1
|
Shi X, Zhang Y, Chen S, Du X, Zhang P, Duan X, Fang H, Liu S. Differential gene expression and immune cell infiltration in maedi-visna virus-infected lung tissues. BMC Genomics 2024; 25:534. [PMID: 38816794 PMCID: PMC11141007 DOI: 10.1186/s12864-024-10448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Maedi-visna virus (MVV) is a lentivirus that infects monocyte/macrophage lineage cells in sheep, goats, and wild ruminants and causes pneumonia, mastitis, arthritis, and encephalitis. The immune response to MVV infection is complex, and a complete understanding of its infection and pathogenesis is lacking. This study investigated the in vivo transcriptomic patterns of lung tissues in sheep exposed to MVV using the RNA sequencing technology. RESULT The results indicated that 2,739 genes were significantly differentially expressed, with 1,643 downregulated genes and 1,096 upregulated genes. Many variables that could be unique to MVV infections were discovered. Gene Ontology analysis revealed that a significant proportion of genes was enriched in terms directly related to the immune system and biological responses to viral infections. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most enriched pathways were related to virus-host cell interactions and inflammatory responses. Numerous immune-related genes, including those encoding several cytokines and interferon regulatory factors, were identified in the protein-protein interaction network of differentially expressed genes (DEGs). The expression of DEGs was evaluated using real-time polymerase chain reaction and western blot analysis. CXCL13, CXCL6, CXCL11, CCR1, CXCL8, CXCL9, CXCL10, TNFSF8, TNFRSF8, IL7R, IFN-γ, CCL2, and MMP9 were upregulated. Immunohistochemical analysis was performed to identify the types of immune cells that infiltrated MVV-infected tissues. B cells, CD4+ and CD8+ T cells, and macrophages were the most prevalent immune cells correlated with MVV infection in the lungs. CONCLUSION Overall, the findings of this study provide a comprehensive understanding of the in vivo host response to MVV infection and offer new perspectives on the gene regulatory networks that underlie pathogenesis in natural hosts.
Collapse
Affiliation(s)
- Xiaona Shi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China
| | - Yufei Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China
| | - Sixu Chen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China
| | - Xiaoyue Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China
| | - Pei Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China
| | - Xujie Duan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China
| | - Hui Fang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China
| | - Shuying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China.
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China.
| |
Collapse
|
2
|
dos Santos CP, Telles JTG, de Freitas Guimarães G, Gil LHVG, Vieira AM, Junior JWP, Calzavara-Silva CE, de Cássia CarvalhoMaia R. Epitope mapping and a candidate vaccine design from canine distemper virus. Open Vet J 2024; 14:1019-1028. [PMID: 38808294 PMCID: PMC11128641 DOI: 10.5455/ovj.2024.v14.i4.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/11/2024] [Indexed: 05/30/2024] Open
Abstract
Background Canine distemper (CD) is a worldwide spread disease that has been described in 12 families of mammals, especially in the Carnivora order, being better studied in domestic canines where vaccination represents the best means of control. CD is controlled by vaccination, but many cases of the disease still occur in vaccinated animals. Aim The aim of this work was to study antigen-specific epitopes that can subsidize the development of a new vaccine approach. Methods Mapping of T cell reactive epitopes for CD virus (CDV) was carried out through enzyme-linked immunospot assays using 119 overlapped synthetic peptides from the viral hemagglutinin protein, grouped in 22 pools forming a matrix to test the immune response of 32 animals. Results Evaluations using the criteria established to identify reactive pools, demonstrated that 26 animals presented at least one reactive pool, that one pool was not reactive to any animal, and six pools were the most frequent among the reactive peptides. The crisscrossing of the most reactive pools in the matrix revealed nine peptides considered potential candidate epitopes for T cell stimulation against the CDV and those were used to design an in-silico protein, containing also predicted epitopes for B cell stimulation, and further analyzed using immune epitope databases to ensure protein quality and stability. Conclusion The final in silico optimized protein presents characteristics that qualify it to be used to develop a new prototype epitope-based anti-CDV vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Amanda Mota Vieira
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Brazil
| | | | | | | |
Collapse
|
3
|
Lv G, Wang J, Lian S, Wang H, Wu R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals (Basel) 2024; 14:297. [PMID: 38254466 PMCID: PMC10812804 DOI: 10.3390/ani14020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the United States. BLV imposes a substantial economic burden on the cattle industry, particularly in dairy farming, as it leads to a decline in animal production performance and increases the risk of disease. Moreover, trade restrictions on diseased animals and products between countries and regions further exacerbate the problem. Recent studies have also identified fragments of BLV nucleic acid in human breast cancer tissues, raising concerns for public health. Due to the absence of an effective vaccine, controlling the disease is challenging. Therefore, it is crucial to accurately detect and diagnose BLV at an early stage to control its spread and minimize economic losses. This review provides a comprehensive examination of BLV, encompassing its genomic structure, epidemiology, modes of transmission, clinical symptoms, detection methods, hazards, and control strategies. The aim is to provide strategic information for future BLV research.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
4
|
Kolbasova O, Sevskikh T, Titov I, Kolbasov D. Isolation and Identification of Caprine Arthritis Encephalitis Virus from Animals in the Republic of Mordovia. Animals (Basel) 2023; 13:2290. [PMID: 37508067 PMCID: PMC10375997 DOI: 10.3390/ani13142290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
This article presents the results of virological and genetic studies of an isolate of caprine arthritis encephalitis (CAE) virus from the republic of Mordovia, Russian Federation. The isolate was found during monitoring studies of goat blood samples for the viral genome, and the presence of antibodies to lentiviruses was detected. According to the recommendation of the OIE, the positive result of PCR was confirmed with nucleotide sequencing. It was found that the obtained nucleotide sequence is identical to the genome of small ruminant lentiviruses presented in the GenBank database. Phylogenetic analysis showed that the isolate "Mordovia-2018" was included in the same cluster with an isolate from the Tver region of the Russian Federation detected in 2008. The sequence of the fragment of the env-gene of the isolate from the republic of Mordovia is available in GenBank under the number MN186380.1. To isolate the virus, a fraction of peripheral blood monocyte cells from the animal's blood was added to a monolayer of lamb synovial membrane cell culture, and ten passages were carried out. The first manifestations of the cytopathic effect were observed after the third passage on the eighth day of cultivation in the form of single large cells of irregular shape with 5-7 nuclei. At the seventh passage, multiple syncytium with 7-12 nuclei were observed. At subsequent passage levels, the formation of syncytium containing more than 10-14 nuclei was observed.
