1
|
Hashizume M, Takashima A, Iwasaki M. An mRNA-LNP-based Lassa virus vaccine induces protective immunity in mice. J Virol 2024; 98:e0057824. [PMID: 38767352 PMCID: PMC11237644 DOI: 10.1128/jvi.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
The mammarenavirus Lassa virus (LASV) causes the life-threatening hemorrhagic fever disease, Lassa fever. The lack of licensed medical countermeasures against LASV underscores the urgent need for the development of novel LASV vaccines, which has been hampered by the requirement for a biosafety level 4 facility to handle live LASV. Here, we investigated the efficacy of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in mice. Two doses of LASgpc- or LCMnp-mRNA-LNP administered intravenously (i.v.) protected C57BL/6 mice from a lethal challenge with a recombinant (r) LCMV expressing a modified LASgpc (rLCMV/LASgpc2m) inoculated intracranially. Intramuscular (i.m.) immunization with two doses of LASgpc- or LCMnp-mRNA-LNP significantly reduced the viral load in C57BL/6 mice inoculated i.v. with rLCMV/LASgpc2m. High levels of viremia and lethality were observed in CBA mice inoculated i.v. with rLCMV/LASgpc2m, which were abrogated by i.m. immunization with two doses of LASgpc-mRNA-LNP. The protective efficacy of two i.m. doses of LCMnp-mRNA-LNP was confirmed in a lethal hemorrhagic disease model of FVB mice i.v. inoculated with wild-type rLCMV. In all conditions tested, negligible and high levels of LASgpc- and LCMnp-specific antibodies were detected in mRNA-LNP-immunized mice, respectively, but robust LASgpc- and LCMnp-specific CD8+ T cell responses were induced. Accordingly, plasma from LASgpc-mRNA-LNP-immunized mice did not exhibit neutralizing activity. Our findings and surrogate mouse models of LASV infection, which can be studied at a reduced biocontainment level, provide a critical foundation for the rapid development of mRNA-LNP-based LASV vaccines.IMPORTANCELassa virus (LASV) is a highly pathogenic mammarenavirus responsible for several hundred thousand infections annually in West African countries, causing a high number of lethal Lassa fever (LF) cases. Despite its significant impact on human health, clinically approved, safe, and effective medical countermeasures against LF are not available. The requirement of a biosafety level 4 facility to handle live LASV has been one of the main obstacles to the research and development of LASV countermeasures. Here, we report that two doses of mRNA-lipid nanoparticle-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of lymphocytic choriomeningitis virus (LCMV), a mammarenavirus genetically closely related to LASV, conferred protection to recombinant LCMV-based surrogate mouse models of lethal LASV infection. Notably, robust LASgpc- and LCMnp-specific CD8+ T cell responses were detected in mRNA-LNP-immunized mice, whereas no virus-neutralizing activity was observed.
Collapse
Affiliation(s)
- Mei Hashizume
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ayako Takashima
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, Japan
- RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
3
|
Saito T, Reyna RA, Taniguchi S, Littlefield K, Paessler S, Maruyama J. Vaccine Candidates against Arenavirus Infections. Vaccines (Basel) 2023; 11:635. [PMID: 36992218 PMCID: PMC10057967 DOI: 10.3390/vaccines11030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The viral family Arenaviridae contains several members that cause severe, and often lethal, diseases in humans. Several highly pathogenic arenaviruses are classified as Risk Group 4 agents and must be handled in the highest biological containment facility, biosafety level-4 (BSL-4). Vaccines and treatments are very limited for these pathogens. The development of vaccines is crucial for the establishment of countermeasures against highly pathogenic arenavirus infections. While several vaccine candidates have been investigated, there are currently no approved vaccines for arenavirus infection except for Candid#1, a live-attenuated Junin virus vaccine only licensed in Argentina. Current platforms under investigation for use include live-attenuated vaccines, recombinant virus-based vaccines, and recombinant proteins. We summarize here the recent updates of vaccine candidates against arenavirus infections.
Collapse
Affiliation(s)
- Takeshi Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rachel A. Reyna
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satoshi Taniguchi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kirsten Littlefield
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
4
|
Immune correlates of protection following Rift Valley fever virus vaccination. NPJ Vaccines 2022; 7:129. [PMID: 36307416 PMCID: PMC9616434 DOI: 10.1038/s41541-022-00551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a hemorrhagic fever virus with the potential for significant economic and public health impact. Vaccination with an attenuated strain, DelNSsRVFV, provides protection from an otherwise lethal RVFV challenge, but mechanistic determinants of protection are undefined. In this study, a murine model was used to assess the contributions of humoral and cellular immunity to DelNSsRVFV-mediated protection. Vaccinated mice depleted of T cells were protected against subsequent challenge, and passive transfer of immune serum from vaccinated animals to naïve animals was also protective, demonstrating that T cells were dispensable in the presence of humoral immunity and that humoral immunity alone was sufficient. Animals depleted of B cells and then vaccinated were protected against challenge. Total splenocytes, but not T cells alone, B cells alone, or B + T cells harvested from vaccinated animals and then transferred to naïve animals were sufficient to confer protection, suggesting that multiple cellular interactions were required for effective cellular immunity. Together, these data indicate that humoral immunity is sufficient to confer vaccine-mediated protection and suggests that cellular immunity plays a role in protection that requires the interaction of various cellular components.
Collapse
|
5
|
Abstract
Lassa Fever (LF) is a viral hemorrhagic fever endemic in West Africa. LF begins with flu-like symptoms that are difficult to distinguish from other common endemic diseases such as malaria, dengue, and yellow fever making it hard to diagnose clinically. Availability of a rapid diagnostic test and other serological and molecular assays facilitates accurate diagnosis of LF. Lassa virus therapeutics are currently in different stages of preclinical development. Arevirumab, a cocktail of monoclonal antibodies, demonstrates a great safety and efficacy profile in non-human primates. Major efforts have been made in the development of a Lassa virus vaccine. Two vaccine candidates, MeV-NP and pLASV-GPC are undergoing evaluation in phase I clinical trials.
