1
|
Cheeseman HM, Day S, McFarlane LR, Fleck S, Miller A, Cole T, Sousa-Santos N, Cope A, Cizmeci D, Tolazzi M, Hwekwete E, Hannaman D, Kratochvil S, McKay PF, Chung AW, Kent SJ, Cook A, Scarlatti G, Abraham S, Combadiere B, McCormack S, Lewis DJ, Shattock RJ. Combined Skin and Muscle DNA Priming Provides Enhanced Humoral Responses to a Human Immunodeficency Virus Type 1 Clade C Envelope Vaccine. Hum Gene Ther 2019; 29:1011-1028. [PMID: 30027768 PMCID: PMC6214652 DOI: 10.1089/hum.2018.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Intradermal (i.d.) and intramuscular (i.m.) injections when administered with or without electroporation (EP) have the potential to tailor the immune response to DNA vaccination. This Phase I randomized controlled clinical trial in human immunodeficiency virus type 1–negative volunteers investigated whether the site and mode of DNA vaccination influences the quality of induced cellular and humoral immune responses following the DNA priming phase and subsequent protein boost with recombinant clade C CN54 gp140. A strategy of concurrent i.d. and i.m. DNA immunizations administered with or without EP was adopted. Subtle differences were observed in the shaping of vaccine-induced virus-specific CD4+ and CD8+ T cell–mediated immune responses between groups receiving: i.d.EP + i.m., i.d. + i.m.EP, and i.d.EP + i.m.EP regimens. The DNA priming phase induced 100% seroconversion in all of the groups. A single, non-adjuvanted protein boost induced a rapid and profound increase in binding antibodies in all groups, with a trend for higher responses in i.d.EP + i.m.EP. The magnitude of antigen-specific binding immunoglobulin G correlated with neutralization of closely matched clade C 93MW965 virus and Fc-dimer receptor binding (FcγRIIa and FcγRIIIa). These results offer new perspectives on the use of combined skin and muscle DNA immunization in priming humoral and cellular responses to recombinant protein.
Collapse
Affiliation(s)
- Hannah Mary Cheeseman
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Suzanne Day
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Leon Robert McFarlane
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sue Fleck
- 2 Medical Research Council Clinical Trials Unit at UCL, University College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Aleisha Miller
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Tom Cole
- 3 Imperial Clinical Research Facility, Hammersmith Hospital, Imperial College Healthcare NHS Trust, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Nelson Sousa-Santos
- 3 Imperial Clinical Research Facility, Hammersmith Hospital, Imperial College Healthcare NHS Trust, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Alethea Cope
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Deniz Cizmeci
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Monica Tolazzi
- 4 Viral Evolution and Transmission Unit, Division of Immunology, Transplant and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Edith Hwekwete
- 3 Imperial Clinical Research Facility, Hammersmith Hospital, Imperial College Healthcare NHS Trust, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Drew Hannaman
- 5 Ichor Medical Systems, Inc., San Diego, California; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sven Kratochvil
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Paul Francis McKay
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Amy W Chung
- 6 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Stephen J Kent
- 6 Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France .,7 ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Australia; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France .,8 Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University , Melbourne, Australia; and UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Adrian Cook
- 2 Medical Research Council Clinical Trials Unit at UCL, University College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Gabriella Scarlatti
- 4 Viral Evolution and Transmission Unit, Division of Immunology, Transplant and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sonya Abraham
- 3 Imperial Clinical Research Facility, Hammersmith Hospital, Imperial College Healthcare NHS Trust, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Behazine Combadiere
- 9 Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sheena McCormack
- 2 Medical Research Council Clinical Trials Unit at UCL, University College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - David John Lewis
- 3 Imperial Clinical Research Facility, Hammersmith Hospital, Imperial College Healthcare NHS Trust, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Robin John Shattock
- 1 Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, Imperial College London, London, United Kingdom; UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
2
|
Jiang J, Banglore P, Cashman KA, Schmaljohn CS, Schultheis K, Pugh H, Nguyen J, Humeau LM, Broderick KE, Ramos SJ. Immunogenicity of a protective intradermal DNA vaccine against lassa virus in cynomolgus macaques. Hum Vaccin Immunother 2019; 15:2066-2074. [PMID: 31071008 PMCID: PMC6773375 DOI: 10.1080/21645515.2019.1616499] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Lassa virus (LASV) is a hemorrhagic fever virus of the Arenaviridae family with high rates of mortality and co-morbidities, including chronic seizures and permanent bilateral or unilateral deafness. LASV is endemic in West Africa and Lassa fever accounts for 10-16% of hospitalizations annually in parts of Sierra Leone and Liberia according to the CDC. An ongoing outbreak in Nigeria has resulted in 144 deaths in 568 cases confirmed as LASV as of November 2018, with many more suspected, highlighting the urgent need for a vaccine to prevent this severe disease. We previously reported on a DNA vaccine encoding a codon-optimized LASV glycoprotein precursor gene, pLASV-GPC, which completely protects Guinea pigs and nonhuman primates (NHPs) against viremia, clinical disease, and death following lethal LASV challenge. Herein we report on the immunogenicity profile of the LASV DNA vaccine in protected NHPs. Antigen-specific binding antibodies were generated in 100% (6/6) NHPs after two immunizations with pLASV-GPC. These antibodies bound predominantly to the assembled LASV glycoprotein complex and had robust neutralizing activity in a pseudovirus assay. pLASV-GPC DNA-immunized NHPs (5/6) also developed T cell responses as measured by IFNγ ELISpot assay. These results revealed that the pLASV-GPC DNA vaccine is capable of generating functional, LASV-specific T cell and antibody responses, and the assays developed in this study will provide a framework to identify correlates of protection and characterize immune responses in future clinical trials.