Collapse
Affiliation(s)
- Olga Kolbasova
- Federal Research Center for Virology and Microbiology, Academician Bakoulov Street, Bldg. 1, 601125 Volginsky, Russia
| | - Timofey Sevskikh
- Federal Research Center for Virology and Microbiology, Academician Bakoulov Street, Bldg. 1, 601125 Volginsky, Russia
| | - Ilya Titov
- Federal Research Center for Virology and Microbiology, Academician Bakoulov Street, Bldg. 1, 601125 Volginsky, Russia
| | - Denis Kolbasov
- Federal Research Center for Virology and Microbiology, Academician Bakoulov Street, Bldg. 1, 601125 Volginsky, Russia
| |
Collapse
|
5
|
Stancu AC, Voia OS, Boldura OM, Pasca SA, Luca I, Hulea AS, Ivan OR, Dragoescu AA, Lungu BC, Hutu I. Unusual Canine Distemper Virus Infection in Captive Raccoons ( Procyon lotor). Viruses 2023; 15:1536. [PMID: 37515222 PMCID: PMC10383698 DOI: 10.3390/v15071536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Canine morbillivirus, also known as canine distemper virus (CDV), is the causative agent of canine distemper (CD), which is a serious contagious disease of canines, large felids, and, occasionally, raccoons. This study included seven raccoons from the Timisoara Zoological Garden, Romania. CDV was detected using RT-qPCR on blood samples, but several other exams were also performed-clinical, bacteriological, immunohistochemistry (IHC) and histopathology, toxicological screening, and necropsy-which confirmed CDV infection. Severe digestive disorders (diarrhea and frequent hematemesis) were observed. The necropsy findings included pseudo membranous gastroenteritis, congestion, and pulmonary edema in two raccoons. Immunohistochemistry showed immunolabeled CDV antigenantibodies on the viral nucleocapsid. Histopathology revealed lymphocyte depletion in mesenteric lymphnodes and intranuclear and intracytoplasmic inclusions in the enterocytes of the small intestine. Based on the RT-qPCR assay, laboratory tests, and the lesions observed, it was established that the raccoons were infected with CDV, which was the cause of death in two cases. The results from the necropsy, histology, and immunohistochemistry in the raccoons are comparable with reported CDV lesions in dogs. In conclusion, several exams may be performed to establish the etiology of possible interspecific viral infection, but only very specific exams can identify aCDV infection. Laboratory analyses must be completed by RT-qPCR assay or IHC to establish infection with uncommon viruses in raccoons with high accuracy.
Collapse
Affiliation(s)
- Adrian Constantin Stancu
- Faculty of Veterinary Medicine, Horia Cernescu Research Unit, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| | - Octavian Sorin Voia
- Faculty of Animal Resources Bioengineering, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| | - Oana Maria Boldura
- Faculty of Veterinary Medicine, Horia Cernescu Research Unit, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| | - Sorin Aurelian Pasca
- Faculty of Veterinary Medicine, University of Life Sciences, 700506 Iasi, Romania
| | - Iasmina Luca
- Faculty of Veterinary Medicine, Horia Cernescu Research Unit, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| | - Anca Sofiana Hulea
- Faculty of Veterinary Medicine, Horia Cernescu Research Unit, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| | | | - Alina Andreea Dragoescu
- Faculty of Agriculture, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| | - Bianca Cornelia Lungu
- Faculty of Veterinary Medicine, Horia Cernescu Research Unit, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| | - Ioan Hutu
- Faculty of Veterinary Medicine, Horia Cernescu Research Unit, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| |
Collapse
|
6
|
Marawan MA, Alouffi A, El Tokhy S, Badawy S, Shirani I, Dawood A, Guo A, Almutairi MM, Alshammari FA, Selim A. Bovine Leukaemia Virus: Current Epidemiological Circumstance and Future Prospective. Viruses 2021; 13:v13112167. [PMID: 34834973 PMCID: PMC8618541 DOI: 10.3390/v13112167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bovine leukaemia virus (BLV) is a deltaretrovirus that is closely related to human T-cell leukaemia virus types 1 and 2 (HTLV-1 and -2). It causes enzootic bovine leukosis (EBL), which is the most important neoplastic disease in cattle. Most BLV-infected cattle are asymptomatic, which potentiates extremely high shedding rates of the virus in many cattle populations. Approximately 30% of them show persistent lymphocytosis that has various clinical outcomes; only a small proportion of animals (less than 5%) exhibit signs of EBL. BLV causes major economic losses in the cattle industry, especially in dairy farms. Direct costs are due to a decrease in animal productivity and in cow longevity; indirect costs are caused by restrictions that are placed on the import of animals and animal products from infected areas. Most European regions have implemented an efficient eradication programme, yet BLV prevalence remains high worldwide. Control of the disease is not feasible because there is no effective vaccine against it. Therefore, detection and early diagnosis of the disease are essential in order to diminish its spreading and the economic losses it causes. This review comprises an overview of bovine leukosis, which highlights the epidemiology of the disease, diagnostic tests that are used and effective control strategies.
