1
|
Abreu MC, Conrad NL, Gonçalves VS, Leite FPL. Bacillus toyonensis amplifies the immunogenicity of an experimental recombinant tetanus vaccine in horses. J Equine Vet Sci 2024; 140:105135. [PMID: 38914241 DOI: 10.1016/j.jevs.2024.105135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Probiotic microorganisms can stimulate an immune response and increase the efficiency of vaccines. For example, Bacillus toyonensis is a nonpathogenic, Gram-positive bacterium that has been used as a probiotic in animal supplementation. It induces immunomodulatory effects and increases the vaccine response in several species. This study aimed to evaluate the effect of B. toyonensis supplementation on the modulation of the immune response in horses vaccinated with recombinant Clostridium tetani toxin. Twenty horses were vaccinated twice, with an interval of 21 days between doses, and equally divided into two groups: the first group was supplemented orally for 42 days with feed containing viable spores of B. toyonensis (1 × 108) mixed with molasses (40 ml), starting 7 days before the first vaccination; the second (control) group received only feed mixed with molasses, starting 7 days before the first vaccination. Serum samples were collected to evaluate the humoral immune response using an in-house indirect enzyme-linked immunosorbent assay (ELISA), and peripheral blood mononuclear cells (PBMCs) were collected to evaluate cytokine transcription (qPCR). For the specific IgG-anti-rTENT titer, the supplemented group had ELISA values that were four times higher than those of the control group (p < 0.05). The supplemented group also showed higher ELISA values for the IgGa and IgGT sub-isotypes compared to the control group. In PBMCs stimulated with B. toyonensis, relative cytokine transcription of the supplemented group showed 15-, 8-, 7-, and 6-fold increases for IL1, TNFα, IL10 and IL4, respectively. When stimulated with a vaccine antigen, the supplemented group showed 1.6-, 1.8-, and 0.5-fold increases in IL1, TNFα, and IL4, respectively, compared to the control group. Horses supplemented with B. toyonensis had a significantly improved vaccine immune response compared to those in the control group, which suggests a promising approach for improving vaccine efficacy with probiotics.
Collapse
Affiliation(s)
- Mayara Caetano Abreu
- Departament of Veterinary Medicine, Federal University of Pelotas, UFPel, Capão do Leão, Rio Grande do Sul, Brazil
| | - Neida Lucia Conrad
- Center for Technological Development, Biotecnology, Federal University of Pelotas, UFPel, Capão do Leão, Rio Grande do Sul, Brazil
| | - Vitória Sequeira Gonçalves
- Center for Technological Development, Biotecnology, Federal University of Pelotas, UFPel, Capão do Leão, Rio Grande do Sul, Brazil
| | - Fábio Pereira Leivas Leite
- Departament of Veterinary Medicine, Federal University of Pelotas, UFPel, Capão do Leão, Rio Grande do Sul, Brazil; Center for Technological Development, Biotecnology, Federal University of Pelotas, UFPel, Capão do Leão, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Dos Santos VHB, de Azevedo Ximenes ECP, de Souza RAF, da Silva RPC, da Conceição Silva M, de Andrade LVM, de Souza Oliveira VM, de Melo-Júnior MR, Costa VMA, de Barros Lorena VM, de Araújo HDA, de Lima Aires A, de Azevedo Albuquerque MCP. Effects of the probiotic Bacillus cereus GM on experimental schistosomiasis mansoni. Parasitol Res 2023; 123:72. [PMID: 38148420 DOI: 10.1007/s00436-023-08090-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Probiotics contribute to the integrity of the intestinal mucosa and preventing dysbiosis caused by opportunistic pathogens, such as intestinal helminths. Bacillus cereus GM obtained from Biovicerin® was cultured to obtain spores for in vivo evaluation on experimental schistosomiasis. The assay was performed for 90 days, where all animals were infected with 50 cercariae of Schistosoma mansoni on the 15th day. Three experimental groups were formed, as follows: G1-saline solution from the 1st until the 90th day; G2-B. cereus GM (105 spores in 300 μL of sterile saline) from the 1st until the 90th day; and G3-B. cereus GM 35th day (onset of oviposition) until the 90th day. G2 showed a significant reduction of 43.4% of total worms, 48.8% of female worms and 42.5% of eggs in the liver tissue. In G3, the reduction was 25.2%, 29.1%, and 44% of the total number of worms, female worms, and eggs in the liver tissue, respectively. G2 and G3 showed a 25% (p < 0.001) and 22% (p < 0.001) reduction in AST levels, respectively, but ALT levels did not change. ALP levels were reduced by 23% (p < 0.001) in the G2 group, but not in the G3. The average volume of granulomas reduced (p < 0.0001) 65.2% and 46.3% in the liver tissue and 83.0% and 53.2% in the intestine, respectively, in groups G2 and G3. Th1 profile cytokine (IFN-γ, TNF-α, and IL-6) and IL-17 were significantly increased (p < 0.001) stimulated with B. cereus GM in groups G2 and G3. IL-4 showed significant values when the stimulus was mediated by ConA. By modulating the immune response, B. cereus GM reduced the burden of worms, improved some markers of liver function, and reduced the granulomatous inflammatory reaction in mice infected with S. mansoni, especially when administered before infection.
