam
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| |
Collapse
|
26
|
Lin R, Zhu B, Zhang Y, Bai Y, Zhi F, Long B, Li Y, Wu Y, Wu X, Fan H. Intranasal immunization with novel EspA-Tir-M fusion protein induces protective immunity against enterohemorrhagic Escherichia coli O157:H7 challenge in mice. Microb Pathog 2017; 105:19-24. [DOI: 10.1016/j.micpath.2017.01.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
|
27
|
Lin R, Zhang Y, Long B, Li Y, Wu Y, Duan S, Zhu B, Wu X, Fan H. Oral Immunization with Recombinant Lactobacillus acidophilus Expressing espA-Tir-M Confers Protection against Enterohemorrhagic Escherichia coli O157:H7 Challenge in Mice. Front Microbiol 2017; 8:417. [PMID: 28360900 PMCID: PMC5350096 DOI: 10.3389/fmicb.2017.00417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) causes hemorrhagic colitis and the formation of characteristic attaching and effacing (A/E) lesions in humans. Given the severe sequelae of EHEC O157:H7 infection, it is critical to develop effective vaccines for human use. However, for achieving this goal many hurdles need to be addressed, such as the type or subset of antigens, adjuvant, and the delivery route. We developed a candidate vaccine by inserting the bivalent antigen espA-Tir-M composed of espA and the Tir central domain into Lactobacillus acidophilus. The recombinant L. acidophilus (LA-ET) was safe in a cell model and excluded EHEC O157:H7 from LoVo cells at rates of nearly 94 and 60% in exclusion and competition assays, respectively. LA-ET inhibited the induction of A/E lesions by EHEC O157:H7 cells in vitro. Oral immunization with LA-ET induced higher levels of specific mucosal and systemic antibody responses in mice. Moreover, LA-ET enhanced interferon-γ and interleukin-4 and -10 production, which was associated with mixed helper T (Th1/Th2) cell responses, and protected against EHEC O157:H7 colonization and infection in mice at a rate of 80%. Histopathological analyses revealed that orally administered LA-ET reduced or inhibited A/E lesions and toxin-induced systemic injury. These findings demonstrate that LA-ET induces both humoral and cellular immune responses in mice and is therefore a promising vaccine against EHEC O157:H7 infection.
Collapse
Affiliation(s)
- Ruqin Lin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| | - Yiduo Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| | - Beiguo Long
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| | - Yawen Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| | - Yuhua Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| | - Siqin Duan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| | - Bo Zhu
- The First School of Clinical Medicine, Southern Medical University Guangzhou, China
| | - Xianbo Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| | - Hongying Fan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| |
Collapse
|
28
|
Novinrooz A, Zahraei Salehi T, Firouzi R, Arabshahi S, Derakhshandeh A. In-silico design, expression, and purification of novel chimeric Escherichia coli O157:H7 OmpA fused to LTB protein in Escherichia coli. PLoS One 2017; 12:e0173761. [PMID: 28296951 PMCID: PMC5351874 DOI: 10.1371/journal.pone.0173761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/27/2017] [Indexed: 01/03/2023] Open
Abstract
E. coli O157:H7, one of the major EHEC serotypes, is capable of developing bloody diarrhea, hemorrhagic colitis (HC), and fatal hemolytic uremic syndrome (HUS) and is accompanied by high annual economic loss worldwide. Due to the increased risk of HC and HUS development following antibiotic therapy, the prevention of infections caused by this pathogen is considered to be one of the most effective ways of avoiding the consequences of this infection. The main aim of the present study was to design, express, and purify a novel chimeric protein to develope human vaccine candidate against E. coli O157:H7 containing loop 2–4 of E. coli O157:H7, outer membrane protein A (OmpA), and B subunit of E. coli heat labile enterotoxin (LTB) which are connected by a flexible peptide linker. Several online databases and bioinformatics software were utilized to choose the peptide linker among 537 analyzed linkers, design the chimeric protein, and optimize the codon of the relative gene encoding this protein. Subsequently, the recombinant gene encoding OmpA-LTB was synthesized and cloned into pET-24a (+) expression vector and transferred to E. coli BL21(DE3) cells. The expression of OmpA-LTB chimeric protein was then carried out by induction of cultured E. coli Bl21 (DE3) cells with 1mM isopropyl-β-D-thiogalactopyranoside (IPTG). The purification of OmpA-LTB was then performed by nickel affinity chromatography. Expression and purification were analyzed by sodium dodecyl sulphate poly acrylamide gel electrophoresis. Moreover, the identity of the expressed protein was analyzed by western blotting. SDS-PAGE and western immunoblotting confirmed the successful expression of a 27 KDa recombinant protein after 24 hours at 37°C post-IPTG induction. OmpA-LTB was then successfully purified, using nickel affinity chromatography under denaturing conditions. The yield of purification was 12 mg per liter of culture media. Ultimately, we constructed the successful design and efficient expression and purification of OmpA-LTB divalent under the above-mentioned conditions.