Collapse
Affiliation(s)
- Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Suleiman El Tokhy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Sara Badawy
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Natural Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues Huazhong Agricultural University, Wuhan 430070, China
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad 2601, Afghanistan
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Infectious Diseases, Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Mashal M. Almutairi
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 22334, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Arar 73211, Saudi Arabia;
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| |
Collapse
|
7
|
Abstract
Introduction Malignant catarrhal fever (MCF) is a rare, under-explored lethal viral infection of cattle with gammaherpesvirus aetiological agents. Most often, the disease occurs on farms where cattle and sheep are kept together. However, other trigger mechanisms and environmental factors contribute. This study investigates the causation of MCF. Material and Methods An outbreak of MCF occurred in June - August 2017 in Kharchev village in Irkutsk Oblast, Russia. In this paper, we provide epidemiological (sanitary status of pastures, watering places, and premises) and weather data during the outbreak, and descriptions of the clinical signs and post-mortem changes in cattle. The virus was detected and isolated from pathological material samples and identified by molecular methods. Results Extreme weather conditions, mixed-herd cattle and sheep farming, and unsatisfactory feed quality contributed to the outbreak. A virus related to herpesvirus OvHV2 was isolated and typed (MCF/Irkutsk/2017). Phylogenetic analysis showed its close genetic relationship to isolates from cattle and sheep in Germany, USA, and the Netherlands. Conclusion Sporadic outbreaks of MCF caused by biotic and abiotic factors together are typical for the Russian Federation, and the Irkutsk outbreak epitomised this. Temperature anomalies caused pasture depletion, resulting in feed and water deficiency for grazing animals and dehydration and acidosis. Heat stress in animals ultimately led to the occurrence of MCF in the herd.
Collapse
|
8
|
Reczyńska D, Zalewska M, Czopowicz M, Kaba J, Zwierzchowski L, Bagnicka E. Small ruminant lentivirus infection influences expression of acute phase proteins and cathelicidin genes in milk somatic cells and peripheral blood leukocytes of dairy goats. Vet Res 2018; 49:113. [PMID: 30424807 PMCID: PMC6234539 DOI: 10.1186/s13567-018-0607-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/24/2018] [Indexed: 11/10/2022] Open
Abstract
The aim of the study was to analyze acute phase protein and cathelicidin gene responses to small ruminant lentivirus (SRLV) infection in goats. In uninfected goats, we found higher Cp and lower Fbγ mRNA levels in blood leucocytes (BL) than in milk somatic cells (MSC), as well as lower SAA, Hp, and CRP and higher Cp and AGP concentrations in blood serum than in milk. In SRLV-infected goats, we found higher Fbγ and MAP28 and lower Cp expression in MSC than in BL, and higher SAA, Hp, Fb, and MAP28 and lower AGP concentrations in milk than in blood serum. Higher SAA and Hp expressions in BL and Hp expression in MSC were found in SRLV-infected goats. In SRLV-infected goats, we observed a higher concentration of SAA in blood serum, while in milk, lower SAA, Cp, and MAP28 and higher MAP34 concentrations were observed. The expression profiles of the studied genes differed between BL/serum and MSC/milk. The elevated SAA concentration in blood serum was accompanied by a decreased concentration of SAA and Cp in the milk of infected goats. No differences in the expression of the other studied genes may mean that the SRLV has the ability to evade the immune system, continuing to replicate. The elevated concentration of SAA in blood serum may promote viral multiplication. This higher concentration of SAA in blood serum and simultaneous reduced concentration of SAA and Cp in milk may be additive indicators of this infection.
Collapse
Affiliation(s)
- Daria Reczyńska
- Department of Animal Improvement, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 38A St., 05-552, Jastrzębiec, Poland
| | - Magdalena Zalewska
- Department of Animal Improvement, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 38A St., 05-552, Jastrzębiec, Poland
| | - Michał Czopowicz
- Laboratory of Veterinary Epidemiology and Economics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Jarosław Kaba
- Laboratory of Veterinary Epidemiology and Economics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Lech Zwierzchowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 38A St., 05-552, Jastrzębiec, Poland
| | - Emilia Bagnicka
- Department of Animal Improvement, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 38A St., 05-552, Jastrzębiec, Poland.