Collapse
Affiliation(s)
- Victor Hugo Barbosa Dos Santos
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Eulália Camelo Pessoa de Azevedo Ximenes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Renan Andrade Fernandes de Souza
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | - Valdenia Maria de Souza Oliveira
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Vlaudia Maria Assis Costa
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Patologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Hallysson Douglas Andrade de Araújo
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Biotecnologia e Fármacos e Laboratório de Tecnologia de Biomateriais - Centro Acadêmico de Vitória de Santo Antão, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - André de Lima Aires
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
3
|
Li W, Li J, He N, Dai X, Wang Z, Wang Y, Ni X, Zeng D, Zhang D, Zeng Y, Pan K. Molecular mechanism of enhancing the immune effect of the Newcastle disease virus vaccine in broilers fed with Bacillus cereus PAS38. Food Funct 2021; 12:10903-10916. [PMID: 34647113 DOI: 10.1039/d1fo01777b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to explore the molecular mechanism of enhancing the immune effect of the Newcastle disease virus (NDV) vaccine in broilers fed with Bacillus cereus PAS38. The results showed that the NDV antibody titer of broilers in the treatment group supplemented with B. cereus PAS38 was higher than that of the control group, and the difference was significant at 28 days of age (P < 0.05). The spleen, thymus and bursa of fabricius of 42-day-old broilers were quickly collected to construct a differentially expressed gene library of suppression subtractive hybridization (SSH). A total of 31 immune-related differentially expressed genes were screened from three immune organs, of which 15 were up-regulated and 16 were down-regulated. After silencing the up-regulated genes MIF, CD74, DOCK2 and KLHL6, the expression levels of cytokines (Akirin2, NF-κB, IL-2, IL-4, IL-6, IFN-γ and TNF-α) in lymphocytes were reduced to varying degrees. B. cereus PAS38 might be involved in the proliferation, differentiation, activation, migration of B lymphocytes and vaccine antigen presentation by up-regulating the expression of MIF, CD74, DOCK2, KLHL6 and other genes. Moreover, it also stimulated plasma cells to produce immunoglobulins and specific antibodies, thereby improving the humoral immune function of broilers and enhancing the immune effect of the NDV vaccine.
Collapse
Affiliation(s)
- Wanqiang Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jianzhen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China. .,Chengdu Agricultural College, Chengdu, 611130, China
| | - Nianjia He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xixi Dai
- Chongqing Three Gorges Vocational College, Chongqing, 404155, China
| | - Zhenhua Wang
- Chengdu Agricultural College, Chengdu, 611130, China
| | - Yufei Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Gu X, Zhang J, Li J, Wang Z, Feng J, Li J, Pan K, Ni X, Zeng D, Jing B, Zhang D. Effects of Bacillus cereus PAS38 on Immune-Related Differentially Expressed Genes of Spleen in Broilers. Probiotics Antimicrob Proteins 2021; 12:425-438. [PMID: 31243733 DOI: 10.1007/s12602-019-09567-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study mainly explored the immunomodulatory mechanisms of the probiotic Bacillus cereus PAS38 (PB) on broiler spleen. A total of 120 avian white feather broilers were randomly divided into 4 groups (N = 30), as follows: control (CNTL, fed with basal diet), PB (fed with diet supplemented with probiotic B. cereus PAS38), vaccine (VAC, fed with basal diet and injected with Newcastle disease virus vaccine), and vaccine + PB group (PBVAC, fed with basal diet supplemented with B. cereus PAS38 and injected with NDV vaccine). The experiment was conducted for 42 days. Twelve spleens were collected from four different groups, weighed, and cut into histological sections, and transcriptome analysis was performed using RNA-seq. Results of the spleen and histological section relative weights showed that feeding with probiotic B. cereus PAS38 and vaccination had a similar tendency to promote spleen development. Compared with the CNTL group, 21 immune-related genes were significantly downregulated in the PB and PBVAC groups. These genes were mainly involved in attenuating inflammatory response. The upregulated antimicrobial peptide NK-lysin and guanylate-binding protein 1 expression levels indicated that this strain enhanced the body's antimicrobial capacity. B. cereus PAS38 also amplified the broilers' immune response to the vaccine, which mainly reflected on nonspecific immunity. Hence, probiotic B. cereus PAS38 can regulate and promote the immune function of broilers.