Collapse
Affiliation(s)
- Lilia I Melnik
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70118, USA.
| |
Collapse
|
6
|
Reyna RA, Maruyama J, Mantlo EK, Manning JT, Taniguchi S, Makishima T, Lukashevich IS, Paessler S. Depletion of CD4 and CD8 T Cells Reduces Acute Disease and Is Not Associated with Hearing Loss in ML29-Infected STAT1-/- Mice. Biomedicines 2022; 10:2433. [PMID: 36289695 PMCID: PMC9598517 DOI: 10.3390/biomedicines10102433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Lassa virus (LASV) is a zoonotic virus endemic to western Africa that can cause a potentially lethal and hemorrhagic disease, Lassa fever (LF). Survivors suffer a myriad of sequelae, most notably sudden onset sensorineural hearing loss (SNHL), the mechanism of which remains unclear. Unfortunately, studies aiming to identify the mechanism of these sequelae are limited due to the biosafety level 4 (BSL4) requirements of LASV itself. ML29, a reassortant virus proposed as an experimental vaccine candidate against LASV, is potentially an ideal surrogate model of LF in STAT1-/- mice due to similar phenotype in these animals. We intended to better characterize ML29 pathogenesis and potential sequelae in this animal model. Our results indicate that while both CD4 and CD8 T cells are responsible for acute disease in ML29 infection, ML29 induces significant hearing loss in a mechanism independent of either CD4 or CD8 T cells. We believe that this model could provide valuable information for viral-associated hearing loss in general.
Collapse
Affiliation(s)
- Rachel A. Reyna
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Emily K. Mantlo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - John T. Manning
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satoshi Taniguchi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tomoko Makishima
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Raabe V, Mehta AK, Evans JD. Lassa Virus Infection: a Summary for Clinicians. Int J Infect Dis 2022; 119:187-200. [PMID: 35395384 DOI: 10.1016/j.ijid.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES This summary on Lassa virus (LASV) infection and Lassa fever disease (LF) was developed from a clinical perspective to provide clinicians a condensed, accessible understanding of the current literature. The information provided highlights pathogenesis, clinical features, and diagnostics with an emphasis on therapies and vaccines that have demonstrated potential value for use in clinical or research environments. METHODS An integrative literature review was conducted on the clinical and pathological features, vaccines, and treatments for LASV infection, with a focus on recent studies and in vivo evidence from humans and/or non-human primates (NHPs), when available. RESULTS Two antiviral medications with potential benefit for the treatment of LASV infection and one for post-exposure prophylaxis were identified, although a larger number of potential candidates are currently being evaluated. Multiple vaccine platforms are in pre-clinical development for LASV prevention, but data from human clinical trials are not yet available. CONCLUSION We provide succinct summaries of medical countermeasures against LASV to give the busy clinician a rapid reference. Although there are no approved drugs or vaccines for LF, we provide condensed information from a literature review for measures that can be taken when faced with a suspected infection, including investigational treatment options and hospital engineering controls.
Collapse
Affiliation(s)
- Vanessa Raabe
- New York University Grossman School of Medicine, New York, NY.
| | | | - Jared D Evans
- Johns Hopkins Applied Physics Laboratory, Laurel, MD.
| |
Collapse
|
8
|
Tang-Huau TL, Rosenke K, Meade-White K, Carmody A, Smith BJ, Bosio CM, Jarvis MA, Feldmann H. Mastomys natalensis Has a Cellular Immune Response Profile Distinct from Laboratory Mice. Viruses 2021; 13:v13050729. [PMID: 33922222 PMCID: PMC8145423 DOI: 10.3390/v13050729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/11/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
The multimammate mouse (Mastomys natalensis; M. natalensis) has been identified as a major reservoir for multiple human pathogens including Lassa virus (LASV), Leishmania spp., Yersinia spp., and Borrelia spp. Although M. natalensis are related to well-characterized mouse and rat species commonly used in laboratory models, there is an absence of established assays and reagents to study the host immune responses of M. natalensis. As a result, there are major limitations to our understanding of immunopathology and mechanisms of immunological pathogen control in this increasingly important rodent species. In the current study, a large panel of commercially available rodent reagents were screened to identify their cross-reactivity with M. natalensis. Using these reagents, ex vivo assays were established and optimized to evaluate lymphocyte proliferation and cytokine production by M. natalensis lymphocytes. In contrast to C57BL/6J mice, lymphocytes from M. natalensis were relatively non-responsive to common stimuli such as phytohaemagglutinin P and lipopolysaccharide. However, they readily responded to concanavalin A stimulation as indicated by proliferation and cytokine production. In summary, we describe lymphoproliferative and cytokine assays demonstrating that the cellular immune responses in M. natalensis to commonly used mitogens differ from a laboratory-bred mouse strain.
Collapse
Affiliation(s)
- Tsing-Lee Tang-Huau
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
- Correspondence: (T.-L.T.-H.); (H.F.); Tel.: +1-4063757410 (H.F.)
| | - Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
| | - Aaron Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA;
| | - Brian J. Smith
- Rocky Mountain Veterinary Branch Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA;
| | - Catharine M. Bosio
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA;
| | - Michael A. Jarvis
- Faculty of Health: Medicine, Dentistry and Human Sciences, School of Biomedical Sciences, University of Plymouth, PL4 8AA, UK;
- The Vaccine Group (TVG) Ltd., 14 Research Way, Derriford Research Facility, Plymouth Science Park, Plymouth PL6 8BU, UK
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
- Correspondence: (T.-L.T.-H.); (H.F.); Tel.: +1-4063757410 (H.F.)