Collapse
Affiliation(s)
- Aytak Novinrooz
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- * E-mail:
| | - Roya Firouzi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sina Arabshahi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
29
|
Saeedi P, Yazdanparast M, Behzadi E, Salmanian AH, Mousavi SL, Nazarian S, Amani J. A review on strategies for decreasing E. coli O157:H7 risk in animals. Microb Pathog 2017; 103:186-195. [PMID: 28062285 DOI: 10.1016/j.micpath.2017.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/25/2016] [Accepted: 01/02/2017] [Indexed: 11/17/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a food-borne pathogen that younger children are most prone to this microorganism. Hemolytic Uremic Syndrome (HUS) caused by EHEC, leads to the destruction of red blood cells and kidney failure. The virulence of E.coli O157:H7 is attributed to fimbriae, that facilitate colonization of bacteria within the colon and verotoxins (VT) or Shiga toxins (Stx) that are released into the blood. Although, in most cases, the infection is self-limitedin young children and aged population, it may cause HUS. Therefore, several investigations are performed in order to offer effective therapies and vaccines, which can prevent and treat the infection in appropriate time. As the pathogenesis of this infection is complicated, a multi-targeted strategy is required. Since cattle are the most important reservoir of EHEC and the root of contamination, reducing E. coli O157:H7 at the farm level should decrease the risk of human illness. Several vaccine approaches have been employed with different proper outcomes in animal models, including recombinant proteins (virulence factors such as; Stx1/2, intimin, EspA, fusion proteins of A and B Stx subunits), avirulent ghost cells of EHEC O157:H7, live attenuated bacteria expressing recombinant proteins, recombinant fimbrial proteins. In addition to protein-based vaccines, DNA vaccines have provided proper prevention in the laboratory animal model. This review paper summarizes the previous studies, current status and future perspective of different immunization strategies for eradicating Enterohemorrhagic Escherichia coli O157:H7.
Collapse
Affiliation(s)
- Pardis Saeedi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Yazdanparast
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Elham Behzadi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Hatef Salmanian
- Plant Bioproducts Department, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyed Latif Mousavi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Evaluation of nitric oxide production and proliferation activity of recombinant Bacterioferritin of Helicobacter pylori on macrophages. Microb Pathog 2016; 100:149-153. [DOI: 10.1016/j.micpath.2016.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023]
|
31
|
Kazemi R, Akhavian A, Amani J, Salimian J, Motamedi MJ, Mousavi A, Jafari M, Salmanian AH. Immunogenic properties of trivalent recombinant protein composed of B-subunits of LT, STX-2, and CT toxins. Microbes Infect 2016; 18:421-429. [DOI: 10.1016/j.micinf.2016.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/31/2023]
|
32
|
Chen W, Zhang B, Mahony T, Gu W, Rolfe B, Xu ZP. Efficient and Durable Vaccine against Intimin β of Diarrheagenic E. Coli Induced by Clay Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1627-39. [PMID: 27000499 DOI: 10.1002/smll.201503359] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/09/2015] [Indexed: 05/21/2023]
Abstract
Improved strategies are urgently required to control infections with enterohemorrhagic Escherichia coli and enteropathogenic E. coli, two dominant zoonotic enteric pathogens responsible for a wide spectrum of illnesses as well as deaths of human being, with tremendous financial cost worldwide. The present study investigates the capacity of two clay nanoparticles (NPs) with opposite surface charges, namely synthetic layered double hydroxide (LDH) and hectorite (HEC) NPs as adjuvants to promote strong immune responses against the infections. Here both LDH and HEC NPs are showed to be able to carry an appreciable amount of Intimin β (1.1 and 4.4 mg per mg clay nanomaterials, respectively) and significantly facilitate antigen uptake by antigen-presenting cells. Remarkably, these clay NPs induce strong antibody and cell-mediated immune responses, which are much higher than that by the potent adjuvant, QuilA. Furthermore, these strong immune responses are well maintained for at least four months in the mouse model, during which there are no changes in histopathology of the animal organs. Collectively these data demonstrate the suitability of LDH and HEC NPs as useful adjuvants in new-generation vaccine formulations to control various infectious diseases.