Collapse
Affiliation(s)
- Xiaoxiao Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiao Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiajun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Zhenhua Wang
- Chengdu Vocational College of Agricultural Science and Technology, Chengdu, 611100, China
| | - Jie Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jianzhen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
- Chengdu Vocational College of Agricultural Science and Technology, Chengdu, 611100, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China.
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| |
Collapse
|
5
|
Santos FDS, Maubrigades LR, Gonçalves VS, Alves Ferreira MR, Brasil CL, Cunha RC, Conceição FR, Leite FPL. Immunomodulatory effect of short-term supplementation with Bacillus toyonensis BCT-7112 T and Saccharomyces boulardii CNCM I-745 in sheep vaccinated with Clostridium chauvoei. Vet Immunol Immunopathol 2021; 237:110272. [PMID: 34029878 DOI: 10.1016/j.vetimm.2021.110272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/18/2021] [Accepted: 05/19/2021] [Indexed: 01/05/2023]
Abstract
The bacterium Clostridium chauvoei is the causative agent of blackleg in livestock, and vaccination is the most effective means of prevention. The aim of this study was to assess the effect of short-term supplementation with Bacillus toyonensis and Saccharomyces boulardii on the immune response to a C. chauvoei vaccine in sheep. Sheep were vaccinated subcutaneously on day 0 and received a booster dose on day 21, with 2 mL of a commercial vaccine formulated with inactivated C. chauvoei bacterin adsorbed on aluminum hydroxide. Probiotics were orally administered B. toyonensis (3 × 108 cfu) and S. boulardii (3 × 108 cfu) over five days prior to the first and second doses of the vaccine. Sheep supplemented with B. toyonensis and S. boulardii showed significantly higher specific IgG, IgG1, and IgG2 titers (P<0.05), with approximately 24- and 14-fold increases in total IgG levels, respectively, than the nonsupplemented group. Peripheral blood mononuclear cells from the supplemented group had increased mRNA transcription levels of the IFN-γ, IL2, and Bcl6 genes. These results demonstrate an adjuvant effect of short-term supplementation with B. toyonensis and S. boulardii on the immune response against the C. chauvoei vaccine in sheep.
Collapse
Affiliation(s)
- Francisco Denis Souza Santos
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Lucas Reichert Maubrigades
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Vitória Sequeira Gonçalves
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Marcos Roberto Alves Ferreira
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Carolina Litchina Brasil
- Instituto de Biologia, Programa de Pós-Graduação em Parasitologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Rodrigo Casquero Cunha
- Faculdade de Veterinária, Programa de Pós-Graduação em Veterinária, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Fábio Pereira Leivas Leite
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil.
| |
Collapse
|
6
|
Bacillus Toyonensis BCT-7112 T Spores as Parenteral Adjuvant of BoHV-5 Vaccine in a Murine Model. Probiotics Antimicrob Proteins 2021; 13:655-663. [PMID: 33608827 DOI: 10.1007/s12602-021-09753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Bacterial spores of the genus Bacillus are being evaluated as adjuvant molecules capable of improving the immune response to vaccines. In this study, we investigate whether subcutaneously administered spores of B. toyonensis BCT-7112T could enhance a vaccine immune response in mice. Three groups of mice were subcutaneously vaccinated on day 0 and received a booster on day 21 of the experiment, with the following vaccine formulations: 40 µg of recombinant glycoprotein D (rgD) from bovine herpesvirus type 5 (BoHV-5) adsorbed in 10% aluminum hydroxide (alum) without B. toyonensis spores (group 1) and B. toyonensis (1 × 106 viable spores) + 40 µg of rgD adsorbed in 10% alum (group 2); and B. toyonensis (1 × 106 viable spores) without rgD (group 3). Group 2 showed significantly higher titers (P < 0.05) of total specific serum IgG, IgG2a, and neutralizing antibodies, when compared with the groups 1 and 3. A significantly higher (P < 0.05) transcription level of cytokines IL-4, IL-12, and IFN-γ was observed in splenocytes from mice that received the B. toyonensis spores in the vaccine formulation. In addition, stimulation of the macrophage-like cell line RAW264.7 with spores of B. toyonensis markedly enhanced the cell proliferation and mRNA transcription levels of IL-4, and IL-12 cytokines in these cells. Our findings indicated that the subcutaneous administration of B. toyonensis BCT-7112T spores enhanced the humoral and cellular immune response against BoHV-5 in mice.
