1
|
Abo-Samaha MI, Sharaf MM, El Nahas AF, Odemuyiwa SO. Innate immune response to double-stranded RNA in American heritage chicken breeds. Poult Sci 2024; 103:103318. [PMID: 38064884 PMCID: PMC10757028 DOI: 10.1016/j.psj.2023.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 01/02/2024] Open
Abstract
Backyard poultry flocks that employ heritage breeds of chicken play a crucial role in the maintenance of poultry pathogens of economic and zoonotic importance. This study examined innate immunity to viral pathogens in heritage chicken breeds using a model of viral double-stranded RNA (dsRNA). Following intraperitoneal injection of high molecular weight (HMW) -poly(I:C)/Lyovec into 4-wk-old chicks, we evaluated gene expression in peripheral blood mononuclear cells (PBMCs) and splenocytes. There was a significant difference across breeds in the expression of IL-4, IL-12p40, IFNγ, and B-cell activating factor (BAFF) in the spleen. In PBMCs, a significant difference in IFN-α expression was seen across breeds. Approximately 57% of IFN-α transcripts in PBMCs was explained by levels of expression of MDA5 transcripts. Using flow cytometry, we showed that only monocytes/macrophages (KUL01+ cells) expressed the scavenger receptor CD163. Regression analysis showed that 42% of fold change in CD163 expression on PBMCs was explained by breed (P < 0.0004). In general, breeds that responded to HMW-poly(I:C) by showing higher upregulation of IFNγ, IL-1β, and IL-12p40 transcripts in the spleen, and higher IFNα transcripts in peripheral blood, expressed less CD163 on blood monocytes. These findings suggest a genetic basis for the response of chickens to double-stranded RNA. Surface expression of the scavenger receptor CD163 in PBMCs following injection of high molecular weight poly(I:C) may be a rapid method to select chickens for breeding based on innate immune response to viral dsRNA.
Collapse
Affiliation(s)
- Magda I Abo-Samaha
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088; Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohammed M Sharaf
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Abeer F El Nahas
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Solomon O Odemuyiwa
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088; Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
2
|
Gimeno IM, Cortes AL, Reddy SM, López de Juan Abad B, Käser T, Limsatanun A. Highly virulent Marek's disease virus strains affect T lymphocyte function and viability of splenocytes in commercial meat-type chickens. Avian Pathol 2019; 48:564-572. [PMID: 31294636 DOI: 10.1080/03079457.2019.1643451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In previous studies, we have demonstrated that very virulent plus Marek's disease viruses (vv+MDV) are highly immunosuppressive in commercial meat-type chickens. The specific objectives of this work were to evaluate if vv+MDV immunosuppression (MDV-IS) is induced by reduction of lymphocyte responsiveness and/or viability. Three experiments were conducted to (i) compare vv+MDV 686 with a partially attenuated 686-BAC; (ii) compare vv+MDV strains (648A and 686) with vMDV (GA) and vvMDV (Md5); and (iii) compare chickens vaccinated with Md5-BACΔMEQ and with CVI988 + HVT. In each experiment, spleens were collected at 28-30 days post infection and lymphocytes were isolated and investigated in three ways: their proliferative response to Concanavalin A (ConA) was analysed by MTT proliferation assay; cell death, and expression of CD45 and MHC-I was studied by flow cytometry; and MHC-IA and β-2 microglobulin (B2M) expression was evaluated by real time RT-PCR. Splenocytes of chickens inoculated with vv+MDV were severely impaired to proliferate when exposed to ConA. Furthermore, vv+MDV induced severe splenocyte death that did not occur after infection with v or vvMDV strains. Vaccination with CVI988 + HVT, and at less level with Md5-BACΔMEQ reduced these negative effects. This is in contrast to our previous results in which Md5-BACΔMEQ but not CVI988 + HVT protected against MDV-IS suggesting that although cell death and decrease lymphocyte function seem to be related to MDV virulence and certainly will be associated with immunosuppression, they might not fully explain the previously reported MDV-IS. RESEARCH HIGHLIGHTS vv+MDV induces extensive death in splenocytes in meat-type chickens 28-30 dpi. vv+MDV impairs lymphocyte function in meat-type chickens 28-30 dpi. Vaccination protects against splenocyte death and reduced lymphocyte function. Cell lysis and reduced lymphocyte function do not fully explain MDV-IS.