Collapse
Affiliation(s)
- Weiyu Chen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bing Zhang
- Vaccine Delivery, Animal Science, Agri-Science Queensland Department of Agriculture, Fisheries and Forestry, St Lucia, QLD, 4067, Australia
| | - Timothy Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Barbara Rolfe
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
33
|
Doavi T, Mousavi SL, Kamali M, Amani J, Fasihi Ramandi M. Chitosan-Based Intranasal Vaccine against Escherichia coli O157:H7. IRANIAN BIOMEDICAL JOURNAL 2016; 20:97-108. [PMID: 26724233 PMCID: PMC4726890 DOI: 10.7508/ibj.2016.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: EnterohemorrhagicEscherichia coli (EHEC) O157:H7 is an infectious zoonotic pathogen causing human infections. These infections, in some cases, can lead to hemolytic uremic syndrome and its life-threatening complications and even death worldwide. The first intimate bacterial adhesion, intimin (I), with its own receptor translocated intimin receptor (Tir) and E. coli secreted protein A, acting as Tir conduit, are highly immunogenic proteins for vaccine development against E. coli O157:H7. Methods: A chimeric trivalent recombinant protein was previously found to be a suitable strategy for developing vaccines against E. coli O157:H7. In this study, the recombinant EIT (rEIT) was used to design a protective EHEC nasal nanovaccine. Chitosan and its water-soluble derivative, trimethylated chitosan (TMC), as muco-adhesive biopolymers, are good candidates for preparation of nanovaccines. Using the electrospraying technique, as a novel method, we could obtain particles of rEIT loaded with chitosan and TMC on a nanometer scale. Mice were immunized with intranasal administration or intrapretoneal injection of rEIT. Results: The rEIT-specific immune responses (IgG and IgA) were measured by indirect ELISA. Only nasal administration of chitosan electrospray and TMC formulation produced significant secretion IgA. Intranasal administration of nanovaccine reduced the duration of bacterial fecal shedding on mice challenged with E. coli O157:H7. Conclusion: Since development of mucosal vaccines for the prevention of infectious diseases requires efficient antigen delivery; therefore, this research could be a new strategy for developing vaccine against E. coli O157:H7.
Collapse
Affiliation(s)
- Tahere Doavi
- Dept. of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Seyed Latif Mousavi
- Dept. of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Mehdi Kamali
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Mahdi Fasihi Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| |
Collapse
|
34
|
O'Ryan M, Vidal R, del Canto F, Carlos Salazar J, Montero D. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni. Hum Vaccin Immunother 2015; 11:601-19. [PMID: 25715096 DOI: 10.1080/21645515.2015.1011578] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral(®)), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed.