| |
Collapse
|
9
|
de Pablo-Maiso L, Doménech A, Echeverría I, Gómez-Arrebola C, de Andrés D, Rosati S, Gómez-Lucia E, Reina R. Prospects in Innate Immune Responses as Potential Control Strategies against Non-Primate Lentiviruses. Viruses 2018; 10:v10080435. [PMID: 30126090 PMCID: PMC6116218 DOI: 10.3390/v10080435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Lentiviruses are infectious agents of a number of animal species, including sheep, goats, horses, monkeys, cows, and cats, in addition to humans. As in the human case, the host immune response fails to control the establishment of chronic persistent infection that finally leads to a specific disease development. Despite intensive research on the development of lentivirus vaccines, it is still not clear which immune responses can protect against infection. Viral mutations resulting in escape from T-cell or antibody-mediated responses are the basis of the immune failure to control the infection. The innate immune response provides the first line of defense against viral infections in an antigen-independent manner. Antiviral innate responses are conducted by dendritic cells, macrophages, and natural killer cells, often targeted by lentiviruses, and intrinsic antiviral mechanisms exerted by all cells. Intrinsic responses depend on the recognition of the viral pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), and the signaling cascades leading to an antiviral state by inducing the expression of antiviral proteins, including restriction factors. This review describes the latest advances on innate immunity related to the infection by animal lentiviruses, centered on small ruminant lentiviruses (SRLV), equine infectious anemia virus (EIAV), and feline (FIV) and bovine immunodeficiency viruses (BIV), specifically focusing on the antiviral role of the major restriction factors described thus far.
Collapse
MESH Headings
- Animals
- Cats
- Cattle
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Gene Expression Regulation/immunology
- Goats
- Horses
- Immunity, Innate
- Immunodeficiency Virus, Bovine/immunology
- Immunodeficiency Virus, Bovine/pathogenicity
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/pathogenicity
- Infectious Anemia Virus, Equine/immunology
- Infectious Anemia Virus, Equine/pathogenicity
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/virology
- Lentivirus Infections/genetics
- Lentivirus Infections/immunology
- Lentivirus Infections/virology
- Macrophages/immunology
- Macrophages/virology
- Pathogen-Associated Molecular Pattern Molecules/immunology
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/immunology
- Sheep
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
Collapse
Affiliation(s)
- Lorena de Pablo-Maiso
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Ana Doménech
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Irache Echeverría
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Carmen Gómez-Arrebola
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Damián de Andrés
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Sergio Rosati
- Malattie Infettive degli Animali Domestici, Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Torino 10095, Italy.
| | - Esperanza Gómez-Lucia
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Ramsés Reina
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| |
Collapse
|
10
|
Bertolini S, Rosamilia A, Caruso C, Maurella C, Ingravalle F, Quasso A, Acutis PL, Pitti M, Masoero L, Ru G. A cross-sectional study to identify a set of risk factors for caprine herpesvirus 1 infection. BMC Vet Res 2018. [PMID: 29540191 PMCID: PMC5853066 DOI: 10.1186/s12917-018-1401-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Caprine herpesvirus 1 (CpHV-1) causes neonatal mortality and reproductive failure in goats. Despite its impact on herd reproductive performance, few studies have investigated the risk factors associated with CpHV-1 infection. The aim of this cross-sectional study was to identify potential herd- and host-level risk factors associated with CpHV-1 prevalence in a goat population with heterogeneous seropositivity for CpHV-1. RESULTS Blood samples and individual data from 4542 goats were collected from 255 herds in Piedmont, Italy. Enzyme-linked immunosorbent assay (ELISA) and serum neutralization tests were carried out to detect antibodies against CpHV-1. A mixed-effects model was applied to identify any statistical association between CpHV-1 seropositivity and a set of putative host-level and herd-level risk factors. A total of 630 samples tested were found positive by ELISA (prevalence = 13.9%; 95% confidence interval (CI) 12.9-14.9). Of the 255 tested herds, 85 were classified as positive for the presence of at least one gB-positive animal (herd prevalence 33.3%, 95% CI 27.5-39.2), with a within-herd prevalence between 0.7 and 100% (Q1 = 17.6%; median = 32.3%; Q3 = 50%) (Q = quartiles). The prevalence ratios showed a statistical association with the following risk factors: breeds other than Saanen, older age, larger herd size, meat and extensive herds, and co-existence of CAEV-infected animals. CONCLUSIONS Results from this cross sectional study may help to elucidate the natural history of the infection and inform targeted strategies to control a disease with a potentially important impact on animal health and goat farming economy.
Collapse
Affiliation(s)
- S Bertolini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy.
| | - A Rosamilia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - C Caruso
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - C Maurella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - F Ingravalle
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - A Quasso
- Local Health Unit AT, Asti, Italy
| | - P L Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - M Pitti
- Local Health Unit TO4, Turin, Italy
| | - L Masoero
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - G Ru
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| |
Collapse
|
11
|
Gayo E, Polledo L, Preziuso S, Rossi G, Balseiro A, Pérez Martínez C, García Iglesias M, García Marín J. Serological ELISA results are conditioned by individual immune response in ovine maedi visna. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Tavella A, Bettini A, Ceol M, Zambotto P, Stifter E, Kusstatscher N, Lombardi R, Nardeli S, Beato MS, Capello K, Bertoni G. Achievements of an eradication programme against caprine arthritis encephalitis virus in South Tyrol, Italy. Vet Rec 2017; 182:51. [PMID: 29109181 PMCID: PMC5806589 DOI: 10.1136/vr.104503] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/08/2017] [Indexed: 11/30/2022]
Abstract
Small ruminant lentivirus infections in goats affect both production and animal welfare. This represents a threat to the qualitative and quantitative growth of goat farming, recently observed in mountainous regions such as the Autonomous Province of Bolzano – South Tyrol (Italy). To monitor and eradicate the caprine arthritis encephalitis virus in this goat population, a compulsory eradication campaign was launched, based on a strict census of small ruminants and yearly serological testing of all animals, followed by the consequent culling of seropositive individuals. The campaign succeeded in completely eliminating cases of clinical disease in goats, while drastically reducing the seroprevalence at the herd as well as individual animal level. The serological outcome of the introduced control measures was determined using commercially available ELISA kits, demonstrating their suitability for use in this type of campaign, aimed at reducing seroprevalence as well as clinical manifestations of these infections. However, this clear success is diminished by the failure to achieve a complete eradication of these viruses. The reasons leading to the observed tailing phenomenon and the occurrence of new infections in already sanitised flocks are discussed and implementation of further measures are proposed.