Collapse
Affiliation(s)
- I M Gimeno
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University , Raleigh , NC , USA
| | - A L Cortes
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University , Raleigh , NC , USA
| | - S M Reddy
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University , College Station , TX , USA
| | - B López de Juan Abad
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University , Raleigh , NC , USA
| | - T Käser
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University , Raleigh , NC , USA
| | - A Limsatanun
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University , Raleigh , NC , USA.,Faculty of Veterinary Science, Prince of Songkla University , Hat Yai, Kho Hong, Songhkla , Thailand
| |
Collapse
|
3
|
Gimeno IM, Glaize A, Cortes AL. Effect of Marek’s disease vaccines on interferon and toll like receptors when administered in ovo. Vet Immunol Immunopathol 2018; 201:62-66. [DOI: 10.1016/j.vetimm.2018.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/03/2018] [Accepted: 05/24/2018] [Indexed: 12/24/2022]
|
4
|
Faiz NM, Cortes AL, Guy JS, Reddy SM, Gimeno IM. Differential attenuation of Marek’s disease virus-induced tumours and late-Marek’s disease virus-induced immunosuppression. J Gen Virol 2018; 99:927-936. [DOI: 10.1099/jgv.0.001076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nik M. Faiz
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Aneg L. Cortes
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - James S. Guy
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Sanjay M. Reddy
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Isabel M. Gimeno
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| |
Collapse
|
5
|
Faiz NM, Cortes AL, Guy JS, Fletcher OJ, Cimino T, Gimeno IM. Evaluation of factors influencing the development of late Marek's disease virus-induced immunosuppression: virus pathotype and host sex. Avian Pathol 2017; 46:376-385. [PMID: 28151004 DOI: 10.1080/03079457.2017.1290214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Marek's disease virus (MDV) is a herpesvirus that induces lymphoma and immunosuppression in chickens. MDV-induced immunosuppression (MDV-IS) is complex and can be divided into two phases: early-MDV-IS associated with cytolytic infection in the lymphoid organs in chickens lacking maternal antibodies against MDV (MAbs) and late-MDV-IS that appears later in the pathogenesis and occurs even in chickens bearing MAbs. We have recently developed a model to reproduce late-MDV-IS under laboratory conditions. This model evaluates late-MDV-IS indirectly by assessing the effect of MDV infection on the efficacy of infectious laryngotracheitis (ILT) vaccines against challenge with ILT virus. In the present study, we have used this model to investigate the role of two factors (MDV pathotype and host sex) on the development of late-MDV-IS. Five MDV strains representing three different pathotypes: virulent (vMDV; 617A, GA), very virulent (vvMDV; Md5), and very virulent plus (vv+MDV; 648A, 686), were evaluated. Only vv+ strains were able to induce late-MDV-IS. An immunosuppression rank (IS-rank) was established based on the ability of MDV to reduce the efficacy of chicken embryo origin vaccine (values go from 0 to 100, with 100 being the highest immunosuppressive ability). The IS-rank of the evaluated MDV strains ranged from 5.97 (GA) to 20.8 (617A) in the vMDV strains, 5.97 to 16.24 in the vvMDV strain Md5, and 39.08 to 68.2 in the vv+ strains 648A and 686. In this study both male and female chickens were equally susceptible to MDV-IS by vv+MDV 686. Our findings suggest that late-MDV-IS is a unique feature of vv+ strains.