| |
Collapse
|
9
|
Johnson DM, Cubitt B, Pfeffer TL, de la Torre JC, Lukashevich IS. Lassa Virus Vaccine Candidate ML29 Generates Truncated Viral RNAs Which Contribute to Interfering Activity and Attenuation. Viruses 2021; 13:v13020214. [PMID: 33573250 PMCID: PMC7912207 DOI: 10.3390/v13020214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/09/2021] [Accepted: 01/26/2021] [Indexed: 01/14/2023] Open
Abstract
Defective interfering particles (DIPs) are naturally occurring products during virus replication in infected cells. DIPs contain defective viral genomes (DVGs) and interfere with replication and propagation of their corresponding standard viral genomes by competing for viral and cellular resources, as well as promoting innate immune antiviral responses. Consequently, for many different viruses, including mammarenaviruses, DIPs play key roles in the outcome of infection. Due to their ability to broadly interfere with viral replication, DIPs are attractive tools for the development of a new generation of biologics to target genetically diverse and rapidly evolving viruses. Here, we provide evidence that in cells infected with the Lassa fever (LF) vaccine candidate ML29, a reassortant that carries the nucleoprotein (NP) and glycoprotein (GP) dominant antigens of the pathogenic Lassa virus (LASV) together with the L polymerase and Z matrix protein of the non-pathogenic genetically related Mopeia virus (MOPV), L-derived truncated RNA species are readily detected following infection at low multiplicity of infection (MOI) or in persistently-infected cells originally infected at high MOI. In the present study, we show that expression of green fluorescent protein (GFP) driven by a tri-segmented form of the mammarenavirus lymphocytic choriomeningitis virus (r3LCMV-GFP/GFP) was strongly inhibited in ML29-persistently infected cells, and that the magnitude of GFP suppression was dependent on the passage history of the ML29-persistently infected cells. In addition, we found that DIP-enriched ML29 was highly attenuated in immunocompetent CBA/J mice and in Hartley guinea pigs. Likewise, STAT-1-/- mice, a validated small animal model for human LF associated hearing loss sequelae, infected with DIP-enriched ML29 did not exhibit any hearing abnormalities throughout the observation period (62 days).
Collapse
Affiliation(s)
- Dylan M. Johnson
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious diseases, University of Louisville, Louisville, KY 40202, USA;
- Correspondence: (D.M.J.); (I.S.L.)
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (B.C.); (J.C.d.l.T.)
| | - Tia L. Pfeffer
- Center for Predictive Medicine for Biodefense and Emerging Infectious diseases, University of Louisville, Louisville, KY 40202, USA;
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 402042, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (B.C.); (J.C.d.l.T.)
| | - Igor S. Lukashevich
- Center for Predictive Medicine for Biodefense and Emerging Infectious diseases, University of Louisville, Louisville, KY 40202, USA;
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 402042, USA
- Correspondence: (D.M.J.); (I.S.L.)
| |
Collapse
|
10
|
Johnson DM, Jokinen JD, Wang M, Pfeffer T, Tretyakova I, Carrion R, Griffiths A, Pushko P, Lukashevich IS. Bivalent Junin & Machupo experimental vaccine based on alphavirus RNA replicon vector. Vaccine 2020; 38:2949-2959. [PMID: 32111526 PMCID: PMC7112472 DOI: 10.1016/j.vaccine.2020.02.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Junin (JUNV) and Machupo (MACV), two mammalian arenaviruses placed on the 2018 WHO watch list, are prevalent in South America causing Argentine and Bolivian hemorrhagic fevers (AHF and BHF), respectively. The live attenuated JUNV vaccine, Candid #1, significantly reduced the incidence of AHF. Vaccination induces neutralizing antibody (nAb) responses which effectively target GP1 (the viral attachment glycoprotein) pocket which accepts the tyrosine residue of the cellular receptor, human transferrin receptor 1 (TfR1). In spite of close genetic relationships between JUNV and MACV, variability in the GP1 receptor binding site (e.g., MACV GP1 loop 10) results in poor MACV neutralization by Candid #1-induced nAbs. Candid #1 is not recommended for vaccination of children younger than 15 years old (a growing "at risk" group), pregnant women, or other immunocompromised individuals. Candid #1's primary reliance on limited missense mutations for attenuation, genetic heterogeneity, and potential stability concerns complicate approval of this vaccine in the US. To address these issues, we applied alphavirus RNA replicon vector technology based on the human Venezuelan equine encephalitis vaccine (VEEV) TC-83 to generate replication restricted virus-like-particles vectors (VLPVs) simultaneously expressing cellular glycoprotein precursors (GPC) of both viruses, JUNV and MACV. Resulting JV&MV VLPVs were found safe and immunogenic in guinea pigs. Immunization with VLPVs induced humoral responses which correlated with complete protection against lethal disease after challenge with pathogenic strains of JUNV (Romero) and MACV (Carvallo).
Collapse
Affiliation(s)
- Dylan M Johnson
- Department of Microbiology and Immunology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| | - Jenny D Jokinen
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| | - Min Wang
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| | - Tia Pfeffer
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| | | | - Ricardo Carrion
- Texas Biomedical Research Institute (TBRI), San Antonio, TX, USA
| | | | | | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA.
| |
Collapse
|
11
|
Salvato MS, Domi A, Guzmán-Cardozo C, Medina-Moreno S, Zapata JC, Hsu H, McCurley N, Basu R, Hauser M, Hellerstein M, Guirakhoo F. A Single Dose of Modified Vaccinia Ankara Expressing Lassa Virus-like Particles Protects Mice from Lethal Intra-cerebral Virus Challenge. Pathogens 2019; 8:E133. [PMID: 31466243 PMCID: PMC6789566 DOI: 10.3390/pathogens8030133] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022] Open
Abstract
Lassa fever surpasses Ebola, Marburg, and all other hemorrhagic fevers except Dengue in its public health impact. Caused by Lassa virus (LASV), the disease is a scourge on populations in endemic areas of West Africa, where reported incidence is higher. Here, we report construction, characterization, and preclinical efficacy of a novel recombinant vaccine candidate GEO-LM01. Constructed in the Modified Vaccinia Ankara (MVA) vector, GEO-LM01 expresses the glycoprotein precursor (GPC) and zinc-binding matrix protein (Z) from the prototype Josiah strain lineage IV. When expressed together, GP and Z form Virus-Like Particles (VLPs) in cell culture. Immunogenicity and efficacy of GEO-LM01 was tested in a mouse challenge model. A single intramuscular dose of GEO-LM01 protected 100% of CBA/J mice challenged with a lethal dose of ML29, a Mopeia/Lassa reassortant virus, delivered directly into the brain. In contrast, all control animals died within one week. The vaccine induced low levels of antibodies but Lassa-specific CD4+ and CD8+ T cell responses. This is the first report showing that a single dose of a replication-deficient MVA vector can confer full protection against a lethal challenge with ML29 virus.