Collapse
|
7
|
Maubrigades LR, Santos FDS, Gonçalves VS, Rodrigues PRC, Leite FPL. Association of Bacillus toyonensis spores with alum improves bovine herpesvirus 5 subunit vaccine immune response in mice. Vaccine 2020; 38:8216-8223. [PMID: 33172696 DOI: 10.1016/j.vaccine.2020.10.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 10/23/2022]
Abstract
Spores of the genus Bacillus are molecules capable of increasing the vaccine adjuvanticity. Bovine herpesvirus type 5 (BoHV-5) is responsible for meningoencephalitis that causes important economic losses in cattle. BoHV-5 glycoprotein D (gD) is a target of vaccine antigen and plays an important role in host cell penetration. The present study aimed to evaluate the adjuvanticity of Bacillus toyonensis (B.t) spores, live and heat-killed, associated with a vaccine formulated with aluminum hydroxide (alum) and the recombinant BoHV-5 glycoprotein D (rgD) in an experimental murine model. Six experimental groups of mice were subcutaneously vaccinated on day 0 and received a booster on day 21 of the experiment, with the following vaccine formulations: rgD (40 µg) + live spores (2 × 109 CFU); rgD + killed spores; rgD + live spores + alum (2.0 mg); rgD + killed spores + alum; rgD + alum, and rgD + PBS. Mice from rgD + live spores group showed an increase in rgD IgG titers from the 21st day until the end of the experiment. The groups of live and killed spores, associated to alum, had similar levels of IgG titers with no significant difference between each other; however, by the 14th and 28th day until the end of the experiment, presented higher IgG titers in comparison to the rgD + alum group. Moreover, increased serum levels of IgG1, IgG2a, and IgG2b were detected in mice that received spores in the vaccine formulation. The spores associated with alum groups showed neutralizing BoHV-5 antibodies and high mRNA transcription of the cytokines IFN-γ (66-fold), IL-17 (14-fold), and IL-12 (2.8-fold). In conclusion, our data demonstrated that the B. toyonensis spores, live or killed, associated with alum increased the adjuvanticity for BoHV-5 rgD in mice, suggesting the use of B. toyonensis spores as a promising component for vaccine formulations.
Collapse
Affiliation(s)
- Lucas Reichert Maubrigades
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - Francisco Denis Souza Santos
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - Vitória Sequeira Gonçalves
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - Paulo Ricardo Centeno Rodrigues
- Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - Fábio Pereira Leivas Leite
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil; Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil.
| |
Collapse
|
8
|
Santos FDS, Ferreira MRA, Maubrigades LR, Gonçalves VS, de Lara APS, Moreira C, Salvarani FM, Conceição FR, Leivas Leite FP. Bacillus toyonensis BCT-7112 T transient supplementation improves vaccine efficacy in ewes vaccinated against Clostridium perfringens epsilon toxin. J Appl Microbiol 2020; 130:699-706. [PMID: 32767796 DOI: 10.1111/jam.14814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/06/2020] [Accepted: 07/27/2020] [Indexed: 01/17/2023]
Abstract
AIM The aim of the present study was to examine the vaccine immune response in ewes supplemented with Bacillus toyonensis BCT-7112T during a period of 5-day supplementation before vaccination against a recombinant Clostridium perfringens epsilon toxin (rETX). METHODS AND RESULTS Ewes were vaccinated with 200 µg of rETX adjuvanted with 10% aluminium hydroxide. The treat group was orally supplemented with B. toyonensis BCT-7112T (3 × 108 viable spores) for 5 days prior to the first and second vaccination. Ewes supplemented with B. toyonensis BCT-7112T showed higher neutralizing antibody titres than the non-supplemented ewes (P < 0·05), with an increase in serum levels for total IgG anti-rETX by 3·2-fold (P < 0·0001), and for both IgG isotypes IgG1 and IgG2 by 2·1-fold and 2·3-fold (P < 0·01), respectively, compared with the control group. The peripheral blood mononuclear cells of ewes in the supplemented group had a higher (P < 0·05) cytokine mRNA transcription levels for IL-2 (6·4-fold increase), IFN-γ (2·9-fold increase) and transcription factor Bcl6 (2·3-fold increase) compared with the control group. CONCLUSION We conclude that a 5 days of supplementation with B. toyonensis BCT-7112T prior vaccination is sufficient to significantly improve the humoral immune response of ewes against C. perfringens recombinant ETX vaccine. SIGNIFICANCE AND IMPACT OF THE STUDY These findings open a new perspective in the utilization of B. toyonensis BCT-7112T as an immunomodulator since a 5 days period of probiotic supplementation is sufficient to improve the vaccine immune response.