Collapse
Affiliation(s)
- Jingjing Jiang
- Research & Development, Inovio Pharmaceuticals Inc, Plymouth Meeting, PA, USA
| | - Preeti Banglore
- Research & Development, Inovio Pharmaceuticals Inc, Plymouth Meeting, PA, USA
| | - Kathleen A. Cashman
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Connie S. Schmaljohn
- Office of the Chief Scientists, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | - Holly Pugh
- Research & Development, Inovio Pharmaceuticals Inc, Plymouth Meeting, PA, USA
| | - Jacklyn Nguyen
- Research & Development, Inovio Pharmaceuticals Inc, Plymouth Meeting, PA, USA
| | - Laurent M. Humeau
- Research & Development, Inovio Pharmaceuticals Inc, Plymouth Meeting, PA, USA
| | - Kate E. Broderick
- Research & Development, Inovio Pharmaceuticals Inc, Plymouth Meeting, PA, USA
| | - Stephanie J. Ramos
- Research & Development, Inovio Pharmaceuticals Inc, Plymouth Meeting, PA, USA,CONTACT Stephanie J. Ramos 10480 Wateridge Circle, San Diego, CA 92121, USA
| |
Collapse
|
3
|
Jiang J, Ramos SJ, Bangalore P, Fisher P, Germar K, Lee BK, Williamson D, Kemme A, Schade E, McCoy J, Muthumani K, Weiner DB, Humeau LM, Broderick KE. Integration of needle-free jet injection with advanced electroporation delivery enhances the magnitude, kinetics, and persistence of engineered DNA vaccine induced immune responses. Vaccine 2019; 37:3832-3839. [DOI: 10.1016/j.vaccine.2019.05.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 01/08/2023]
|
4
|
In vivo electroporation enhances vaccine-mediated therapeutic control of human papilloma virus-associated tumors by the activation of multifunctional and effector memory CD8 + T cells. Vaccine 2017; 35:7240-7249. [PMID: 29174677 DOI: 10.1016/j.vaccine.2017.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
In vivo electroporation (EP) has reignited the clinical interest on DNA vaccines as immunotherapeutic approaches to control different types of cancer. EP has been associated with increased immune response potency, but its capacity in influencing immunomodulation remains unclear. Here we evaluated the impact of in vivo EP on the induction of cellular immune responses and therapeutic effects of a DNA vaccine targeting human papillomavirus-induced tumors. Our results demonstrate that association of EP with the conventional intramuscular administration route promoted a more efficient activation of multifunctional and effector memory CD8+ T cells with enhanced cytotoxic activity. Furthermore, EP increased tumor infiltration of CD8+ T cells and avoided tumor recurrences. Finally, our results demonstrated that EP promotes local migration of antigen presenting cells that enhances with vaccine co-delivery. Altogether the present evidences shed further light on the in vivo electroporation action and its impact on the immunogenicity of DNA vaccines.
Collapse
|
5
|
Adipose tissue: a new target for electroporation-enhanced DNA vaccines. Gene Ther 2017; 24:757-767. [PMID: 29106403 PMCID: PMC5746593 DOI: 10.1038/gt.2017.96] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022]
Abstract
DNA vaccines delivered using electroporation (EP) have had clinical success, but these EP methods generally utilize invasive needle electrodes. Here, we demonstrate the delivery and immunogenicity of a DNA vaccine into subcutaneous adipose tissue cells using noninvasive EP. Using finite element analysis, we predicted that plate electrodes, when oriented properly, could effectively concentrate the electric field within adipose tissue. In practice, these electrodes generated widespread gene expression persisting for at least 60 days in vivo within interscapular subcutaneous fat pads of guinea pigs. We then applied this adipose-EP protocol to deliver a DNA vaccine coding for an influenza antigen into guinea pigs. The resulting host immune responses elicited were of a similar magnitude to those achieved by skin delivery with EP. The onset of the humoral immune response was more rapid when the DNA dose was spread over multiple injection sites, and increasing the voltage of the EP device increased the magnitude of the immune response. This study supports further development of EP protocols delivering gene-based therapies to subcutaneous fat.
Collapse
|
6
|
Huang X, Zhu Q, Huang X, Yang L, Song Y, Zhu P, Zhou P. In vivo electroporation in DNA-VLP prime-boost preferentially enhances HIV-1 envelope-specific IgG2a, neutralizing antibody and CD8 T cell responses. Vaccine 2017; 35:2042-2051. [DOI: 10.1016/j.vaccine.2017.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 03/03/2017] [Indexed: 01/14/2023]
|
7
|
Chemokine-adjuvanted electroporated DNA vaccine induces substantial protection from simian immunodeficiency virus vaginal challenge. Mucosal Immunol 2016; 9:13-23. [PMID: 25943275 PMCID: PMC4636490 DOI: 10.1038/mi.2015.31] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/11/2015] [Indexed: 02/07/2023]
Abstract
There have been encouraging results for the development of an effective HIV vaccine. However, many questions remain regarding the quality of immune responses and the role of mucosal antibodies. We addressed some of these issues by using a simian immunodeficiency virus (SIV) DNA vaccine adjuvanted with plasmid-expressed mucosal chemokines combined with an intravaginal SIV challenge in rhesus macaque (RhM) model. We previously reported on the ability of CCR9 and CCR10 ligand (L) adjuvants to enhance mucosal and systemic IgA and IgG responses in small animals. In this study, RhMs were intramuscularly immunized five times with either DNA or DNA plus chemokine adjuvant delivered by electroporation followed by challenge with SIVsmE660. Sixty-eight percent of all vaccinated animals (P<0.01) remained either uninfected or had aborted infection compared with only 14% in the vaccine naïve group. The highest protection was observed in the CCR10L chemokines group, where six of nine animals had aborted infection and two remained uninfected, leading to 89% protection (P<0.001). The induction of mucosal SIV-specific antibodies and neutralization titers correlated with trends in protection. These results indicate the need to further investigate the contribution of chemokine adjuvants to modulate immune responses and the role of mucosal antibodies in SIV/HIV protection.