Collapse
Affiliation(s)
- Maria S Salvato
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | - Juan Carlos Zapata
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
| | - Haoting Hsu
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
| | - Nathanael McCurley
- Office of Technology Licensing and Commercialization, Georgia State University, Atlanta, GA 30303, USA
| | - Rahul Basu
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | | | | | | |
Collapse
|
12
|
Tang-Huau TL, Feldmann H, Rosenke K. Animal models for Lassa virus infection. Curr Opin Virol 2019; 37:112-117. [PMID: 31442921 DOI: 10.1016/j.coviro.2019.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022]
Abstract
In humans, Lassa virus infection can result in disease with hemorrhagic manifestations and high fatality rates. There are no approved treatments or vaccines available and the inherent danger of studying Lassa virus means it can only be studied in high containment labs (BSL4). Under these conditions, mouse models are becoming an important instrument in the study of Lassa virus infection, disease and host responses. While guinea pigs and non-human primates are the critical components in assessing treatments and vaccines and have recently been used with great affect in this capacity.
Collapse
Affiliation(s)
- Tsing-Lee Tang-Huau
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - H Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - K Rosenke
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| |
Collapse
|
13
|
Vaccine platforms for the prevention of Lassa fever. Immunol Lett 2019; 215:1-11. [PMID: 31026485 PMCID: PMC7132387 DOI: 10.1016/j.imlet.2019.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/19/2022]
Abstract
The epidemiological significance of Lassa fever in West Africa is discussed. Viral ecology, pathology, and immunobiology of Lassa virus infection is described. Multiple vaccine candidates have been tested in pre-clinical models. Lassa fever vaccine candidates have yet to progress to clinical trials. Five platform technologies have been selected for expedited development.
Lassa fever is an acute viral haemorrhagic illness caused by Lassa virus (LASV), which is endemic throughout much of West Africa. The virus primarily circulates in the Mastomys natalensis reservoir and is transmitted to humans through contact with infectious rodents or their secretions; human-to-human transmission is documented as well. With the exception of Dengue fever, LASV has the highest human impact of any haemorrhagic fever virus. On-going outbreaks in Nigeria have resulted in unprecedented mortality. Consequently, the World Health Organization (WHO) has listed LASV as a high priority pathogen for the development of treatments and prophylactics. Currently, there are no licensed vaccines to protect against LASV infection. Although numerous candidates have demonstrated efficacy in animal models, to date, only a single candidate has advanced to clinical trials. Lassa fever vaccine development efforts have been hindered by the high cost of biocontainment requirements, the absence of established correlates of protection, and uncertainty regarding the extent to which animal models are predictive of vaccine efficacy in humans. This review briefly discusses the epidemiology and biology of LASV infection and highlights recent progress in vaccine development.
Collapse
|
14
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
15
|
Lukashevich IS, Paessler S, de la Torre JC. Lassa virus diversity and feasibility for universal prophylactic vaccine. F1000Res 2019; 8. [PMID: 30774934 PMCID: PMC6357994 DOI: 10.12688/f1000research.16989.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Lassa virus (LASV) is a highly prevalent mammarenavirus in West Africa and is maintained in nature in a persistently infected rodent host, Mastomys natalensis, which is widely spread in sub-Saharan Africa. LASV infection of humans can cause Lassa fever (LF), a disease associated with high morbidity and significant mortality. Recent evidence indicates an LASV expansion outside its traditional endemic areas. In 2017, the World Health Organization (WHO) included LASV in top-priority pathogens and released a Target Product Profile (TPP) for vaccine development. Likewise, in 2018, the US Food and Drug Administration added LF to a priority review voucher program to encourage the development of preventive and therapeutics measures. In this article, we review recent progress in LASV vaccine research and development with a focus on the impact of LASV genetic and biological diversity on the design and development of vaccine candidates meeting the WHO's TPP for an LASV vaccine.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40292, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology IMM-6, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
16
|
Perdomo-Celis F, Salvato MS, Medina-Moreno S, Zapata JC. T-Cell Response to Viral Hemorrhagic Fevers. Vaccines (Basel) 2019; 7:E11. [PMID: 30678246 PMCID: PMC6466054 DOI: 10.3390/vaccines7010011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 12/22/2022] Open
Abstract
Viral hemorrhagic fevers (VHF) are a group of clinically similar diseases that can be caused by enveloped RNA viruses primarily from the families Arenaviridae, Filoviridae, Hantaviridae, and Flaviviridae. Clinically, this group of diseases has in common fever, fatigue, dizziness, muscle aches, and other associated symptoms that can progress to vascular leakage, bleeding and multi-organ failure. Most of these viruses are zoonotic causing asymptomatic infections in the primary host, but in human beings, the infection can be lethal. Clinical and experimental evidence suggest that the T-cell response is needed for protection against VHF, but can also cause damage to the host, and play an important role in disease pathogenesis. Here, we present a review of the T-cell immune responses to VHF and insights into the possible ways to improve counter-measures for these viral agents.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia.