Collapse
Affiliation(s)
- F D S Santos
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - M R A Ferreira
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - L R Maubrigades
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - V S Gonçalves
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - A P S de Lara
- Institute of Biology, Postgraduate Program in Parasitology, Federal University of Pelotas, Pelotas, Brazil
| | - C Moreira
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - F M Salvarani
- Institute of Veterinary Medicine, Federal University of Pará, Castanhal, Brazil
| | - F R Conceição
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - F P Leivas Leite
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
9
|
Li J, Li W, Wang Z, Khalique A, Wang J, Yang M, Ni X, Zeng D, Zhang D, Zeng Y, Luo Q, Jing B, Pan K. Screening of immune-related differentially expressed genes from primary lymphatic organs of broilers fed with probiotic bacillus cereus PAS38 based on suppression subtractive hybridization. PLoS One 2020; 15:e0235476. [PMID: 32609751 PMCID: PMC7329121 DOI: 10.1371/journal.pone.0235476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
To explore the molecular mechanism of the effect of Bacillus cereus PAS38 on the immunity of broilers, sixty 7-day-old broilers were divided into two groups with three replicates. The control group was fed with basal diet, and the treatment group was fed with basal diet containing Bacillus cereus PAS38 1×106 CFU/g. Thymus and bursa of fabricius were taken from two groups of broilers at the age of 42 days, total RNA was extracted, differential gene library was constructed by SSH technology, and immune-related differential genes were screened. Then, we used siRNA to interfere with the expression of some differential genes in the original generation lymphocytes of broiler blood to detect the change of cytokines mRNA expression level. A total of 42 immune-related differentially expressed genes were screened, including 22 up-regulated genes and 20 down-regulated genes. When 7 differentially up-regulated genes associated with enhanced immune function were interfered with in lymphocytes, some immune-promoting cytokines were down-regulated. These results showed that Bacillus cereus PAS38 might up-regulate the expression of JCHAIN, PRDX1, CD3E, CDK6 and other genes in immune organs of broilers, thereby affecting the development of immune organs, the expression of various cytokines and the transduction of immune signals, improving the immune capacity of broilers.
Collapse
Affiliation(s)
- Jiajun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Wanqiang Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Zhenhua Wang
- Branch of Animal Husbandry and Veterinary Medicine, Chengdu Vocational College of Agricultural Science and Technology, Chengdu, Sichuan Province, China
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Junrui Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Miao Yang
- Technology Centre of Chengdu Custom, Chengdu, Sichuan Province, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Qihui Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- * E-mail:
| |
Collapse
|
10
|
Santos FDS, Mazzoli A, Maia AR, Saggese A, Isticato R, Leite F, Iossa S, Ricca E, Baccigalupi L. A probiotic treatment increases the immune response induced by the nasal delivery of spore-adsorbed TTFC. Microb Cell Fact 2020; 19:42. [PMID: 32075660 PMCID: PMC7029466 DOI: 10.1186/s12934-020-01308-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background Spore-forming bacteria of the Bacillus genus are widely used probiotics known to exert their beneficial effects also through the stimulation of the host immune response. The oral delivery of B. toyonensis spores has been shown to improve the immune response to a parenterally administered viral antigen in mice, suggesting that probiotics may increase the efficiency of systemic vaccines. We used the C fragment of the tetanus toxin (TTFC) as a model antigen to evaluate whether a treatment with B. toyonensis spores affected the immune response to a mucosal antigen. Results Purified TTFC was given to mice by the nasal route either as a free protein or adsorbed to B. subtilis spores, a mucosal vaccine delivery system proved effective with several antigens, including TTFC. Spore adsorption was extremely efficient and TTFC was shown to be exposed on the spore surface. Spore-adsorbed TTFC was more efficient than the free antigen in inducing an immune response and the probiotic treatment improved the response, increasing the production of TTFC-specific secretory immunoglobin A (sIgA) and causing a faster production of serum IgG. The analysis of the induced cytokines indicated that also the cellular immune response was increased by the probiotic treatment. A 16S RNA-based analysis of the gut microbial composition did not show dramatic differences due to the probiotic treatment. However, the abundance of members of the Ruminiclostridium 6 genus was found to correlate with the increased immune response of animals immunized with the spore-adsorbed antigen and treated with the probiotic. Conclusion Our results indicate that B. toyonensis spores significantly contribute to the humoral and cellular responses elicited by a mucosal immunization with spore-adsorbed TTFC, pointing to the probiotic treatment as an alternative to the use of adjuvants for mucosal vaccinations.
Collapse
Affiliation(s)
- Francisco Denis S Santos
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.,Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Arianna Mazzoli
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Ana Raquel Maia
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Anella Saggese
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Rachele Isticato
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Fabio Leite
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Susanna Iossa
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Ezio Ricca
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.