Collapse
|
8
|
Plasmid DNA Vaccine Co-Immunisation Modulates Cellular and Humoral Immune Responses Induced by Intranasal Inoculation in Mice. PLoS One 2015; 10:e0141557. [PMID: 26544970 PMCID: PMC4636430 DOI: 10.1371/journal.pone.0141557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
Background An effective HIV vaccine will likely require induction of both mucosal and systemic cellular and humoral immune responses. We investigated whether intramuscular (IM) delivery of electroporated plasmid DNA vaccine and simultaneous protein vaccinations by intranasal (IN) and IM routes could be combined to induce mucosal and systemic cellular and humoral immune responses to a model HIV-1 CN54 gp140 antigen in mice. Results Co-immunisation of DNA with intranasal protein successfully elicited both serum and vaginal IgG and IgA responses, whereas DNA and IM protein co-delivery did not induce systemic or mucosal IgA responses. Cellular IFNγ responses were preserved in co-immunisation protocols compared to protein-only vaccination groups. The addition of DNA to IN protein vaccination reduced the strong Th2 bias observed with IN protein vaccination alone. Luminex analysis also revealed that co-immunisation with DNA and IN protein induced expression of cytokines that promote B-cell function, generation of TFH cells and CCR5 ligands that can reduce HIV infectivity. Significance These data suggest that while IN inoculation alone elicits both cellular and humoral responses, co-administration with homologous DNA vaccination can tailor these towards a more balanced Th1/Th2 phenotype modulating the cellular cytokine profile while eliciting high-levels of antigen-specific antibody. This work provides insights on how to generate differential immune responses within the same vaccination visit, and supports co-immunisation with DNA and protein by a mucosal route as a potential delivery strategy for HIV vaccines.
Collapse
|
9
|
Characterization and Implementation of a Diverse Simian Immunodeficiency Virus SIVsm Envelope Panel in the Assessment of Neutralizing Antibody Breadth Elicited in Rhesus Macaques by Multimodal Vaccines Expressing the SIVmac239 Envelope. J Virol 2015; 89:8130-51. [PMID: 26018167 DOI: 10.1128/jvi.01221-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/03/2014] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Antibodies that can neutralize diverse viral strains are likely to be an important component of a protective human immunodeficiency virus type 1 (HIV-1) vaccine. To this end, preclinical simian immunodeficiency virus (SIV)-based nonhuman primate immunization regimens have been designed to evaluate and enhance antibody-mediated protection. However, these trials often rely on a limited selection of SIV strains with extreme neutralization phenotypes to assess vaccine-elicited antibody activity. To mirror the viral panels used to assess HIV-1 antibody breadth, we created and characterized a novel panel of 14 genetically and phenotypically diverse SIVsm envelope (Env) glycoproteins. To assess the utility of this panel, we characterized the neutralizing activity elicited by four SIVmac239 envelope-expressing DNA/modified vaccinia virus Ankara vector- and protein-based vaccination regimens that included the immunomodulatory adjuvants granulocyte-macrophage colony-stimulating factor, Toll-like receptor (TLR) ligands, and CD40 ligand. The SIVsm Env panel exhibited a spectrum of neutralization sensitivity to SIV-infected plasma pools and monoclonal antibodies, allowing categorization into three tiers. Pooled sera from 91 rhesus macaques immunized in the four trials consistently neutralized only the highly sensitive tier 1a SIVsm Envs, regardless of the immunization regimen. The inability of vaccine-mediated antibodies to neutralize the moderately resistant tier 1b and tier 2 SIVsm Envs defined here suggests that those antibodies were directed toward epitopes that are not accessible on most SIVsm Envs. To achieve a broader and more effective neutralization profile in preclinical vaccine studies that is relevant to known features of HIV-1 neutralization, more emphasis should be placed on optimizing the Env immunogen, as the neutralization profile achieved by the addition of adjuvants does not appear to supersede the neutralizing antibody profile determined by the immunogen. IMPORTANCE Many in the HIV/AIDS vaccine field believe that the ability to elicit broadly neutralizing antibodies capable of blocking genetically diverse HIV-1 variants is a critical component of a protective vaccine. Various SIV-based nonhuman primate vaccine studies have investigated ways to improve antibody-mediated protection against a heterologous SIV challenge, including administering adjuvants that might stimulate a greater neutralization breadth. Using a novel SIV neutralization panel and samples from four rhesus macaque vaccine trials designed for cross comparison, we show that different regimens expressing the same SIV envelope immunogen consistently elicit antibodies that neutralize only the very sensitive tier 1a SIV variants. The results argue that the neutralizing antibody profile elicited by a vaccine is primarily determined by the envelope immunogen and is not substantially broadened by including adjuvants, resulting in the conclusion that the envelope immunogen itself should be the primary consideration in efforts to elicit antibodies with greater neutralization breadth.
Collapse
|
10
|
Abstract
Purpose of review To summarize the role of adjuvants in eliciting desirable antibody responses against HIV-1 with particular emphasis on both historical context and recent developments. Recent findings Increased understanding of the role of pattern recognition receptors such as Toll-like receptors in recruiting and directing the immune system has increased the variety of adjuvant formulations being tested in animal models and humans. Across all vaccine platforms, adjuvant formulations have been shown to enhance desirable immune responses such as higher antibody titers and increased functional activity. Although no vaccine formulation has yet succeeded in eliciting broad neutralizing antibodies against HIV-1, the ability of adjuvants to direct the immune response to immunogens suggests they will be critically important in any successful HIV-1 vaccine. Summary The parallel development of adjuvants along with better HIV-1 immunogens will be needed for a successful AIDS vaccine. Additional comparative testing will be required to determine the optimal adjuvant and immunogen regimen that can elicit antibody responses capable of blocking HIV-1 transmission.