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Maria S Salvato
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Sandra Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Juan C Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
17
|
Attenuated Replication of Lassa Virus Vaccine Candidate ML29 in STAT-1 -/- Mice. Pathogens 2019; 8:pathogens8010009. [PMID: 30650607 PMCID: PMC6470856 DOI: 10.3390/pathogens8010009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Lassa virus (LASV), a highly prevalent mammalian arenavirus endemic in West Africa, can cause Lassa fever (LF), which is responsible for thousands of deaths annually. LASV is transmitted to humans from naturally infected rodents. At present, there is not an effective vaccine nor treatment. The genetic diversity of LASV is the greatest challenge for vaccine development. The reassortant ML29 carrying the L segment from the nonpathogenic Mopeia virus (MOPV) and the S segment from LASV is a vaccine candidate under current development. ML29 demonstrated complete protection in validated animal models against a Nigerian strain from clade II, which was responsible for the worst outbreak on record in 2018. This study demonstrated that ML29 was more attenuated than MOPV in STAT1-/- mice, a small animal model of human LF and its sequelae. ML29 infection of these mice resulted in more than a thousand-fold reduction in viremia and viral load in tissues and strong LASV-specific adaptive T cell responses compared to MOPV-infected mice. Persistent infection of Vero cells with ML29 resulted in generation of interfering particles (IPs), which strongly interfered with the replication of LASV, MOPV and LCMV, the prototype of the Arenaviridae. ML29 IPs induced potent cell-mediated immunity and were fully attenuated in STAT1-/- mice. Formulation of ML29 with IPs will improve the breadth of the host’s immune responses and further contribute to development of a pan-LASV vaccine with full coverage meeting the WHO requirements.
Collapse
|
18
|
Zapata JC, Medina-Moreno S, Guzmán-Cardozo C, Salvato MS. Improving the Breadth of the Host's Immune Response to Lassa Virus. Pathogens 2018; 7:E84. [PMID: 30373278 PMCID: PMC6313495 DOI: 10.3390/pathogens7040084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
In 2017, the global Coalition for Epidemic Preparedness (CEPI) declared Lassa virus disease to be one of the world's foremost biothreats. In January 2018, World Health Organization experts met to address the Lassa biothreat. It was commonly recognized that the diversity of Lassa virus (LASV) isolated from West African patient samples was far greater than that of the Ebola isolates from the West African epidemic of 2013⁻2016. Thus, vaccines produced against Lassa virus disease face the added challenge that they must be broadly-protective against a wide variety of LASV. In this review, we discuss what is known about the immune response to Lassa infection. We also discuss the approaches used to make broadly-protective influenza vaccines and how they could be applied to developing broad vaccine coverage against LASV disease. Recent advances in AIDS research are also potentially applicable to the design of broadly-protective medical countermeasures against LASV disease.
Collapse
Affiliation(s)
- Juan Carlos Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Sandra Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Camila Guzmán-Cardozo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Maria S Salvato
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
19
|
Abreu-Mota T, Hagen KR, Cooper K, Jahrling PB, Tan G, Wirblich C, Johnson RF, Schnell MJ. Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever. Nat Commun 2018; 9:4223. [PMID: 30310067 PMCID: PMC6181965 DOI: 10.1038/s41467-018-06741-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Lassa fever (LF), caused by Lassa virus (LASV), is a viral hemorrhagic fever for which no approved vaccine or potent antiviral treatment is available. LF is a WHO priority disease and, together with rabies, a major health burden in West Africa. Here we present the development and characterization of an inactivated recombinant LASV and rabies vaccine candidate (LASSARAB) that expresses a codon-optimized LASV glycoprotein (coGPC) and is adjuvanted by a TLR-4 agonist (GLA-SE). LASSARAB elicits lasting humoral response against LASV and RABV in both mouse and guinea pig models, and it protects both guinea pigs and mice against LF. We also demonstrate a previously unexplored role for non-neutralizing LASV GPC-specific antibodies as a major mechanism of protection by LASSARAB against LF through antibody-dependent cellular functions. Overall, these findings demonstrate an effective inactivated LF vaccine and elucidate a novel humoral correlate of protection for LF.
Collapse
Affiliation(s)
- Tiago Abreu-Mota
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, 4710-057, Portugal
| | - Katie R Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702, USA
| | - Kurt Cooper
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702, USA
| | - Peter B Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702, USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892, USA
| | - Gene Tan
- Infectious Disease, The J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla CA, 92037, USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Jefferson Vaccine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
20
|
Abstract
Lassa virus (LASV) is a persistent global health threat that causes about half a million cases of Lassa fever each year in Western Africa. Although most cases are mild, the disease can cause significant morbidity and results in as many as 5,000 deaths per year. Since 2015, Nigeria has been experiencing a severe and extended outbreak of Lassa fever, raising concerns that it could spill over into other countries and reach a magnitude similar to the West African Ebola outbreak of 2013-2016. Despite the burden that Lassa fever places on public health, both in Africa and around the world, there are still no clinically-approved therapeutics or vaccines to treat or prevent it. Nevertheless, a number of promising candidate vaccines have been developed over the last several years, and there is a growing political and social determination to drive at least one of these candidates towards licensure. This paper describes a LASV vaccine candidate that is being developed at Canada's National Microbiology Laboratory. Based on the same live attenuated vesicular stomatitis virus (VSV) vaccine platform that was used to produce the successful Ebola virus vaccine, the VSV-based LASV vaccine has been shown to elicit a potent and protective immune response against LASV. The vaccine shows 100% protection in the "gold-standard" nonhuman primate model of Lassa fever, inducing both humoral and cellular immune responses. Moreover, studies have shown that a single vaccination may offer universal protection against numerous different strains of the virus, and additional studies have shown that immunization with the VSV platform appears to be unaffected by pre-existing immunity to VSV. The next step in the development of the VSV-based LASV vaccine is phase I human clinical trials to assess vaccine safety and dosage.
Collapse
|
21
|
Baseline mapping of Lassa fever virology, epidemiology and vaccine research and development. NPJ Vaccines 2018; 3:11. [PMID: 29581897 PMCID: PMC5861057 DOI: 10.1038/s41541-018-0049-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 01/14/2023] Open
Abstract
Lassa fever (LF) is a zoonotic disease associated with acute and potentially fatal hemorrhagic illness caused by the Lassa virus (LASV), a member of the family Arenaviridae. It is generally assumed that a single infection with LASV will produce life-long protective immunity. This suggests that protective immunity induced by vaccination is an achievable goal and that cell-mediated immunity may play a more important role in protection, at least following natural infection. Seropositive individuals in endemic regions have been shown to have LASV-specific T cells recognizing epitopes for nucleocapsid protein (NP) and glycoprotein precursor (GPC), suggesting that these will be important vaccine immunogens. The role of neutralizing antibodies in protective immunity is still equivocal as recent studies suggest a role for neutralizing antibodies. There is extensive genetic heterogeneity among LASV strains that is of concern in the development of assays to detect and identify all four LASV lineages. Furthermore, the gene disparity may complicate the synthesis of effective vaccines that will provide protection across multiple lineages. Non-human primate models of LASV infection are considered the gold standard for recapitulation of human LF. The most promising vaccine candidates to date are the ML29 (a live attenuated reassortant of Mopeia and LASV), vesicular stomatitis virus (VSV) and vaccinia-vectored platforms based on their ability to induce protection following single doses, high rates of survival following challenge, and the use of live virus platforms. To date no LASV vaccine candidates have undergone clinical evaluation.