Collapse
Affiliation(s)
- Nik M Faiz
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA.,b Department of Clinical Studies , College of Veterinary Medicine, Universiti Putra Malaysia , Selangor , Malaysia
| | - Aneg L Cortes
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA
| | - James S Guy
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA
| | - Oscar J Fletcher
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA
| | | | - Isabel M Gimeno
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
6
|
Vagnozzi A, Riblet S, Zavala G, Ecco R, Afonso CL, García M. Evaluation of the transcriptional status of host cytokines and viral genes in the trachea of vaccinated and non-vaccinated chickens after challenge with the infectious laryngotracheitis virus. Avian Pathol 2017; 45:106-13. [PMID: 26926298 DOI: 10.1080/03079457.2015.1126804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infectious laryngotracheitis is a highly contagious disease of chickens responsible for significant economic losses for the poultry industry worldwide. The disease is caused by Gallid herpesvirus-1 (GaHV-1) commonly known as the infectious laryngotracheitis virus. Although characterized by their potential to regain virulence, chicken embryo origin (CEO) vaccines are the most effective vaccines against laryngotracheitis as they significantly reduce the replication of challenge virus in the trachea and conjunctiva. Knowledge on the nature of protective immunity elicited by CEO vaccines is very limited. Therefore, elucidating the origin of the immune responses elicited by CEO vaccination is relevant for development of safer control strategies. In this study the transcription levels of key host immune genes (IFN-γ, IFN-β, IL-1β, IL-6, IL-8, IL-18) and viral genes (ICP4, ICP27, UL46, UL49), as well as viral genome loads in trachea were quantified at 6 and 12 hours post-challenge of CEO vaccinated and non-vaccinated chickens. Immediately after challenge a significant increase in IFN-γ gene expression was followed by a significant reduction in viral replication. In contrast to the rapid induction of IFN-γ, expression of the pro-inflammatory cytokines (IL-1β, IL-6, IL-8) and type I IFN β was either slightly reduced or remained at basal levels. These suggest that the former cytokines may not play important roles during immediate early responses induced by ILTV challenge in either vaccinated or non-vaccinated chickens. Overall, these results suggest that the rapid expression of IFN-γ may induce pathways of antiviral responses necessary for blocking early virus replication.
Collapse
Affiliation(s)
- Ariel Vagnozzi
- a Instituto de Virología, INTA CICV y A , Buenos Aires , Argentina
| | - Sylva Riblet
- b Poultry Diagnostic and Research Center, Department of Population Health , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | | | - Roselene Ecco
- d Laboratorio de Patología, Escola de Veterinaria , Universidade Federal de Minas Gerais , Minas Gerais , Brazil
| | - Claudio L Afonso
- e Southeast Poultry Research Laboratory, ARS-USDA, SAA , Athens , GA , USA
| | - Maricarmen García
- b Poultry Diagnostic and Research Center, Department of Population Health , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| |
Collapse
|
7
|
Faiz NM, Cortes AL, Guy JS, Fletcher OJ, West M, Montiel E, Gimeno IM. Early infection with Marek's disease virus can jeopardize protection conferred by laryngotracheitis vaccines: a method to study MDV-induced immunosuppression. Avian Pathol 2016; 45:606-615. [PMID: 27207594 DOI: 10.1080/03079457.2016.1191618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Marek's disease virus (MDV) is a herpesvirus that induces lymphomas and immunosuppression in chickens. MDV-induced immunosuppression (MDV-IS) is divided into two phases: early-MDV-IS occurring mainly in chickens lacking maternal antibodies (MAb) against MDV and associated with lymphoid organ atrophy; and late-MDV-IS occurring once MDV enters latency and during tumour development. Our objectives were to document the impact of late-MDV-IS on commercial poultry (meat-type chickens bearing MAb against MDV and that were vaccinated or unvaccinated against MD) and to optimize a model to study late-MDV-IS under laboratory conditions. The impact of late-MDV-IS was evaluated by assessing the effect of early infection (day of age) with a very virulent plus MDV (vv+MDV) on the efficacy of chicken-embryo-origin (CEO) infectious laryngotracheitis (ILT) virus vaccine against ILT challenge. The CEO ILT vaccine was administered in water at 14 days of age and ILT virus (ILTV) challenge was done intratracheally at 30 days of age. Development of ILT was monitored by daily evaluation of clinical signs, development of gross and histological lesions in trachea, and quantification of ILTV transcripts in trachea. Infection with vv+MDV strain 648A resulted in total abrogation of protection conferred by the CEO vaccine against ILTV challenge even in chickens vaccinated at 1 day of age with either HVT, HVT+SB-1, or CVI988. Chickens exposed to vv+MDV prior to vaccination with CEO ILTV vaccine had similar (P < 0.05) clinical scores, gross lesions, histopathologic lesion scores, and load of ILTV transcripts in trachea after ILTV challenge, as chickens that were not vaccinated with CEO ILTV vaccine.