Collapse
|
11
|
Short noncoding DNA fragments improve the immune potency of electroporation-mediated HBV DNA vaccination. Gene Ther 2014; 21:703-8. [DOI: 10.1038/gt.2014.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/11/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
|
12
|
Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. HIV DNA Vaccine: Stepwise Improvements Make a Difference. Vaccines (Basel) 2014; 2:354-79. [PMID: 26344623 PMCID: PMC4494255 DOI: 10.3390/vaccines2020354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 12/15/2022] Open
Abstract
Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| |
Collapse
|
13
|
Kulkarni V, Rosati M, Jalah R, Ganneru B, Alicea C, Yu L, Guan Y, LaBranche C, Montefiori DC, King AD, Valentin A, Pavlakis GN, Felber BK. DNA vaccination by intradermal electroporation induces long-lasting immune responses in rhesus macaques. J Med Primatol 2014; 43:329-40. [PMID: 24810337 PMCID: PMC4176517 DOI: 10.1111/jmp.12123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND A desirable HIV vaccine should induce protective long-lasting humoral and cellular immune responses. METHODS Macaques were immunized by env DNA, selected from a panel of recently transmitted SIVmac251 Env using intradermal electroporation as vaccine delivery method and magnitude, breadth and longevity of humoral and cellular immune responses. RESULTS The macaques developed high, long-lasting humoral immune responses with neutralizing capacity against homologous and heterologous Env. The avidity of the antibody responses was also preserved over 1-year follow-up. Analysis of cellular immune responses demonstrated induction of Env-specific memory T cells harboring granzyme B, albeit their overall levels were low. Similar to the humoral responses, the cellular immunity was persistent over the ~1-year follow-up. CONCLUSION These data show that vaccination by this intradermal DNA delivery regimen is able to induce potent and durable immune responses in macaques.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Enhanced immunogenicity of an HIV-1 DNA vaccine delivered with electroporation via combined intramuscular and intradermal routes. J Virol 2014; 88:6959-69. [PMID: 24719412 DOI: 10.1128/jvi.00183-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED It is accepted that an effective prophylactic HIV-1 vaccine is likely to have the greatest impact on viral transmission rates. As previous reports have implicated DNA-priming, protein boost regimens to be efficient activators of humoral responses, we sought to optimize this regimen to further augment vaccine immunogenicity. Here we evaluated single versus concurrent intradermal (i.d.) and intramuscular (i.m.) vaccinations as a DNA-priming strategy for their abilities to elicit humoral and cellular responses against a model HIV-1 vaccine antigen, CN54-gp140. To further augment vaccine-elicited T and B cell responses, we enhanced cellular transfection with electroporation and then boosted the DNA-primed responses with homologous protein delivered subcutaneously (s.c.), intranasally (i.n.), i.m., or transcutaneously (t.c.). In mice, the concurrent priming regimen resulted in significantly elevated gamma interferon T cell responses and high-avidity antigen-specific IgG B cell responses, a hallmark of B cell maturation. Protein boosting of the concurrent DNA strategy further enhanced IgG concentrations but had little impact on T cell reactivity. Interestingly protein boosting by the subcutaneous route increased antibody avidity to a greater extent than protein boosting by either the i.m., i.n., or t.c. route, suggesting that this route may be preferential for driving B cell maturation. Using an alternative and larger animal model, the rabbit, we found the concurrent DNA-priming strategy followed by s.c. protein boosting to again be capable of eliciting high-avidity humoral responses and to also be able to neutralize HIV-1 pseudoviruses from diverse clades (clades A, B, and C). Taken together, we show that concurrent multiple-route DNA vaccinations induce strong cellular immunity, in addition to potent and high-avidity humoral immune responses. IMPORTANCE The route of vaccination has profound effects on prevailing immune responses. Due to the insufficient immunogenicity and protection of current DNA delivery strategies, we evaluated concurrent DNA delivery via simultaneous administration of plasmid DNA by the i.m. and i.d. routes. The rationale behind this study was to provide clear evidence of the utility of concurrent vaccinations for an upcoming human clinical trial. Furthermore, this work will guide future preclinical studies by evaluating the use of model antigens and plasmids for prime-boost strategies. This paper will be of interest not only to virologists and vaccinologists working in the HIV field but also to researchers working in other viral vaccine settings and, critically, to the wider field of vaccine delivery.
Collapse
|
15
|
Short-fragment DNA-mediated in vivo DNA electroporation delivery. Methods Mol Biol 2014; 1121:61-7. [PMID: 24510812 DOI: 10.1007/978-1-4614-9632-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Electroporation is an effective physical delivery method. A variety of factors have been shown to affect the electroporation-mediated gene delivery efficiency. Here we report the usefulness of noncoding short-fragment DNA (sf-DNA) for facilitating electroporation-mediated gene transfer. The plasmid pGL3-control encoding firefly luciferase was injected into tissue together with or without sf-DNA in different length or dose. Immediately after injection, the tissues were electroporated and the level of luciferase activity was assessed 24 h later. The results showed that plasmid DNA formulated with sf-DNA resulted in significant improvement in electroporation-mediated gene transfer efficiency. The effect is dose and length dependent, and also found in low-voltage electroporation. These results indicated that sf-DNA can be used as a helper molecule to improve the electroporation-mediated gene transfection efficiency.