Collapse
|
22
|
Mammarenaviral Infection Is Dependent on Directional Exposure to and Release from Polarized Intestinal Epithelia. Viruses 2018; 10:v10020075. [PMID: 29439402 PMCID: PMC5850382 DOI: 10.3390/v10020075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 11/16/2022] Open
Abstract
Mammarenavirusesare single-stranded RNA viruses with a bisegmented ambisense genome. Ingestion has been shown as a natural route of transmission for both Lassa virus (LASV) and Lymphocytic choriomeningitis virus (LCMV). Due to the mechanism of transmission, epithelial tissues are among the first host cells to come in contact with the viruses, and as such they potentially play a role in spread of virus to naïve hosts. The role of the intestinal epithelia during arenavirus infection remains to be uncharacterized. We have utilized a well-established cell culture model, Caco-2, to investigate the role of intestinal epithelia during intragastric infection. We found that LCMV-Armstrong, LCMV-WE, and Mopeia (MOPV) release infectious progeny via similar patterns. However, the reassortant virus, ML-29, containing the L segment of MOPV and S segment of LASV, exhibits a unique pattern of viral release relative to LCMV and MOPV. Furthermore, we have determined attachment efficacy to Caco-2 cells is potentially responsible for observed replication kinetics of these viruses in a polarized Caco-2 cell model. Collectively, our data shows that viral dissemination and interaction with intestinal epithelia may be host, tissue, and viral specific.
Collapse
|
23
|
Wang M, Jokinen J, Tretyakova I, Pushko P, Lukashevich IS. Alphavirus vector-based replicon particles expressing multivalent cross-protective Lassa virus glycoproteins. Vaccine 2018; 36:683-690. [PMID: 29287681 PMCID: PMC5806529 DOI: 10.1016/j.vaccine.2017.12.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022]
Abstract
Lassa virus (LASV) is the most prevalent rodent-borne arenavirus circulated in West Africa. With population at risk from Senegal to Nigeria, LASV causes Lassa fever and is responsible for thousands of deaths annually. High genetic diversity of LASV is one of the challenges for vaccine R&D. We developed multivalent virus-like particle vectors (VLPVs) derived from the human Venezuelan equine encephalitis TC-83 IND vaccine (VEEV) as the next generation of alphavirus-based bicistronic RNA replicon particles. The genes encoding VEEV structural proteins were replaced with LASV glycoproteins (GPC) from distantly related clades I and IV with individual 26S promoters. Bicistronic RNA replicons encoding wild-type LASV GPC (GPCwt) and C-terminally deleted, non-cleavable modified glycoprotein (ΔGPfib), were encapsidated into VLPV particles using VEEV capsid and glycoproteins provided in trans. In transduced cells, VLPVs induced simultaneous expression of LASV GPCwt and ΔGPfib from 26S alphavirus promoters. LASV ΔGPfib was predominantly expressed as trimers, accumulated in the endoplasmic reticulum, induced ER stress and apoptosis promoting antigen cross-priming. VLPV vaccines were immunogenic and protective in mice and upregulated CD11c+/CD8+ dendritic cells playing the major role in cross-presentation. Notably, VLPV vaccination resulted in induction of cross-reactive multifunctional T cell responses after stimulation of immune splenocytes with peptide cocktails derived from LASV from clades I-IV. Multivalent RNA replicon-based LASV vaccines can be applicable for first responders, international travelers visiting endemic areas, military and lab personnel.
Collapse
Affiliation(s)
- Min Wang
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| | - Jenny Jokinen
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| | | | | | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA.
| |
Collapse
|
24
|
Abstract
INTRODUCTION Lassa virus (LASV), the most prominent human pathogen of the Arenaviridae, is transmitted to humans from infected rodents and can cause Lassa Fever (LF). The sizeable disease burden in West Africa, numerous imported LF cases worldwide, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. There are no licensed LASV vaccines and the antiviral treatment is limited to an off-label use of ribavirin that is only partially effective. AREAS COVERED LASV vaccine development is hampered by high cost of biocontainment requirement, the absence of appropriate small animal models, genetic diversity of LASV species, and by high HIV-1 prevalence in LASV endemic areas. Over the past 15 years several vaccine platforms have been developed. Natural history of LASV and pathogenesis of the disease provide strong justification for replication-competent (RC) vaccine as one of the most feasible approaches to control LF. Development of LASV vaccine candidates based on reassortant, recombinant, and alphavirus replicon technologies is covered in this review. Expert commentary: Two lead RC vaccine candidates, reassortant ML29 and recombinant VSV/LASV, have been successfully tested in non-human primates and have been recommended by international vaccine experts for rapid clinical development. Both platforms have powerful molecular tools to further secure safety, improve immunogenicity, and cross-protection. These platforms are well positioned to design multivalent vaccines to protect against all LASV strains citculatrd in West Africa. The regulatory pathway of Candid #1, the first live-attenuated arenaviral vaccine against Argentine hemorrhagic, will be a reasonable guideline for LASV vaccine efficacy trials.