| | - Loredana Baccigalupi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
11
|
Hafner D, Tuboly T, Mézes M, Bloch-Bodnár Z, Balogh K, Vántus V, Bóta B, Szabó-Fodor J, Matics Z, Szabó A, Kovács M. Effect of feedingBacillus cereusvar.toyoiand/or mannan oligosaccharide (MOS) on blood clinical chemistry, oxidative stress, immune response and genotoxicity in T-2 toxin exposed rabbits. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1641165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dóra Hafner
- Agrár- és Környezettudományi Kar, Kaposvár University, Kaposvár, Hungary
| | - Tamás Tuboly
- Járványtani és Mikrobiológiai Tanszék, University of Veterinary Medicine, Budapest, Hungary
| | - Miklós Mézes
- Mezőgazdaság- és Környezettudományi Kar, Szent István University, Gödöllő, Hungary
- MTA-KE-SZIE Mikotoxinok az Élelmiszerláncban Kutatócsoport, Kaposvár, Hungary
| | | | - Krisztián Balogh
- Mezőgazdaság- és Környezettudományi Kar, Szent István University, Gödöllő, Hungary
- MTA-KE-SZIE Mikotoxinok az Élelmiszerláncban Kutatócsoport, Kaposvár, Hungary
| | - Viola Vántus
- Agrár- és Környezettudományi Kar, Kaposvár University, Kaposvár, Hungary
| | - Brigitta Bóta
- MTA-KE-SZIE Mikotoxinok az Élelmiszerláncban Kutatócsoport, Kaposvár, Hungary
| | - Judit Szabó-Fodor
- MTA-KE-SZIE Mikotoxinok az Élelmiszerláncban Kutatócsoport, Kaposvár, Hungary
| | - Zsolt Matics
- Agrár- és Környezettudományi Kar, Kaposvár University, Kaposvár, Hungary
| | - András Szabó
- Agrár- és Környezettudományi Kar, Kaposvár University, Kaposvár, Hungary
- MTA-KE-SZIE Mikotoxinok az Élelmiszerláncban Kutatócsoport, Kaposvár, Hungary
| | - Melinda Kovács
- Agrár- és Környezettudományi Kar, Kaposvár University, Kaposvár, Hungary
- MTA-KE-SZIE Mikotoxinok az Élelmiszerláncban Kutatócsoport, Kaposvár, Hungary
| |
Collapse
|
12
|
Díaz AM, Almozni B, Molina MA, Sparo MD, Manghi MA, Canellada AM, Castro MS. Potentiation of the humoral immune response elicited by a commercial vaccine against bovine respiratory disease by Enterococcus faecalis CECT7121. Benef Microbes 2018; 9:553-562. [PMID: 29633631 DOI: 10.3920/bm2017.0081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vaccination against pathogens involved in bovine respiratory disease (BRD) is a useful tool to reduce the risk of this disease however, it has been observed that the commercially available vaccines only partially prevent the infections caused by Pasteurella multocida and Mannheimia haemolytica. Therefore, it is recommended to search for new adjuvant strategies to minimise the economic impact of this respiratory syndrome. A possibility to improve the conventional vaccine response is to modulate the immune system with probiotics, since there is accumulating evidence that certain immunomodulatory strains administered around the time of vaccination can potentiate the immune response. Considering veterinary vaccines are frequently tested in murine models, we have developed an immunisation schedule in BALB/c mice that allows us to study the immune response elicited by BRD vaccine. In order to evaluate a potential strategy to enhance vaccine efficacy, the adjuvant effect of Enterococcus faecalis CECT7121 on the murine specific humoral immune response elicited by a commercial vaccine against BRD was studied. Results indicate that the intragastric administration of E. faecalis CECT7121 was able to induce an increase in the specific antibody titres against the bacterial components of the BRD vaccines (P. multocida and M. haemolytica). The quality of the humoral immune response, in terms of antibody avidity, was also improved. Regarding the cellular immune response, although the BRD vaccination induced a low specific secretion of cytokines in the spleen cell culture supernatants, E. faecalis CECT7121-treated mice showed higher interferon-γ production than immunised control mice. Our results allowed us to conclude that the administration of E. faecalis CECT7121 could be employed as an adjuvant strategy to potentiate humoral immune responses.