Collapse
|
16
|
Abstract
Vaccines to prevent HIV remain desperately needed, but a number of challenges, including retroviral integration, establishment of anatomic reservoir sites, high sequence diversity, and heavy envelope glycosylation. have precluded development of a highly effective vaccine. DNA vaccines have been utilized as candidate HIV vaccines because of their ability to generate cellular and humoral immune responses, the lack of anti-vector response allowing for repeat administration, and their ability to prime the response to viral-vectored vaccines. Because the HIV epidemic has disproportionately affected the developing world, the favorable thermostability profile and relative ease and low cost of manufacture of DNA vaccines offer additional advantages. In vivo electroporation (EP) has been utilized to improve immune responses to DNA vaccines as candidate HIV-1 vaccines in standalone or prime-boost regimens with both proteins and viral-vectored vaccines in several animal models and, more recently, in human clinical trials. This chapter describes the preclinical and clinical development of candidate DNA vaccines for HIV-1 delivered by EP, including challenges to bringing this technology to the developing world.
Collapse
Affiliation(s)
- Sandhya Vasan
- Department of Retrovirology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| |
Collapse
|
17
|
HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo. PLoS One 2013; 8:e84234. [PMID: 24391921 PMCID: PMC3877240 DOI: 10.1371/journal.pone.0084234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023] Open
Abstract
An effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs), and the elicitation of antibody-dependent cellular cytotoxicity (ADCC). Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP). However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime-protein boost vaccine regimen. Mice and guinea pigs were primed with single- and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast, the synthetic DNA prime-protein boost protocol induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime plus adaptive EP plus protein boost appears warranted.
Collapse
|
18
|
Bao H, Ramanathan AA, Kawalakar O, Sundaram SG, Tingey C, Bian CB, Muruganandam N, Vijayachari P, Sardesai NY, Weiner DB, Ugen KE, Muthumani K. Nonstructural protein 2 (nsP2) of Chikungunya virus (CHIKV) enhances protective immunity mediated by a CHIKV envelope protein expressing DNA Vaccine. Viral Immunol 2013; 26:75-83. [PMID: 23409931 DOI: 10.1089/vim.2012.0061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is an important emerging mosquito-borne alphavirus, indigenous to tropical Africa and Asia. It can cause epidemic fever and acute illness characterized by fever and arthralgias. The epidemic cycle of this infection is similar to dengue and urban yellow fever viral infections. The generation of an efficient vaccine against CHIKV is necessary to prevent and/or control the disease manifestations of the infection. In this report, we studied immune response against a CHIKV-envelope DNA vaccine (pEnv) and the role of the CHIKV nonstructural gene 2 (nsP2) as an adjuvant for the induction of protective immune responses in a relevant mouse challenge model. When injected with the CHIKV pEnv alone, 70% of the immunized mice survived CHIKV challenge, whereas when co-injected with pEnv+pnsP2, 90% of the mice survived viral challenge. Mice also exhibited a delayed onset signs of illness, and a marked decrease in morbidity, suggesting a nsP2 mediated adjuvant effect. Co-injection of the pnsP2 adjuvant with pEnv also qualitatively and quantitatively increased antigen specific neutralizing antibody responses compared to vaccination with pEnv alone. In sum, these novel data imply that the addition of nsP2 to the pEnv vaccine enhances anti-CHIKV-Env immune responses and maybe useful to include in future CHIKV clinical vaccination strategies.
Collapse
Affiliation(s)
- Huihui Bao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kulkarni V, Rosati M, Valentin A, Jalah R, Alicea C, Yu L, Guan Y, Shen X, Tomaras GD, LaBranche C, Montefiori DC, Irene C, Prattipati R, Pinter A, Sullivan SM, Pavlakis GN, Felber BK. Vaccination with Vaxfectin(®) adjuvanted SIV DNA induces long-lasting humoral immune responses able to reduce SIVmac251 Viremia. Hum Vaccin Immunother 2013; 9:2069-80. [PMID: 23820294 DOI: 10.4161/hv.25442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We evaluated the immunogenicity and efficacy of Vaxfectin(®) adjuvanted SIV DNA vaccines in mice and macaques. Vaccination of mice with Vaxfectin(®) adjuvanted SIV gag DNA induced higher humoral immune responses than administration of unadjuvanted DNA, whereas similar levels of cellular immunity were elicited. Vaxfectin(®) adjuvanted SIVmac251 gag and env DNA immunization of rhesus macaques was used to examine magnitude, durability, and efficacy of humoral immunity. Vaccinated macaques elicited potent neutralizing antibodies able to cross-neutralize the heterologous SIVsmE660 Env. We found remarkable durability of Gag and Env humoral responses, sustained during ~2 y of follow-up. The Env-specific antibody responses induced by Vaxfectin(®) adjuvanted env DNA vaccination disseminated into mucosal tissues, as demonstrated by their presence in saliva, including responses to the V1-V2 region, and rectal fluids. The efficacy of the immune responses was evaluated upon intrarectal challenge with low repeated dose SIVmac251. Although 2 of the 3 vaccinees became infected, these animals showed significantly lower peak virus loads and lower chronic viremia than non-immunized infected controls. Thus, Vaxfectin(®) adjuvanted DNA is a promising vaccine approach for inducing potent immune responses able to control the highly pathogenic SIVmac251.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Margherita Rosati
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Antonio Valentin
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Lei Yu
- Institute of Human Virology and Department of Microbiology & Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | - Yongjun Guan
- Institute of Human Virology and Department of Microbiology & Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | | | | | | | | | - Carmela Irene
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | - Rajasekhar Prattipati
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | - Abraham Pinter
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | | | - George N Pavlakis
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| |
Collapse
|
20
|