Collapse
Key Words
- CFU, colony-forming units
- CFs, colonization factors
- CT, cholera toxin
- CT-B cholera toxin B subunit
- Campylobacter
- CtdB, cytolethal distending toxin subunit B
- E. coli
- EHEC
- EPEC, enteropathogenic E. coli
- ETEC
- ETEC, enterotoxigenic E. coli
- GEMS, Global enterics multicenter study
- HUS, hemolytic uremic syndrome
- IM, intramuscular
- IgA, immunoglobulin A
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- LEE, locus of enterocyte effacement
- LPS, lipopolysaccharide
- LT, heat labile toxin
- LT-B
- OMV, outer membrane vesicles
- ST, heat stable toxin
- STEC
- STEC, shigatoxin producing E. coli
- STh, human heat stable toxin
- STp, porcine heat stable toxin
- Salmonella
- Shigella
- Stx, shigatoxin
- TTSS, type III secretion system
- V. cholera
- WHO, World Health Organization
- acute diarrhea
- dmLT, double mutant heat labile toxin
- enteric pathogens
- enterohemorrhagic E. coli
- gastroenteritis
- heat labile toxin B subunit
- norovirus
- rEPA, recombinant exoprotein A of Pseudomonas aeruginosa
- rotavirus
- vaccines
Collapse
Affiliation(s)
- Miguel O'Ryan
- a Microbiology and Mycology Program; Institute of Biomedical Sciences; Faculty of Medicine; Universidad de Chile; Santiago, Chile
| | | | | | | | | |
Collapse
|
35
|
Desin TS, Townsend HG, Potter AA. Antibodies Directed against Shiga-Toxin Producing Escherichia coli Serotype O103 Type III Secreted Proteins Block Adherence of Heterologous STEC Serotypes to HEp-2 Cells. PLoS One 2015; 10:e0139803. [PMID: 26451946 PMCID: PMC4599963 DOI: 10.1371/journal.pone.0139803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/17/2015] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) serotype O103 is a zoonotic pathogen that is capable of causing hemorrhagic colitis and hemolytic uremic syndrome (HUS) in humans. The main animal reservoir for STEC is ruminants and hence reducing the levels of this pathogen in cattle could ultimately lower the risk of STEC infection in humans. During the process of infection, STECO103 uses a Type III Secretion System (T3SS) to secrete effector proteins (T3SPs) that result in the formation of attaching and effacing (A/E) lesions. Vaccination of cattle with STEC serotype O157 T3SPs has previously been shown to be effective in reducing shedding of STECO157 in a serotype-specific manner. In this study, we tested the ability of rabbit polyclonal sera against individual STECO103 T3SPs to block adherence of the organism to HEp-2 cells. Our results demonstrate that pooled sera against EspA, EspB, EspF, NleA and Tir significantly lowered the adherence of STECO103 relative to pre-immune sera. Likewise, pooled anti-STECO103 sera were also able to block adherence by STECO157. Vaccination of mice with STECO103 recombinant proteins induced strong IgG antibody responses against EspA, EspB, NleA and Tir but not against EspF. However, the vaccine did not affect fecal shedding of STECO103 compared to the PBS vaccinated group over the duration of the experiment. Cross reactivity studies using sera against STECO103 recombinant proteins revealed a high degree of cross reactivity with STECO26 and STECO111 proteins implying that sera against STECO103 proteins could potentially provide neutralization of attachment to epithelial cells by heterologous STEC serotypes.