Collapse
Affiliation(s)
- Alexander Tavella
- Laboratory for Serology and Technical Assistance, Istituto Zooprofilattico Sperimentale delle Venezie, Bolzano, Italy
| | - Astrid Bettini
- Laboratory for Serology and Technical Assistance, Istituto Zooprofilattico Sperimentale delle Venezie, Bolzano, Italy
| | - Marco Ceol
- Laboratory for Serology and Technical Assistance, Istituto Zooprofilattico Sperimentale delle Venezie, Bolzano, Italy
| | - Paolo Zambotto
- Veterinary Service, Servizio Veterinario Provinciale, Bolzano, Italy
| | - Ernst Stifter
- Veterinary Service, Servizio Veterinario Provinciale, Bolzano, Italy
| | - Natashia Kusstatscher
- Laboratory for Serology and Technical Assistance, Istituto Zooprofilattico Sperimentale delle Venezie, Bolzano, Italy
| | - Rosalba Lombardi
- Veterinary Service, Servizio Veterinario Provinciale, Bolzano, Italy
| | - Stefano Nardeli
- Diagnostic Virology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Maria Serena Beato
- Diagnostic Virology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Katia Capello
- Direzione Sanitaria, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Giuseppe Bertoni
- Vetsuisse Faculty, Institute of Virology and Immunology, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
|
14
|
Martinez-Gutierrez M, Ruiz-Saenz J. Diversity of susceptible hosts in canine distemper virus infection: a systematic review and data synthesis. BMC Vet Res 2016; 12:78. [PMID: 27170307 PMCID: PMC4865023 DOI: 10.1186/s12917-016-0702-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Canine distemper virus (CDV) is the etiological agent of one of the most infectious diseases of domestic dogs, also known as a highly prevalent viral infectious disease of carnivores and posing a conservation threat to endangered species around the world. To get a better panorama of CDV infection in different Orders, a retrospective and documental systematic review of the role of CDV in different non-dog hosts was conducted. The bibliographical data were collected from MedLine/PubMed and Scopus databases. Data related to Order, Family, Genus and Species of the infected animals, the presence or absence of clinical signs, mortality, serological, molecular or antigenic confirmation of CDV infection, geographic location, were collected and summarized. RESULTS Two hundred seventeen scientific articles were considered eligible which includes reports of serological evaluation, and antigenic or genomic confirmation of CDV infection in non-dog hosts. CDV infects naturally and experimentally different members of the Orders Carnivora (in 12 Families), Rodentia (four Families), Primates (two Families), Artiodactyla (three Families) and Proboscidea (one Family). The Order Carnivora (excluding domestic dogs) accounts for the vast majority (87.5%) of the records. Clinical disease associated with CDV infection was reported in 51.8% of the records and serological evidence of CDV infection in apparently healthy animals was found in 49.5% of the records. High mortality rate was showed in some of the recorded infections in Orders different to Carnivora. In non-dog hosts, CDV has been reported all continents with the exception of Australasia and in 43 different countries. CONCLUSIONS The results of this systematic review demonstrate that CDV is able to infect a very wide range of host species from many different Orders and emphasizes the potential threat of infection for endangered wild species as well as raising concerns about potential zoonotic threats following the cessation of large-scale measles vaccination campaigns in the human population.
Collapse
Affiliation(s)
- Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales GRICA, Universidad Cooperativa de Colombia, Calle 30A # 33-51, Bucaramanga, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales GRICA, Universidad Cooperativa de Colombia, Calle 30A # 33-51, Bucaramanga, Colombia.
| |
Collapse
|
15
|
SNPs in APOBEC3 cytosine deaminases and their association with Visna/Maedi disease progression. Vet Immunol Immunopathol 2015; 163:125-33. [PMID: 25532445 DOI: 10.1016/j.vetimm.2014.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 10/29/2014] [Accepted: 11/12/2014] [Indexed: 11/20/2022]
Abstract
The Apolipoprotein B mRNA-editing catalytic polypeptide-like 3 (APOBEC3) genes are able to inhibit the replication of a wide range of exogenous retroviruses, as well as endogenous retroviruses and retrotransposons. Three APOBEC3 genes, named APOBEC3Z1, APOBEC3Z2 and APOBEC3Z3, have been described in sheep. In this work the three genes have been screened in order to identify polymorphisms. No polymorphism was detected for the A3Z2 and A3Z3 genes but 16 SNPs and a 3-bp deletion were found in the A3Z1 gene. A thermoestability prediction analysis was applied to the detected amino acidic SNPs by three different programs. This analysis revealed a number of polymorphisms that could affect the protein stability. The SNPs of the 3'UTR were tested to detect alterations on the predicted microRNA target sites. Two new microRNA target sites were discovered for one of the alleles. Two SNPs were selected for association studies in relation with the retroviral disease Visna/Maedi in Latxa and Assaf sheep breeds. Although association analyses resulted unconclusive, probably due to the unsuitability of the SNP allele frequency distribution of the selected polymorphisms in the analyzed breeds, these genes remain good candidates for association studies.