Kulkarni V, Rosati M, Bear J, Pilkington GR, Jalah R, Bergamaschi C, Singh AK, Alicea C, Chowdhury B, Zhang GM, Kim EY, Wolinsky SM, Huang W, Guan Y, LaBranche C, Montefiori DC, Broderick KE, Sardesai NY, Valentin A, Felber BK, Pavlakis GN. Comparison of intradermal and intramuscular delivery followed by in vivo electroporation of SIV Env DNA in macaques. Hum Vaccin Immunother 2013; 9:2081-94. [PMID: 23811579 DOI: 10.4161/hv.25473] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A panel of SIVmac251 transmitted Env sequences were tested for expression, function and immunogenicity in mice and macaques. The immunogenicity of a DNA vaccine cocktail expressing SIVmac239 and three transmitted SIVmac251 Env sequences was evaluated upon intradermal or intramuscular injection followed by in vivo electroporation in macaques using sequential vaccination of gp160, gp120 and gp140 expressing DNAs. Both intradermal and intramuscular vaccination regimens using the gp160 expression plasmids induced robust humoral immune responses, which further improved using the gp120 expressing DNAs. The responses showed durability of binding and neutralizing antibody titers and high avidity for>1 y. The intradermal DNA delivery regimen induced higher cross-reactive responses able to neutralize the heterologous tier 1B-like SIVsmE660_CG7V. Analysis of cellular immune responses showed induction of Env-specific memory responses and cytotoxic granzyme B(+) T cells in both vaccine groups, although the magnitude of the responses were ~10x higher in the intramuscular/electroporation group. The cellular responses induced by both regimens were long lasting and could be detected ~1 y after the last vaccination. These data show that both DNA delivery methods are able to induce robust and durable immune responses in macaques.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Margherita Rosati
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Guy R Pilkington
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Ashish K Singh
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Bhabadeb Chowdhury
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Gen-Mu Zhang
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA; Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Eun-Young Kim
- Division of Infectious Diseases; The Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Steven M Wolinsky
- Division of Infectious Diseases; The Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Wensheng Huang
- Institute of Human Virology; Department of Microbiology and Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | - Yongjun Guan
- Institute of Human Virology; Department of Microbiology and Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | - Celia LaBranche
- Department of Surgery; Laboratory for AIDS Vaccine Research and Development; Duke University Medical Center; Durham, NC USA
| | - David C Montefiori
- Department of Surgery; Laboratory for AIDS Vaccine Research and Development; Duke University Medical Center; Durham, NC USA
| | | | | | - Antonio Valentin
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - George N Pavlakis
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| |
Collapse
|
21
|
Li J, Valentin A, Kulkarni V, Rosati M, Beach RK, Alicea C, Hannaman D, Reed SG, Felber BK, Pavlakis GN. HIV/SIV DNA vaccine combined with protein in a co-immunization protocol elicits highest humoral responses to envelope in mice and macaques. Vaccine 2013; 31:3747-55. [PMID: 23624057 DOI: 10.1016/j.vaccine.2013.04.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/05/2013] [Accepted: 04/15/2013] [Indexed: 12/27/2022]
Abstract
Vaccination with HIV/SIV DNAs elicits potent T-cell responses. To improve humoral immune responses, we combined DNA and protein in a co-immunization protocol using in vivo electroporation in mice and macaques. DNA&protein co-immunization induced higher antibody responses than DNA or protein alone, or DNA prime/protein boost in mice. DNA&protein co-immunization induced similar levels of cellular responses as those obtained by DNA only vaccination. The inclusion of SIV or HIV Env gp120 protein did not impair the development of cellular immune responses elicited by DNA present in the vaccine regimen. In macaques, the DNA&protein co-immunization regimen also elicited higher levels of humoral responses with broader cross-neutralizing activity. Despite the improved immunogenicity of DNA&protein co-immunization, the protein formulation with the EM-005 (GLA-SE) adjuvant further increased the anti-Env humoral responses. Dissecting the contribution of EM-005, we found that its administration upregulated the expression of co-stimulatory molecules and stimulated cytokine production, especially IL-6, by dendritic cells in vivo. These terminally differentiated, mature, dendritic cells possibly promote higher levels of humoral responses, supporting the inclusion of the EM-005 adjuvant with the vaccine. Thus, DNA&protein co-immunization is a promising strategy to improve the rapidity of development, magnitude and potency of the humoral immune responses.
Collapse
Affiliation(s)
- Jinyao Li
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Peng J, Zhao Y, Mai J, Guo W, Xu Y. Short noncoding DNA fragment improve efficiencies of in vivo electroporation-mediated gene transfer. J Gene Med 2013; 14:563-9. [PMID: 22930438 DOI: 10.1002/jgm.2667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND A major obstacle to the application of gene therapy methods in experimental and clinical practice is the lack of safe and efficient gene delivery systems. Electroporation has been shown to an effective physical delivery method. A variety of factors have been shown to affect the electroporation-mediated gene delivery efficiency. In the present study, we assessed the usefulness of noncoding short-fragment DNA (sf-DNA) for facilitating electroporation-mediated gene transfer. METHODS The plasmid pGL3-control encoding firefly luciferase was injected into tissues together with or without sf-DNA. Immediately after injection, the tissues were electroporated and the level of luciferase activity was assessed 24 h later. Different types of DNA fragments with different molecular weights, structures and doses were compared. The transfection efficiencies of sf-DNA-mediated electroporation in different tissues or with different electric field strengths were examined. RESULTS Plasmid DNA formulated with 300-bp sf-DNA resulted in a significant improvement in electroporation-mediated gene transfer efficiency. The effect is dose-dependent and is also affected by DNA fragment length and structure. It was useful for intramuscular electroporation application, as well as intratumoral application with various pulse voltage parameters. CONCLUSIONS The data obtained in the present study indicate that sf-DNA can be used as a helper molecule to improve electroporation-mediated gene transfection efficiency.