Collapse
Affiliation(s)
- A M Díaz
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.,2 CONICET - Universidad de Buenos Aires. Instituto de Estudios de la Inmunidad Humoral 'Prof. Dr. Ricardo A. Margni' (IDEHU), Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - B Almozni
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.,2 CONICET - Universidad de Buenos Aires. Instituto de Estudios de la Inmunidad Humoral 'Prof. Dr. Ricardo A. Margni' (IDEHU), Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - M A Molina
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.,2 CONICET - Universidad de Buenos Aires. Instituto de Estudios de la Inmunidad Humoral 'Prof. Dr. Ricardo A. Margni' (IDEHU), Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.,4 ABM Laboratorios Tandil, Batalla de Maipú 937, 7000 Tandil, Argentina
| | - M D Sparo
- 3 Universidad Nacional de La Plata, Facultad de Ciencias Médicas, Cátedra de Microbiología y Parasitología (CUDEMyP-CIC), Calle 60 y 120, 1900 La Plata, Argentina
| | - M A Manghi
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.,2 CONICET - Universidad de Buenos Aires. Instituto de Estudios de la Inmunidad Humoral 'Prof. Dr. Ricardo A. Margni' (IDEHU), Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - A M Canellada
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.,2 CONICET - Universidad de Buenos Aires. Instituto de Estudios de la Inmunidad Humoral 'Prof. Dr. Ricardo A. Margni' (IDEHU), Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - M S Castro
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.,2 CONICET - Universidad de Buenos Aires. Instituto de Estudios de la Inmunidad Humoral 'Prof. Dr. Ricardo A. Margni' (IDEHU), Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
13
|
Roos TB, de Moraes CM, Sturbelle RT, Dummer LA, Fischer G, Leite FPL. Probiotics Bacillus toyonensis and Saccharomyces boulardii improve the vaccine immune response to Bovine herpesvirus type 5 in sheep. Res Vet Sci 2018; 117:260-265. [DOI: 10.1016/j.rvsc.2017.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
|
14
|
Roos T, Avila L, Sturbelle R, Leite F, Fischer G, Leite F. Saccharomyces boulardii modulates and improves the immune response to Bovine Herpesvirus type 5 Vaccine. ARQ BRAS MED VET ZOO 2018. [DOI: 10.1590/1678-4162-9167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT There have been significant efforts towards the development of more efficient vaccines for animal health. A strategy that may be used to improve vaccine efficacy is the use of probiotics to enhance the immune response of the host, leading to increased immunogenicity of antigen preparations. Bovine herpesvirus 5 (BoHV-5) is an example of an important animal pathogen for which vaccines have provided only limited protection. In this study, we examined the use of the probiotic Saccharomyces boulardii (Sb) as a potential adjuvant to improve vaccine efficiency. We found that the supplemented animals exhibited an enhanced systemic IgG antibody response toward a Th1 response in favor of IgG2a and increased mRNA expression levels of the cytokines IFN-y, IL-12, IL-17 and IL-10 in the spleen. These results suggest that Sb supplementation may provide a promising means for improving the efficiency of vaccines, particularly those that rely on a cell-mediated immune response.
Collapse
Affiliation(s)
- T.B. Roos
- Universidade Federal do Pará, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Gil de los Santos D, Gil de los Santos JR, Gil-Turnes C, Gaboardi G, Fernandes Silva L, França R, Gevehr Fernandes C, Rochedo Conceição F. Probiotic effect of Pichia pastoris X-33 produced in parboiled rice effluent and YPD medium on broiler chickens. PLoS One 2018; 13:e0192904. [PMID: 29447227 PMCID: PMC5814009 DOI: 10.1371/journal.pone.0192904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/01/2018] [Indexed: 12/23/2022] Open
Abstract
In a previous paper we showed that the yeast Pichia pastoris X-33 grown in parboiled rice effluent supplemented with glycerol byproduct from the biodiesel industry improved the quality of the effluent. In this paper we show the validation of this yeast (PPE) as probiotic for broilers. Its effect on feed efficiency and immunomodulation was compared with the same yeast grown in yeast peptone dextrose medium (PPY), with Saccharomyces boulardii (SBY) and with the controls fed unsupplemented feed (CON). One-day-old female chicks were vaccinated against infectious bursal disease (IBD) and the titers of anti-IBD antibodies were measured by ELISA. PPE group had the highest mean titres on days 14 and 28 (p<0,05), and at 28 days, 64% of the animals showed seroconvertion. The PPE group also showed the best weight gains at 42 days of age, that, on days 7, 14 and 21 were 19%, 15%, and 8.7% higher, respectively, than the control group. The best feed conversion, 8.2% higher than the control group, was obtained by PPY at 42 days. Histopathological studies did not detect any undesirable effects in the supplemented animals. We concluded that Pichia pastoris X-33 when grown in effluents of the rice parboiling industry supplemented with glycerol byproduct from the biodiesel has probiotic properties for poultry.
Collapse
Affiliation(s)
- Diego Gil de los Santos
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Instituto Federal Sul-riograndense, Pelotas, RS, Brazil
- * E-mail:
| | | | - Carlos Gil-Turnes
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Giana Gaboardi
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luiza Fernandes Silva
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo França
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
16
|
Santos F, Menegon Y, Piraine R, Rodrigues P, Cunha R, Leite FL. Bacillus toyonensis improves immune response in the mice vaccinated with recombinant antigen of bovine herpesvirus type 5. Benef Microbes 2018; 9:133-142. [DOI: 10.3920/bm2017.0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Probiotics modulate the immune response and can increase the effectiveness of vaccines. Bacillus toyonensis is widely used as a probiotic in animal feed. The aim of this study was to assess the effects of B. toyonensis administration on the immune response to an experimental recombinant vaccine against bovine herpesvirus type 5 (BoHV-5) in mice. Mice were vaccinated with BoHV-5 recombinant glycoprotein D and supplemented with the probiotic B. toyonensis in two regimes: one group received the probiotic only during seven days prior to the initial vaccination while the second group was given the probiotic throughout the experimental period of seven weeks. Animals supplemented with probiotic B. toyonensis in two regimes showed an increase in total immunoglobulin (Ig)G, IgG1 and IgG2a levels in serum, in addition to higher titres of antibodies capable of neutralising the BoHV-5 virus than non-supplemented animals (P<0.05). Splenocytes from the supplemented mice had higher mRNA transcription levels of cytokines interleukin (IL)-4 and IL-12. These results show that the use of this probiotic may significantly contribute to the response elicited by recombinant vaccines, especially those that rely on increasing antibody and cell-mediated immune responses for efficacy. Further, the data support an immunomodulatory effect for probiotic B. toyonensis and imply that enhance effect on the immune response against a BoHV-5 recombinant vaccine in mice.