Collapse
Affiliation(s)
- Nik M Faiz
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA.,b Department of Clinical Studies , College of Veterinary Medicine, Universiti Putra Malaysia , Selangor , Malaysia
| | - Aneg L Cortes
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA
| | - James S Guy
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA
| | - Oscar J Fletcher
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA
| | - Melissa West
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA
| | | | - Isabel M Gimeno
- a Department of Population Health and Pathobiology , Veterinary School, North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
8
|
Faiz NM, Cortes AL, Guy JS, Fogle JE, Gimeno IM. Efficacy of various Marek's disease vaccines protocols for prevention of Marek's disease virus-induced immunosuppression. Vaccine 2016; 34:4180-4187. [PMID: 27371103 DOI: 10.1016/j.vaccine.2016.06.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
Marek's disease virus (MDV) induces tumors and severe immunosuppression in chickens. MDV-induced immunosuppression (MDV-IS) is very complex and difficult to study. In particular, the late MDV-IS (late-MDV-IS) is of great concern since it can occur in the absence of lymphoid organ atrophy or gross tumors. We have recently developed a model to reproduce late-MDV-IS under laboratory conditions. This model measures MDV-IS indirectly by assessing the effect of MDV infection on the efficacy of infectious laryngotracheitis (ILT) vaccination; hence the name late-MDV-IS ILT model. In this study, we have used the late-MDV-IS ILT model to evaluate if MD vaccination can protect against late-MDV-IS. One experiment was conducted to determine whether serotype 1 MD vaccines (CVI988 and Md5ΔMEQ) could induce late-MDV-IS by themselves. Three additional experiments were conducted to evaluate efficacy of different MD vaccines (HVT, HVT+SB-1, CVI988, and Md5ΔMEQ) and different vaccine protocols (day-old vaccination, in ovo vaccination, and double vaccination) against late-MDV-IS. Our results show that none of the currently used vaccine protocols (HVT, HVT+SB-1, or CVI988 administered at day of age, in ovo, or in double vaccination protocols) protected against late-MDV-IS induced by vv+MDV strains 648A and 686. Experimental vaccine Md5ΔMEQ administered subcutaneously at one day of age was the only vaccine protocol that significantly reduced late-MDV-IS induced by vv+MDV strain 686. This study demonstrates that currently used vaccine protocols confer high levels of protection against MDV-induced tumors (protection index=100), but do not protect against late-MDV-IS; thus, commercial poultry flocks could suffer late-MDV-IS even in complete absence of tumors. Our results suggest that MDV-IS might not be related to the development of tumors and novel control methods are needed. Further evaluation of the experimental vaccine Md5ΔMEQ might shed light on protective mechanisms against late-MDV-IS.