Collapse
Affiliation(s)
- Taseen S. Desin
- Vaccine & Infectious Disease Organization–International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | - Hugh G. Townsend
- Vaccine & Infectious Disease Organization–International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew A. Potter
- Vaccine & Infectious Disease Organization–International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
36
|
Crossland WL, Callaway TR, Tedeschi LO. Shiga Toxin-Producing E. coli and Ruminant Diets. Food Saf (Tokyo) 2015. [DOI: 10.1016/b978-0-12-800245-2.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Designing a recombinant chimeric construct contain MUC1 and HER2 extracellular domain for prediagnostic breast cancer. Tumour Biol 2014; 35:11489-97. [DOI: 10.1007/s13277-014-2483-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/08/2014] [Indexed: 01/18/2023] Open
|
38
|
Nazarian S, Gargari SLM, Rasooli I, Hasannia S, Pirooznia N. A PLGA-encapsulated chimeric protein protects against adherence and toxicity of enterotoxigenic Escherichia coli. Microbiol Res 2013; 169:205-12. [PMID: 23906742 DOI: 10.1016/j.micres.2013.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/20/2013] [Accepted: 06/14/2013] [Indexed: 01/14/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are the most common cause of diarrhea among children. Colonization factors and enterotoxins are the major ETEC candidate vaccines. Since protection against ETEC mostly occurs by induction of IgA antibodies, much effort is focused on the development of oral vaccines. In this study oral immunogenicity of a poly(lactic-co-glycolic acid) (PLGA) encapsulated chimeric protein containing CfaB, CstH, CotA and LTB (Heat-labile B subunit) was investigated. The protein was encapsulated in PLGA by double emulsion method and nanoparticles were characterized physicochemically. Immunogenicity was assessed by evaluating IgG1, IgG2 and IgA titers after BALB/c mice vaccination. Non aggregated nanoparticles had a spherical shape with an average particle size of 252.7±23 nm and 91.96±4.4% of encapsulation efficiency. Western blotting showed maintenance of the molecular weight and antigenicity of the released protein. Oral immunization of mice induced serum IgG and fecal IgA antibody responses. Immunization induced protection against ETEC binding to Caco-2 cells. The effect of LT toxin on fluid accumulation in ileal loops was neutralized by inhibition of enterotoxin binding to GM1-ganglosides. Delivery of the chimeric protein in PLGA elicited both systemic and mucosal immune responses. The findings could be exploited to development of oral multi-component ETEC prophylactic measures.
Collapse
Affiliation(s)
| | | | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran
| | - Sadegh Hasannia
- Tarbiat Modares University, Faculty of Biological Sciences, Tehran, Iran
| | - Nazanin Pirooznia
- Faculty of Science, Department of Biology, University of Guilan, Rasht, Iran
| |
Collapse
|
39
|
Shariati Mehr K, Mousavi SL, Rasooli I, Amani J, Rajabi M. A DNA vaccine against Escherichia coli O157:H7. IRANIAN BIOMEDICAL JOURNAL 2013; 16:133-9. [PMID: 23023214 DOI: 10.6091/ibj.1059.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Infection with Escherichia coli O157:H7 rarely leads to bloody diarrhea and causes hemolytic uremic syndrome with renal failure that can be deadly dangerous. Intimin, translocated Intimin receptor (Tir), and enterohemorrhagic E. coli (EHEC) secreted protein A (EspA) proteins are the virulence factors expressed by locus of enterocyte effacement locus of EHEC. This bacterium needs EspA as a conduit for Tir delivery into the host cell and the surface arrayed Intimin, which docks the bacterium to the translocated Tir. METHODS Here we used triplet synthetic gene (eit) which was designed from three genes: espA coding EspA 120 lacking 36 amino acids from the N-terminal of the protein, eae coding Intimin constructed of 282 amino acids from the C-terminal and tir coding Tir 103, residues 258-361 which interacts with Intimin. The multimeric gene was cloned in two eukaryotic vectors pAAV-multiple cloning site-green fluorescent protein and pCI-neo. The pAAV was used for gene expression assay in cell line 293T and pCI-neo-EIT (EspA, Intimin, Tir) was used as DNA vaccine in mice. Test groups were injected intramuscularly with pCI-neo-EIT four times and mice control group was injected under the same conditions with PBS or pCI-neo vector. RESULTS The titration of serums showed that BALB/c mice were successfully immunized with DNA vaccine compared to control groups and also they were protected against challenges of live oral using E. coli O157:H7. CONCLUSION The results suggest that the DNA vaccine could induce protective immunity either alone or in combination with purified antigens to reduce EHEC infection.