Collapse
Affiliation(s)
- F.D.S. Santos
- Faculdade de Veterinária, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - Y.A. Menegon
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - R.E.A. Piraine
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - P.R.C. Rodrigues
- Faculdade de Veterinária, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - R.C. Cunha
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - F.P. Leivas Leite
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| |
Collapse
|
17
|
Silveira MM, Conceição FR, Mendonça M, Moreira GMSG, Da Cunha CEP, Conrad NL, Oliveira PDD, Hartwig DD, De Leon PMM, Moreira ÂN. Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis. J Med Microbiol 2017; 66:184-190. [DOI: 10.1099/jmm.0.000414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Marcelle Moura Silveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Fabricio Rochedo Conceição
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Garanhuns, Avenida Bom Pastor, S/N, Boa Vista, 55292-270 Garanhuns, PE, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Gustavo Marçal Schmidt Garcia Moreira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Carlos Eduardo Pouey Da Cunha
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Neida Lucia Conrad
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Patrícia Diaz de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Priscila Marques Moura De Leon
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Ângela Nunes Moreira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Campus Porto/Anglo, Rua Gomes Carneiro, 01 – Centro, Caixa Postal 354, 96010-610 Pelotas, RS, Brazil
| |
Collapse
|
18
|
Robinson RT. IL12Rβ1: the cytokine receptor that we used to know. Cytokine 2014; 71:348-59. [PMID: 25516297 DOI: 10.1016/j.cyto.2014.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 12/22/2022]
Abstract
Human IL12RB1 encodes IL12Rβ1, a type I transmembrane receptor that is an essential component of the IL12- and IL23-signaling complex. IL12RB1 is well-established as being a promoter of delayed type hypersensitivity (DTH), the immunological reaction that limits tuberculosis. However, recent data demonstrate that in addition to promoting DTH, IL12RB1 also promotes autoimmunity. The contradictory roles of IL12RB1 in human health raises the question, what are the factors governing IL12RB1 function in a given individual, and how is inter-individual variability in IL12RB1 function introduced? Here we review recent data that demonstrate individual variability in IL12RB1 function is introduced at the epigenetic, genomic polymorphism, and mRNA splicing levels. Where and how these differences contribute to disease susceptibility and outcome are also reviewed. Collectively, recent data support a model wherein IL12RB1 sequence variability - whether introduced at the genomic or post-transcriptional level - contributes to disease, and that human IL12RB1 is not as simple a gene as we once believed.
Collapse
Affiliation(s)
- Richard T Robinson
- Department of Microbiology and Molecular Genetics, The Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| |
Collapse
|
19
|
Ceapa C, Wopereis H, Rezaïki L, Kleerebezem M, Knol J, Oozeer R. Influence of fermented milk products, prebiotics and probiotics on microbiota composition and health. Best Pract Res Clin Gastroenterol 2013; 27:139-55. [PMID: 23768559 DOI: 10.1016/j.bpg.2013.04.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 01/31/2023]
Abstract
The gut microbiota is a highly diverse and relative stabile ecosystem increasingly recognized for its impact on human health. The homeostasis of microbes and the host is also referred to as eubiosis. In contrast, deviation from the normal composition, defined as dysbiosis, is often associated with localized diseases such as inflammatory bowel disease or colonic cancer, but also with systemic diseases like metabolic syndrome and allergic diseases. Modulating a gut microbiota dysbiosis with nutritional concepts may contribute to improving health status, reducing diseases or disease symptoms or supporting already established treatments. The gut microbiota can be modulated by different nutritional concepts, varying from specific food ingredients to complex diets or by the ingestion of particular live microorganisms. To underpin the importance of bacteria in the gut, we describe molecular mechanisms involved in the crosstalk between gut bacteria and the human host, and review the impact of different nutritional concepts such as pre-, pro- and synbiotics on the gastrointestinal ecosystem and their potential health benefits. The aim of this review is to provide examples of potential nutritional concepts that target the gut microbiota to support human physiology and potentially health outcomes.
Collapse
Affiliation(s)
- Corina Ceapa
- Danone Research - Centre for Specialized Nutrition, Bosrandweg 20, 6704 PH Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|