Collapse
Affiliation(s)
- Igor S Lukashevich
- a Department of Pharmacology and Toxicology, School of Medicine, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases , University of Louisville , Louisville , KY , USA
| | | |
Collapse
|
25
|
Leblanc P, Moise L, Luza C, Chantaralawan K, Lezeau L, Yuan J, Field M, Richer D, Boyle C, Martin WD, Fishman JB, Berg EA, Baker D, Zeigler B, Mais DE, Taylor W, Coleman R, Warren HS, Gelfand JA, De Groot AS, Brauns T, Poznansky MC. VaxCelerate II: rapid development of a self-assembling vaccine for Lassa fever. Hum Vaccin Immunother 2015; 10:3022-38. [PMID: 25483693 DOI: 10.4161/hv.34413] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4(+) T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models.
Collapse
Key Words
- 6MDP, 6-muramyl dipeptide
- CGE, Capillary Gel Electrophoresis
- CLO97, TLR7 ligand
- CTL, Cytotoxic T-lymphocyte
- CpG1826, Synthetic Oligodeoxynucleotide containing unmethylated dinucleotide sequences (Toll-like receptor 9 agonist)
- DARPA, Defense Advanced Research Projects Agency
- EIDs, Emerging Infectious Diseases
- Flu vaccine
- GLP, Good Laboratory Practice
- GMP, Good Manufacturing Practice
- GP1, Glycoprotein-1
- GP2, Glycoprotein-2
- HLA, Human Leukocyte Antigen
- HRP, Horseradish Peroxidase
- LV, Lassa Fever Virus
- Lassa fever virus
- MAV, Mycobacterium tuberculosis Heat Shock Protein 70 – Avidin
- MtbHSP70, Mycobacterium tuberculosis Heat Shock Protein 70
- NHP, Non-human Primates
- OVA, Ovalbumin
- PAGE, Polyacrylamide Gel Electrophoresis
- PBMC, Peripheral Blood Mononuclear Cell
- PEG, Polyethyleneglycol
- RVKR, Furin Cleavage Site (Arginine, Valine, Lysine, Arginine)
- SAV, Self-assembled vaccine
- SAVL; Self-assembled vaccine formulated for Lassa Fever Virus
- VaxCelerate
- arenavirus
- emerging infectious diseases
- mycobacterium tuberculosis heat shock protein 70
- peptide design
- self-assembled vaccine
- vaccine
Collapse
Affiliation(s)
- Pierre Leblanc
- a Vaccine and Immunotherapy Center; Massachusetts General Hospital ; Charlestown , MA USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zapata JC, Salvato MS. Genomic profiling of host responses to Lassa virus: therapeutic potential from primate to man. Future Virol 2015; 10:233-256. [PMID: 25844088 DOI: 10.2217/fvl.15.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lassa virus infection elicits distinctive changes in host gene expression and metabolism. We focus on changes in host gene expression that may be biomarkers that discriminate individual pathogens or may help to provide a prognosis for disease. In addition to assessing mRNA changes, functional studies are also needed to discriminate causes of disease from mechanisms of host resistance. Host responses that drive pathogenesis are likely to be targets for prevention or therapy. Host responses to Lassa or its related arenaviruses have been monitored in cell culture, in animal models of hemorrhagic fever, in Lassa-infected nonhuman primates and, to a limited extent, in infected human beings. Here, we describe results from those studies and discuss potential targets for reducing virus replication and mitigating disease.
Collapse
Affiliation(s)
- Juan C Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Maria S Salvato
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
27
|
Lukashevich IS. The search for animal models for Lassa fever vaccine development. Expert Rev Vaccines 2013; 12:71-86. [PMID: 23256740 DOI: 10.1586/erv.12.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lassa virus (LASV) is the most prevalent arenavirus in West Africa and is responsible for several hundred thousand infections and thousands of deaths annually. The sizeable disease burden, numerous imported cases of Lassa fever (LF) and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Currently there is no licensed LF vaccine and research and devlopment is hampered by the high cost of nonhuman primate animal models and by biocontainment requirements (BSL-4). In addition, a successful LF vaccine has to induce a strong cell-mediated cross-protective immunity against different LASV lineages. All of these challenges will be addressed in this review in the context of available and novel animal models recently described for evaluation of LF vaccine candidates.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
28
|
Singh N, Levi ME. Arenavirus and West Nile virus in solid organ transplantation. Am J Transplant 2013; 13 Suppl 4:361-71. [PMID: 23465029 DOI: 10.1111/ajt.12128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- N Singh
- Division of Nephrology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | |
Collapse
|
29
|
Zapata JC, Poonia B, Bryant J, Davis H, Ateh E, George L, Crasta O, Zhang Y, Slezak T, Jaing C, Pauza CD, Goicochea M, Moshkoff D, Lukashevich IS, Salvato MS. An attenuated Lassa vaccine in SIV-infected rhesus macaques does not persist or cause arenavirus disease but does elicit Lassa virus-specific immunity. Virol J 2013; 10:52. [PMID: 23402317 PMCID: PMC3602176 DOI: 10.1186/1743-422x-10-52] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 01/28/2013] [Indexed: 12/20/2022] Open
Abstract
Background Lassa hemorrhagic fever (LHF) is a rodent-borne viral disease that can be fatal for human beings. In this study, an attenuated Lassa vaccine candidate, ML29, was tested in SIV-infected rhesus macaques for its ability to elicit immune responses without instigating signs pathognomonic for arenavirus disease. ML29 is a reassortant between Lassa and Mopeia viruses that causes a transient infection in non-human primates and confers sterilizing protection from lethal Lassa viral challenge. However, since the LHF endemic area of West Africa also has high HIV seroprevalence, it is important to determine whether vaccination could be safe in the context of HIV infection. Results SIV-infected and uninfected rhesus macaques were vaccinated with the ML29 virus and monitored for specific humoral and cellular immune responses, as well as for classical and non-classical signs of arenavirus disease. Classical disease signs included viremia, rash, respiratory distress, malaise, high liver enzyme levels, and virus invasion of the central nervous system. Non-classical signs, derived from profiling the blood transcriptome of virulent and non-virulent arenavirus infections, included increased expression of interferon-stimulated genes (ISG) and decreased expression of COX2, IL-1β, coagulation intermediates and nuclear receptors needed for stress signaling. All vaccinated monkeys showed ML29-specific antibody responses and ML29-specific cell-mediated immunity. Conclusion SIV-infected and uninfected rhesus macaques responded similarly to ML29 vaccination, and none developed chronic arenavirus infection. Importantly, none of the macaques developed signs, classical or non-classical, of arenavirus disease.