Collapse
|
16
|
Diagnostic performance of ID Screen® MVV-CAEV Indirect Screening ELISA in identifying small ruminant lentiviruses-infected goats. Pol J Vet Sci 2014; 17:501-6. [DOI: 10.2478/pjvs-2014-0072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractDiagnostic performance of ID Screen®MVV-CAEV Indirect Screening ELISA in identifying goats infected with small ruminant lentiviruses (SRLV) was evaluated. In total 299 serum samples from the collection of the Laboratory of Veterinary Epidemiology and Economics - 109 truly positive and 190 truly negative - were used. To be enrolled in the study a serum sample had to come from at least 2 year-old goat which had reacted identically in two serological surveys preceding sample collection and was kept in a herd of stable serological status confirmed at least twice during preceding 5 years. Moreover, in seropositive herds at least 20% of goats had to be serologically positive at the moment when the serum sample was collected for the study. The test proved to have high accuracy. Area under curve was 98.8% (95% CI: 97.5%, 100%). Diagnostic performance of the test was almost identical (Youlden’s index of 90%, sensitivity >90% and specificity >95%) within a fairly wide range of cut-off values - between 20% and 60%. At manufacturer’s cut-off of 50% sensitivity and specificity were 91.7% (95% CI: 85.0%, 95.6%) and 98.9% (95% CI: 96.2%, 99.7%), respectively. For this cut-off positive likelihood ratio was 87 (95% CI: 22, 346) and negative likelihood ratio was 0.08 (95% CI: 0.04, 0.16). In conclusion, the results of this study indicate that ID Screen®MVV-CAEV Indirect Screening ELISA is a highly accurate diagnostic test for SRLV infection.
Collapse
|
17
|
Bowles D, Carson A, Isaac P. Genetic distinctiveness of the Herdwick sheep breed and two other locally adapted hill breeds of the UK. PLoS One 2014; 9:e87823. [PMID: 24489968 PMCID: PMC3906253 DOI: 10.1371/journal.pone.0087823] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/30/2013] [Indexed: 11/25/2022] Open
Abstract
There is considerable interest in locally adapted breeds of livestock as reservoirs of genetic diversity that may provide important fitness traits for future use in agriculture. In marginal areas, these animals contribute to food security and extract value from land unsuitable for other systems of farming. In England, close to 50% of the national sheep flock is farmed on grassland designated as disadvantaged areas for agricultural production. Many of these areas are in the uplands, where some native breeds of sheep continue to be commercially farmed only in highly localised geographical regions to which they are adapted. This study focuses on three of these breeds, selected for their adaptation to near identical environments and their geographical concentration in regions close to one another. Our objective has been to use retrotyping, microsatellites and single nucleotide polymorphisms to explore the origins of the breeds and whether, despite their similar adaptations and proximity, they are genetically distinctive. We find the three breeds each have a surprisingly different pattern of retrovirus insertions into their genomes compared with one another and with other UK breeds. Uniquely, there is a high incidence of the R0 retrotype in the Herdwick population, characteristic of a primitive genome found previously in very few breeds worldwide and none in the UK mainland. The Herdwick and Rough Fells carry two rare retroviral insertion events, common only in Texels, suggesting sheep populations in the northern uplands have a historical association with the original pin-tail sheep of Texel Island. Microsatellite data and analyses of SNPs associated with RXFP2 (horn traits) and PRLR (reproductive performance traits) also distinguished the three breeds. Significantly, an SNP linked to TMEM154, a locus controlling susceptibility to infection by Maedi-Visna, indicated that all three native hill breeds have a lower than average risk of infection to the lentivirus.
Collapse
Affiliation(s)
- Dianna Bowles
- Department of Biology, University of York, York, United Kingdom
- The Sheep Trust, registered charity 1094514, University of York, York, United Kingdom
- * E-mail:
| | - Amanda Carson
- The Sheep Trust, registered charity 1094514, University of York, York, United Kingdom
| | - Peter Isaac
- IDna Genetics Ltd, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
18
|
Leymaster KA, Chitko-McKown CG, Clawson ML, Harhay GP, Heaton MP. Effects of TMEM154 haplotypes 1 and 3 on susceptibility to ovine progressive pneumonia virus following natural exposure in sheep. J Anim Sci 2013; 91:5114-21. [PMID: 23989875 DOI: 10.2527/jas.2013-6663] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Small ruminant lentiviruses (SRLV) adversely affect production and well-being of sheep and goats throughout much of the world. The SRLV, including ovine progressive pneumonia virus (OPPV) in North America, cause lifetime infections, and management procedures to eradicate or reduce disease prevalence are costly. Variants of ovine transmembrane protein 154 gene (TMEM154) affect susceptibility to OPPV. The primary experimental objective was to estimate additive and dominance effects of TMEM154 haplotypes 1 and 3 on susceptibility to OPPV infection following natural exposure. A group of 187 trial lambs was born and raised by mature, infected ewes to ensure natural exposure to OPPV. Parents of trial lambs were heterozygous for haplotypes 1 and 3, producing lambs with diplotypes "1 1," "1 3," and "3 3." A group of 20 sentinel lambs was born and raised by mature, uninfected ewes that were diplotype "1 1." Sentinel lambs had diplotypes "1 1" and "1 3," being sired by the same set of rams as trial lambs. Trial and sentinel lambs were comingled during the experiment. Lambs were weaned at 60 d of age, bled 1 wk after weaning, and thereafter at intervals of 4 or 5 wk until 9 mo of age when OPPV infection status was determined by use of a competitive enzyme-linked immunosorbent assay. Only 1 sentinel lamb became infected. Infection status of trial lambs was analyzed using logistic regression procedures to account for the binary nature of infection status and random effects of sires. Effects of sex, type of birth, type of rearing, age of dam, breed type of dam, and sires were not detected (P>0.20). Infection status was affected by diplotype of lamb (P=0.005), with additive (P=0.002) and dominance (P=0.052) effects identified. Predicted probabilities of infection for lambs with diplotypes "1 1," "1 3," and "3 3" were 0.094, 0.323, and 0.346, respectively. Confidence intervals for probabilities of infection for diplotypes "1 3" and "3 3" were similar, but distinct from diplotype "1 1." These results are consistent with complete dominance of haplotype 3 relative to haplotype 1. The probability of infection at 9 mo of age for lambs with either diplotype "1 3" or "3 3" averaged 3.56 times that of lambs with diplotype "1 1." Genetic susceptibility to OPPV infection can be reduced by selection to increase the frequency of haplotype 1, resulting in a greater proportion of lambs with diplotype "1 1."