Collapse
Affiliation(s)
- Jinliang Peng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | | | | | | | | |
Collapse
|
23
|
Safety and immunogenicity of DNA prime and modified vaccinia ankara virus-HIV subtype C vaccine boost in healthy adults. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:397-408. [PMID: 23345581 DOI: 10.1128/cvi.00637-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A randomized, double-blind, placebo-controlled phase I trial was conducted in 32 HIV-uninfected healthy volunteers to assess the safety and immunogenicity of 3 doses of DNA vaccine (Advax) plus 1 dose of recombinant modified vaccinia virus Ankara (MVA) (TBC-M4) or 3 doses of TBC-M4 alone (groups A and B, respectively). Both vaccine regimens were found to be safe and well tolerated. Gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISPOT) assay responses were detected in 1/10 (10%) individuals in group A after three Advax primes and in 9/9 individuals (100%) after the MVA boost. In group B, IFN-γ ELISPOT responses were detected in 6/12 (50%) and 7/11 (64%) individuals after the second and third MVA vaccinations, respectively. Responses to all vaccine components, but predominantly to Env, were seen. The breadth and magnitude of the T cell response and viral inhibition were greater in group A than in group B, indicating that the quality of the T-cell response was enhanced by the DNA prime. Intracellular cytokine staining indicated that the T-cell responses were polyfunctional but were skewed toward Env with a CD4(+) phenotype. At 2 weeks after the last vaccination, HIV-specific antibody responses were detected in all (100%) group B and 1/11 (9.1%) group A vaccinees. Vaccinia virus-specific responses were detected in all (100%) group B and 2/11 (18.2%) group A vaccinees. In conclusion, HIV-specific T-cell responses were seen in the majority of volunteers in groups A and B but with a trend toward greater quality of the T-cell response in group A. Antibody responses were better in group B than in group A.
Collapse
|
24
|
|
25
|
Richie TL, Charoenvit Y, Wang R, Epstein JE, Hedstrom RC, Kumar S, Luke TC, Freilich DA, Aguiar JC, Sacci JB, Sedegah M, Nosek RA, De La Vega P, Berzins MP, Majam VF, Abot EN, Ganeshan H, Richie NO, Banania JG, Baraceros MFB, Geter TG, Mere R, Bebris L, Limbach K, Hickey BW, Lanar DE, Ng J, Shi M, Hobart PM, Norman JA, Soisson LA, Hollingdale MR, Rogers WO, Doolan DL, Hoffman SL. Clinical trial in healthy malaria-naïve adults to evaluate the safety, tolerability, immunogenicity and efficacy of MuStDO5, a five-gene, sporozoite/hepatic stage Plasmodium falciparum DNA vaccine combined with escalating dose human GM-CSF DNA. Hum Vaccin Immunother 2012; 8:1564-84. [PMID: 23151451 PMCID: PMC3601132 DOI: 10.4161/hv.22129] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997−1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000–2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 μg of each plasmid plus escalating doses (0, 20, 100 or 500 μg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines.
Collapse
|
26
|
Yin J, Dai A, Arango T, Kasinathan RS, Greenberg RM, Boyer JD. IL-4 and IFN-γ induced by human immunodeficiency virus vaccine in a schistosome infection model. Hum Vaccin Immunother 2012; 8:1555-63. [PMID: 23151453 DOI: 10.4161/hv.22142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The co-infection of HIV and helminth parasites, such as Schistosoma spp, has increased in sub-Saharan Africa. Many HIV vaccine candidate studies have been completed or are in ongoing clinical trials, but it is not clear how HIV vaccines might affect the course of schistosome infections. In this study, we immunized S. mansoni-infected mice with an efficient DNA vaccine that included HIV gag. Using this model, we found that Th2 cytokines, such as IL-4 and IL-13, were highly induced after schistosome infection. Treatment of infected mice with the HIV DNA vaccine resulted in a significant attenuation of this rise in IL-13 expression and an increase in expression of the Th1 cytokine, TNF-α. However, vaccine administration did not significantly influence the expression of IL-4, or IFN-γ, and did not affect T cell proliferative capacity. Interestingly, the IL-4 (+) IFN-γ (+) phenotype appears in schistosome-infected mice that received HIV vaccination, and is associated with the expression of transcription factors GATA3 (+) T-bet (+) in these mice. These studies indicate that DNA vaccination can have an impact on ongoing chronic infection.
Collapse
Affiliation(s)
- Jiangmei Yin
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| | | | | | | | | | | |
Collapse
|
27
|
Hutnick NA, Myles DJF, Ferraro B, Lucke C, Lin F, Yan J, Broderick KE, Khan AS, Sardesai NY, Weiner DB. Intradermal DNA vaccination enhanced by low-current electroporation improves antigen expression and induces robust cellular and humoral immune responses. Hum Gene Ther 2012; 23:943-50. [PMID: 22650607 DOI: 10.1089/hum.2012.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA represents an ideal vaccine platform for HIV and many infectious diseases because of its safety, stability, and ease of manufacture. However, the immunogenicity of DNA vaccines has traditionally been low compared with viral vectors, recombinant protein, and live attenuated vaccines. The immunogenicity of DNA vaccines has been significantly enhanced by delivery with in vivo electroporation. Further improvements now allow electroporation to be performed in the dermis, which could potentially improve patient tolerability and may further enhance immunogenicity. In this study we examined how the current of intradermal vaccination impacts antigen expression, inflammation, and the induction of both humoral and cellular immunity in guinea pigs and nonhuman primates. We observed that a lower (0.1 A) current reduced inflammation and improved antigen expression compared with a 0.2 A current. The improved antigen expression resulted in a trend toward higher cellular immune responses but no impact on HIV- and influenza-specific binding titers. This study highlights the need for optimization of electroporation conditions in vivo in order to balance enhanced plasmid transfection with a loss of expression due to tissue inflammation and necrosis. These results suggest that a lower, 0.1-A current may not only improve patient tolerability but also improve immunogenicity.