Collapse
Affiliation(s)
- Juan C Zapata
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Carrion R, Bredenbeek P, Jiang X, Tretyakova I, Pushko P, Lukashevich IS. Vaccine Platforms to Control Arenaviral Hemorrhagic Fevers. JOURNAL OF VACCINES & VACCINATION 2012; 3:1000160. [PMID: 23420494 PMCID: PMC3573532 DOI: 10.4172/2157-7560.1000160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Arenaviruses are rodent-borne emerging human pathogens. Diseases caused by these viruses, e.g., Lassa fever (LF) in West Africa and South American hemorrhagic fevers (HFs), are serious public health problems in endemic areas. We have employed replication-competent and replication-deficient strategies to design vaccine candidates potentially targeting different groups "at risk". Our leader LF vaccine candidate, the live reassortant vaccine ML29, is safe and efficacious in all tested animal models including non-human primates. In this study we showed that treatment of fatally infected animals with ML29 two days after Lassa virus (LASV) challenge protected 80% of the treated animals. In endemic areas, where most of the target population is poor and many live far from health care facilities, a single-dose vaccination with ML29 would be ideal solution. Once there is an outbreak, a fast-acting vaccine or post-exposure prophylaxis would be best. The 2(nd) vaccine technology is based on Yellow Fever (YF) 17D vaccine. We designed YF17D-based recombinant viruses expressing LASV glycoproteins (GP) and showed protective efficacy of these recombinants. In the current study we developed a novel technology to clone LASV nucleocapsid within YF17D C gene. Low immunogenicity and stability of foreign inserts must be addressed to design successful LASV/YFV bivalent vaccines to control LF and YF in overlapping endemic areas of West Africa. The 3(rd) platform is based on the new generation of alphavirus replicon virus-like-particle vectors (VLPV). Using this technology we designed VLPV expressing LASV GP with enhanced immunogenicity and bivalent VLPV expressing cross-reactive GP of Junin virus (JUNV) and Machupo virus (MACV), causative agents of Argentinian and Bolivian HF, respectively. A prime-boost regimen required for VLPV immunization might be practical for medical providers, military, lab personnel, and visitors in endemic areas.
Collapse
Affiliation(s)
- Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peter Bredenbeek
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaohong Jiang
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| |
Collapse
|
31
|
Moreno H, Grande-Pérez A, Domingo E, Martín V. Arenaviruses and lethal mutagenesis. Prospects for new ribavirin-based interventions. Viruses 2012; 4:2786-805. [PMID: 23202505 PMCID: PMC3509673 DOI: 10.3390/v4112786] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 01/05/2023] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) has contributed to unveil some of the molecular mechanisms of lethal mutagenesis, or loss of virus infectivity due to increased mutation rates. Here we review these developments, and provide additional evidence that ribavirin displays a dual mutagenic and inhibitory activity on LCMV that can be relevant to treatment designs. Using 5-fluorouracil as mutagenic agent and ribavirin either as inhibitor or mutagen, we document an advantage of a sequential inhibitor-mutagen administration over the corresponding combination treatment to achieve a low LCMV load in cell culture. This advantage is accentuated in the concentration range in which ribavirin acts mainly as an inhibitor, rather than as mutagen. This observation reinforces previous theoretical and experimental studies in supporting a sequential inhibitor-mutagen administration as a possible antiviral design. Given recent progress in the development of new inhibitors of arenavirus replication, our results suggest new options of ribavirin-based anti-arenavirus treatments.
Collapse
Affiliation(s)
- Héctor Moreno
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco 28049, Madrid, Spain; (H.M.); (E.D.)
| | - Ana Grande-Pérez
- Área de Genética, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071, Málaga, Spain;
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco 28049, Madrid, Spain; (H.M.); (E.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA), Carretera de Algete a El Casar s/n, 28130 Valdeolmos, Madrid, Spain;
| |
Collapse
|
32
|
Lukashevich IS. Advanced vaccine candidates for Lassa fever. Viruses 2012; 4:2514-57. [PMID: 23202493 PMCID: PMC3509661 DOI: 10.3390/v4112514] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 12/16/2022] Open
Abstract
Lassa virus (LASV) is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF). LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever) with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in non-endemic countries, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Presently there is no licensed vaccine against LF or approved treatment. Recently, several promising vaccine candidates have been developed which can potentially target different groups at risk. The purpose of this manuscript is to review the LASV pathogenesis and immune mechanisms involved in protection. The current status of pre-clinical development of the advanced vaccine candidates that have been tested in non-human primates will be discussed. Major scientific, manufacturing, and regulatory challenges will also be considered.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Kentucky, USA.
| |
Collapse
|
33
|
[Arenavirus infections]. Uirusu 2012; 62:229-38. [PMID: 24153233 DOI: 10.2222/jsv.62.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Arenaviruses are the collective name for viruses, which belong to the family Arenaviridae. They replicate in the cytoplasm of cells, and were named after the sandy (Latin, arenosus) appearance of the ribosomes often seen in thin sections of virions under electron microscope. Several arenaviruses, such as Lassa virus in West Africa, and Junin, Guanarito, Sabia, Machupo, and Chapare viruses in South America, cause sever viral hemorrhagic fevers (VHF) in humans and represent a serious public health problem. These viruses are categorized as category 1 pathogens thus should be handles in a BSL4 laboratory. Recently, Lujo virus was isolated as a newly discovered novel arenavirus associated with a VHF outbreak in southern Africa in 2008. Although, we have no VHF patients caused by arenaviruses in Japan, except for a single imported Lassa fever case in 1987, it is possible that VHF patients occur as imported cases as for other VHF in the future. Therefore, it is necessary to develop the diagnostics and therapeutics in consideration of patient's severe symptoms and high mortality even in the disease-free countries. In this review, we will broadly discuss the current knowledge from the basic researches to diagnostics and vaccine developments for arenavirus diseases.
Collapse
|