Collapse
Affiliation(s)
- K A Leymaster
- USDA-ARS, Roman L. Hruska US Meat Animal Research Center, Clay Center, NE 68933-0166
| | | | | | | | | |
Collapse
|
19
|
Larruskain A, Jugo BM. Retroviral infections in sheep and goats: small ruminant lentiviruses and host interaction. Viruses 2013; 5:2043-61. [PMID: 23965529 PMCID: PMC3761241 DOI: 10.3390/v5082043] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/26/2013] [Accepted: 08/05/2013] [Indexed: 12/18/2022] Open
Abstract
Small ruminant lentiviruses (SRLV) are members of the Retrovirus family comprising the closely related Visna/Maedi Virus (VMV) and the Caprine Arthritis-Encephalitis Virus (CAEV), which infect sheep and goats. Both infect cells of the monocyte/macrophage lineage and cause lifelong infections. Infection by VMV and CAEV can lead to Visna/Maedi (VM) and Caprine Arthritis-Encephalitis (CAE) respectively, slow progressive inflammatory diseases primarily affecting the lungs, nervous system, joints and mammary glands. VM and CAE are distributed worldwide and develop over a period of months or years, always leading to the death of the host, with the consequent economic and welfare implications. Currently, the control of VM and CAE relies on the control of transmission and culling of infected animals. However, there is evidence that host genetics play an important role in determining Susceptibility/Resistance to SRLV infection and disease progression, but little work has been performed in small ruminants. More research is necessary to understand the host-SRLV interaction.
Collapse
Affiliation(s)
- Amaia Larruskain
- Genomics and Health Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao 48080, Spain.
| | | |
Collapse
|
20
|
Ramírez H, Reina R, Amorena B, de Andrés D, Martínez HA. Small ruminant lentiviruses: genetic variability, tropism and diagnosis. Viruses 2013; 5:1175-1207. [PMID: 23611847 PMCID: PMC3705272 DOI: 10.3390/v5041175] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 02/05/2023] Open
Abstract
Small ruminant lentiviruses (SRLV) cause a multisystemic chronic disease affecting animal production and welfare. SRLV infections are spread across the world with the exception of Iceland. Success in controlling SRLV spread depends largely on the use of appropriate diagnostic tools, but the existence of a high genetic/antigenic variability among these viruses, the fluctuant levels of antibody against them and the low viral loads found in infected individuals hamper the diagnostic efficacy. SRLV have a marked in vivo tropism towards the monocyte/macrophage lineage and attempts have been made to identify the genome regions involved in tropism, with two main candidates, the LTR and env gene, since LTR contains primer binding sites for viral replication and the env-encoded protein (SU ENV), which mediates the binding of the virus to the host's cell and has hypervariable regions to escape the humoral immune response. Once inside the host cell, innate immunity may interfere with SRLV replication, but the virus develops counteraction mechanisms to escape, multiply and survive, creating a quasi-species and undergoing compartmentalization events. So far, the mechanisms of organ tropism involved in the development of different disease forms (neurological, arthritic, pulmonary and mammary) are unknown, but different alternatives are proposed. This is an overview of the current state of knowledge on SRLV genetic variability and its implications in tropism as well as in the development of alternative diagnostic assays.
Collapse
Affiliation(s)
- Hugo Ramírez
- Laboratory of Virology, Genetics and Molecular Biology, FES-Cuautitlán, UNAM C-4 Veterinary, Cuautitlán Izcalli, State of Mexico 54714, Mexico; E-Mail:
| | - Ramsés Reina
- Institute of Agrobiotechnology, CSIC-UPNA-Government of Navarra, Ctra. Mutilva Baja s/n, Navarra 31192, Spain; E-Mails: (R.R.); (B.A.); (D.A.)
| | - Beatriz Amorena
- Institute of Agrobiotechnology, CSIC-UPNA-Government of Navarra, Ctra. Mutilva Baja s/n, Navarra 31192, Spain; E-Mails: (R.R.); (B.A.); (D.A.)
| | - Damián de Andrés
- Institute of Agrobiotechnology, CSIC-UPNA-Government of Navarra, Ctra. Mutilva Baja s/n, Navarra 31192, Spain; E-Mails: (R.R.); (B.A.); (D.A.)