Collapse
Affiliation(s)
- Natalie A Hutnick
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cox JH, Ferrari MG, Earl P, Lane JR, Jagodzinski LL, Polonis VR, Kuta EG, Boyer JD, Ratto-Kim S, Eller LA, Pham DT, Hart L, Montefiori D, Ferrari G, Parrish S, Weiner DB, Moss B, Kim JH, Birx D, VanCott TC. Inclusion of a CRF01_AE HIV envelope protein boost with a DNA/MVA prime-boost vaccine: Impact on humoral and cellular immunogenicity and viral load reduction after SHIV-E challenge. Vaccine 2012; 30:1830-40. [PMID: 22234262 PMCID: PMC3324265 DOI: 10.1016/j.vaccine.2011.12.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 01/13/2023]
Abstract
The current study assessed the immunogenicity and protective efficacy of various prime-boost vaccine regimens in rhesus macaques using combinations of recombinant DNA (rDNA), recombinant MVA (rMVA), and subunit gp140 protein. The rDNA and rMVA vectors were constructed to express Env from HIV-1 subtype CRF01_AE and Gag-Pol from CRF01_AE or SIVmac 239. One of the rMVAs, MVA/CMDR, has been recently tested in humans. Immunizations were administered at months 0 and 1 (prime) and months 3 and 6 (boost). After priming, HIV env-specific serum IgG was detected in monkeys receiving gp140 alone or rMVA but not in those receiving rDNA. Titers were enhanced in these groups after boosting either with gp140 alone or with rMVA plus gp140. The groups that received the rDNA prime developed env-specific IgG after boosting with rMVA with or without gp140. HIV Env-specific serum IgG binding antibodies were elicited more frequently and of higher titer, and breadth of neutralizing antibodies was increased with the inclusion of the subunit Env boost. T cell responses were measured by tetramer binding to Gag p11c in Mamu-A*01 macaques, and by IFN-γ ELISPOT assay to SIV-Gag. T cell responses were induced after vaccination with the highest responses seen in macaques immunized with rDNA and rMVA. Macaques were challenged intravenously with a novel SHIV-E virus (SIVmac239 Gag-Pol with an HIV-1 subtype E-Env CAR402). Post challenge with SHIV-E, antibody titers were boosted in all groups and peaked at 4 weeks. Robust T cell responses were seen in all groups post challenge and in macaques immunized with rDNA and rMVA a clear boosting of responses was seen. A greater than two-log drop in RNA copies/ml at peak viremia and earlier set point was achieved in macaques primed with rDNA, and boosted with rMVA/SHIV-AE plus gp140. Post challenge viremia in macaques immunized with other regimens was not significantly different to that of controls. These results demonstrate that a gp140 subunit and inclusion of SIV Gag-Pol may be critical for control of SHIV post challenge.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antibodies, Neutralizing/blood
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Products, gag/immunology
- Gene Products, pol/immunology
- HIV Antibodies/blood
- HIV-1/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunization, Secondary
- Immunoglobulin G/blood
- Macaca mulatta
- Male
- Simian Immunodeficiency Virus/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Load
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
|
29
|
Rochard A, Scherman D, Bigey P. Genetic immunization with plasmid DNA mediated by electrotransfer. Hum Gene Ther 2011; 22:789-98. [PMID: 21631165 DOI: 10.1089/hum.2011.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The concept of DNA immunization was first advanced in the early 1990s, but was not developed because of an initial lack of efficiency. Recent technical advances in plasmid design and gene delivery techniques have allowed renewed interest in the idea. Particularly, a better understanding of genetic immunization has led to construction of optimized plasmids and the use of efficient molecular adjuvants. The field also took great advantage of new delivery techniques such as electrotransfer. This is a simple physical technique consisting of injecting plasmid DNA into a target tissue and applying an electric field, allowing up to a thousandfold more expression of the transgene than naked DNA. DNA immunization mediated by electrotransfer is now effective in a variety of preclinical models against infectious or acquired diseases such as cancer or autoimmune diseases, and is making its way through the clinics in several ongoing phase I human clinical trials. This review will briefly describe genetic immunization mediated by electrotransfer and the main fields of application.
Collapse
Affiliation(s)
- Alice Rochard
- Unité de Pharmacologie Chimique et Génétique et d'Imagerie, CNRS, UMR8151, Paris, F-75006 France
| | | | | |
Collapse
|
30
|
Hutnick NA, Myles DJF, Bian CB, Muthumani K, Weiner DB. Selected approaches for increasing HIV DNA vaccine immunogenicity in vivo. Curr Opin Virol 2011; 1:233-40. [PMID: 22440782 DOI: 10.1016/j.coviro.2011.08.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/09/2011] [Accepted: 08/09/2011] [Indexed: 01/18/2023]
Abstract
The safety, stability, and ability for repeat homologous vaccination makes the DNA vaccine platform an excellent candidate for an effective HIV-1 vaccine. However, the immunogenicity of early DNA vaccines did not translate from small animal models into larger non-human primates and was markedly lower than viral vectors. In addition to improvements to the DNA vector itself, delivery with electroporation, the inclusion of molecular adjuvants, and heterologous prime-boost strategies have dramatically improved the immunogenicity of DNA vaccines for HIV and currently makes them a leading platform with many areas warranting further research and clinical development.
Collapse
Affiliation(s)
- Natalie A Hutnick
- Department of Pathology and Laboratory Medicine, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | | | | | | | | |
Collapse
|