Collapse
Affiliation(s)
- Nik M Faiz
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Aneg L Cortes
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - James S Guy
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Isabel M Gimeno
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
9
|
Parvizi P, Brisbin JT, Read LR, Sharif S. Cytokine Gene Expression in Lung Mononuclear Cells of Chickens Vaccinated with Herpesvirus of Turkeys and Infected with Marek's Disease Virus. Viral Immunol 2015; 28:538-43. [DOI: 10.1089/vim.2015.0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Payvand Parvizi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Jennifer T. Brisbin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Leah R. Read
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
10
|
Fletcher OJ, Tan X, Cortes L, Gimeno I. Cost effective and time efficient measurement of CD4, CD8, major histocompatibility complex Class II, and macrophage antigen expression in the lungs of chickens. Vet Immunol Immunopathol 2012; 146:225-36. [PMID: 22484239 DOI: 10.1016/j.vetimm.2012.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/26/2012] [Accepted: 03/08/2012] [Indexed: 12/31/2022]
Abstract
Cells expressing CD4, CD8, major histocompatibility complex (MHC) Class II, and macrophage biomarkers in lungs of chickens were quantified by measuring total area of antigen expressed using imageJ, a software program developed at the National Institutes of Health and available at no cost. The procedures reported here were rapid, and reproducible. Total area of antigen expressed had positive correlation with manual counts of cells expressing CD4 and CD8 biomarkers after inoculation with serotype 1 Marek's disease virus (MDV) vaccines. Visual inspection and overlays prepared from outlines of cells counted by imageJ confirmed agreement between antigen expression and area measured. Total area measured was not dependent on time of image acquisition from randomly selected fields from the same slides. Total area values were not computer specific, but acquisition of the original images required standardization of microscope used and camera setup. All steps in the process from sample collection through sectioning, staining, and image acquisition must be standardized as much as possible. Chickens infected with a very virulent+ (vv(+)) isolate of MDV (648A) had increased CD4, CD8, MHC Class II, and macrophage biomarker expression compared to noninfected control chickens at 10 days post infection, but variable responses depending on the specific biomarker measured at 3 and 5 days post infection. The procedure described here is faster and more reproducible than manual counting in cases (CD4 and CD8) where the number of positive cells is low enough for manual counts. Manual counting is not possible with MHC Class II and macrophage antigens nor when CD4(+) cells are present in large numbers following proliferation to tumors, thus subjective systems are used for scoring in these conditions. Using imageJ as described eliminates the need for subjective and less reproducible methods for measuring expression of these antigens.
Collapse
Affiliation(s)
- Oscar J Fletcher
- Poultry Health Management Team, Department of Population Health & Pathobiology, College of Veterinary Medicine, NC State University, 1060 William Moore Dr., Raleigh, NC 27607, United States.
| | | | | | | |
Collapse
|
11
|
Sandford EE, Orr M, Balfanz E, Bowerman N, Li X, Zhou H, Johnson TJ, Kariyawasam S, Liu P, Nolan LK, Lamont SJ. Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens. BMC Genomics 2011; 12:469. [PMID: 21951686 PMCID: PMC3190404 DOI: 10.1186/1471-2164-12-469] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/27/2011] [Indexed: 11/10/2022] Open
Abstract
Background Avian pathogenic Escherichia coli (APEC) is detrimental to poultry health and its zoonotic potential is a food safety concern. Regulation of antimicrobials in food-production animals has put greater focus on enhancing host resistance to bacterial infections through genetics. To better define effective mechanism of host resistance, global gene expression in the spleen of chickens, harvested at two times post-infection (PI) with APEC, was measured using microarray technology, in a design that will enable investigation of effects of vaccination, challenge, and pathology level. Results There were 1,101 genes significantly differentially expressed between severely infected and non-infected groups on day 1 PI and 1,723 on day 5 PI. Very little difference was seen between mildly infected and non-infected groups on either time point. Between birds exhibiting mild and severe pathology, there were 2 significantly differentially expressed genes on day 1 PI and 799 on day 5 PI. Groups with greater pathology had more genes with increased expression than decreased expression levels. Several predominate immune pathways, Toll-like receptor, Jak-STAT, and cytokine signaling, were represented between challenged and non-challenged groups. Vaccination had, surprisingly, no detectible effect on gene expression, although it significantly protected the birds from observable gross lesions. Functional characterization of significantly expressed genes revealed unique gene ontology classifications during each time point, with many unique to a particular treatment or class contrast. Conclusions More severe pathology caused by APEC infection was associated with a high level of gene expression differences and increase in gene expression levels. Many of the significantly differentially expressed genes were unique to a particular treatment, pathology level or time point. The present study not only investigates the transcriptomic regulations of APEC infection, but also the degree of pathology associated with that infection. This study will allow for greater discovery into host mechanisms for disease resistance, providing targets for marker assisted selection and advanced drug development.
Collapse
Affiliation(s)
- Erin E Sandford
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|