Collapse
Affiliation(s)
| | | | - Iraj Rasooli
- Dept. of Biology, Shahed University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Masoumeh Rajabi
- Dept. of Clinical Biochemistry,
Shaheed Beheshti University of Medical Sciences,Tehran, Iran
| |
Collapse
|
40
|
Advances in the development of enterohemorrhagic Escherichia coli vaccines using murine models of infection. Vaccine 2013; 31:3229-35. [PMID: 23707170 DOI: 10.1016/j.vaccine.2013.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/22/2023]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains are food borne pathogens with importance in public health. EHEC colonizes the large intestine and causes diarrhea, hemorrhagic colitis and in some cases, life-threatening hemolytic-uremic syndrome (HUS) due to the production of Shiga toxins (Stx). The lack of effective clinical treatment, sequelae after infection and mortality rate in humans supports the urgent need of prophylactic approaches, such as development of vaccines. Shedding from cattle, the main EHEC reservoir and considered the principal food contamination source, has prompted the development of licensed vaccines that reduce EHEC colonization in ruminants. Although murine models do not fully recapitulate human infection, they are commonly used to evaluate EHEC vaccines and the immune/protective responses elicited in the host. Mice susceptibility differs depending of the EHEC inoculums; displaying different mortality rates and Stx-mediated renal damage. Therefore, several experimental protocols have being pursued in this model to develop EHEC-specific vaccines. Recent candidate vaccines evaluated include those composed of virulence factors alone or as fused-subunits, DNA-based, attenuated bacteria and bacterial ghosts. In this review, we summarize progress in the design and testing of EHEC vaccines and the use of different strategies for the evaluation of novel EHEC vaccines in the murine model.
Collapse
|
41
|
The codon-optimization of cfaE gene and evaluating its high expression capacity and conserved immunogenicity in Escherichia coli. Biologicals 2013; 41:169-75. [DOI: 10.1016/j.biologicals.2013.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 01/02/2013] [Accepted: 01/05/2013] [Indexed: 01/20/2023] Open
|
42
|
An in silico chimeric multi subunit vaccine targeting virulence factors of enterotoxigenic Escherichia coli (ETEC) with its bacterial inbuilt adjuvant. J Microbiol Methods 2012; 90:36-45. [DOI: 10.1016/j.mimet.2012.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/04/2012] [Accepted: 04/08/2012] [Indexed: 01/25/2023]
|
43
|
Immunogenical Study of Chimeric Recombinant Intimin-Tir of Escherichia coli O157:H7 in Mice. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2012. [DOI: 10.5812/archcid.14068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Amani J, Mousavi SL, Rafati S, Salmanian AH. Immunogenicity of a plant-derived edible chimeric EspA, Intimin and Tir of Escherichia coli O157:H7 in mice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:620-7. [PMID: 21421410 DOI: 10.1016/j.plantsci.2011.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 12/26/2010] [Accepted: 01/05/2011] [Indexed: 05/30/2023]
Abstract
Transgenic plants offer the possibility to produce and deliver an oral immunogen on a large-scale with low production costs and minimal purification or enrichment. Cattles are important reservoirs of Escherichia coli O157:H7 and developing a specific immunity in animals would be invaluable. Intimin, Tir, and EspA proteins are the virulence factors expressed by LEE locus of enterohemorrhagic E. coli. We hypothesized that the chimeric recombinant forms of these effectors delivered as an edible-base vaccine would reduce colonization of bacteria in mice. A synthetic gene (eit) composed of espA (e), eae (i) and tir (t) attached by linkers was constructed. The gene was codon optimized and cloned into plant expression vectors adjacent to CaMV35S and FAE promoters for expression in tobacco and canola plants. Of total soluble protein 0.2% and 0.3% (in average) were detected in transgenic tobacco leaves and canola seeds respectively. Mice immunized either subcutaneously or orally with recombinant EIT and challenged with E. coli O157:H7 significantly exhibited reduced bacterial shedding. Application of transgenic plants containing trivalent immunogen is an effective tool for protection against E. coli O157:H7.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Animals
- Brassica napus/genetics
- Cloning, Molecular
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli O157/genetics
- Escherichia coli O157/immunology
- Escherichia coli O157/pathogenicity
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/immunology
- Female
- Immunity, Humoral
- Immunity, Mucosal
- Immunization/methods
- Mice
- Mice, Inbred BALB C
- Plants, Genetically Modified/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Recombinant Fusion Proteins/immunology
- Nicotiana/genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- Jafar Amani
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | | | | |
Collapse
|