| | - Humberto A. Martínez
- Laboratory of Virology, Genetics and Molecular Biology, FES-Cuautitlán, UNAM C-4 Veterinary, Cuautitlán Izcalli, State of Mexico 54714, Mexico; E-Mail:
| |
Collapse
|
21
|
de Andrés X, Ramírez H, Bertolotti L, San Román B, Glaria I, Crespo H, Jáuregui P, Minguijón E, Juste R, Leginagoikoa I, Pérez M, Luján L, Badiola JJ, Polledo L, García-Marín JF, Riezu JI, Borrás-Cuesta F, de Andrés D, Rosati S, Reina R, Amorena B. An insight into a combination of ELISA strategies to diagnose small ruminant lentivirus infections. Vet Immunol Immunopathol 2013; 152:277-88. [PMID: 23375019 DOI: 10.1016/j.vetimm.2012.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 02/08/2023]
Abstract
A single broadly reactive standard ELISA is commonly applied to control small ruminant lentivirus (SRLV) spread, but type specific ELISA strategies are gaining interest in areas with highly prevalent and heterogeneous SRLV infections. Short (15-residue) synthetic peptides (n=60) were designed in this study using deduced amino acid sequence profiles of SRLV circulating in sheep from North Central Spain and SRLV described previously. The corresponding ELISAs and two standard ELISAs were employed to analyze sera from sheep flocks either controlled or infected with different SRLV genotypes. Two outbreaks, showing SRLV-induced arthritis (genotype B2) and encephalitis (genotype A), were represented among the infected flocks. The ELISA results revealed that none of the assays detected all the infected animals in the global population analyzed, the assay performance varying according to the genetic type of the strain circulating in the area and the test antigen. Five of the six highly reactive (57-62%) single peptide ELISAs were further assessed, revealing that the ELISA based on peptide 98M (type A ENV-SU5, consensus from the neurological outbreak) detected positives in the majority of the type-A specific sera tested (Se: 86%; Sp: 98%) and not in the arthritic type B outbreak. ENV-TM ELISAs based on peptides 126M1 (Se: 82%; Sp: 95%) and 126M2 0,65 0.77 (Se: 68%; Sp: 88%) detected preferentially caprine arthritis encephalitis (CAEV, type B) and visna/maedi (VMV, type A) virus infections respectively, which may help to perform a preliminary CAEV vs. VMV-like typing of the flock. The use of particular peptide ELISAs and standard tests individually or combined may be useful in the different areas under study, to determine disease progression, diagnose/type infection and prevent its spread.
Collapse
Affiliation(s)
- X de Andrés
- Institute of Agrobiotechnology (CSIC-UPNA-Gobierno de Navarra), Navarre, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Larruskain A, Bernales I, Luján L, de Andrés D, Amorena B, Jugo BM. Expression analysis of 13 ovine immune response candidate genes in Visna/Maedi disease progression. Comp Immunol Microbiol Infect Dis 2013; 36:405-13. [PMID: 23582860 DOI: 10.1016/j.cimid.2013.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/17/2012] [Accepted: 02/26/2013] [Indexed: 01/28/2023]
Abstract
Visna/Maedi virus (VMV) is a lentivirus that infects cells of the monocyte/macrophage lineage in sheep. Infection with VMV may lead to Visna/Maedi (VM) disease, which causes a multisystemic inflammatory disorder causing pneumonia, encephalitis, mastitis and arthritis. The role of ovine immune response genes in the development of VM disease is not fully understood. In this work, sheep of the Rasa Aragonesa breed were divided into two groups depending on the presence/absence of VM-characteristic clinical lesions in the aforementioned organs and the relative levels of candidate gene expression, including cytokines and innate immunity loci were measured by qPCR in the lung and udder. Sheep with lung lesions showed differential expression in five target genes: CCR5, TLR7, and TLR8 were up regulated and IL2 and TNFα down regulated. TNFα up regulation was detected in the udder.
Collapse
Affiliation(s)
- Amaia Larruskain
- Genetics, Physical Anthropology and Animal Physiology Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Heaton MP, Kalbfleisch TS, Petrik DT, Simpson B, Kijas JW, Clawson ML, Chitko-McKown CG, Harhay GP, Leymaster KA. Genetic testing for TMEM154 mutations associated with lentivirus susceptibility in sheep. PLoS One 2013; 8:e55490. [PMID: 23408992 PMCID: PMC3569457 DOI: 10.1371/journal.pone.0055490] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/23/2012] [Indexed: 11/19/2022] Open
Abstract
In sheep, small ruminant lentiviruses cause an incurable, progressive, lymphoproliferative disease that affects millions of animals worldwide. Known as ovine progressive pneumonia virus (OPPV) in the U.S., and Visna/Maedi virus (VMV) elsewhere, these viruses reduce an animal’s health, productivity, and lifespan. Genetic variation in the ovine transmembrane protein 154 gene (TMEM154) has been previously associated with OPPV infection in U.S. sheep. Sheep with the ancestral TMEM154 haplotype encoding glutamate (E) at position 35, and either form of an N70I variant, were highly-susceptible compared to sheep homozygous for the K35 missense mutation. Our current overall aim was to characterize TMEM154 in sheep from around the world to develop an efficient genetic test for reduced susceptibility. The average frequency of TMEM154 E35 among 74 breeds was 0.51 and indicated that highly-susceptible alleles were present in most breeds around the world. Analysis of whole genome sequences from an international panel of 75 sheep revealed more than 1,300 previously unreported polymorphisms in a 62 kb region containing TMEM154 and confirmed that the most susceptible haplotypes were distributed worldwide. Novel missense mutations were discovered in the signal peptide (A13V) and the extracellular domains (E31Q, I74F, and I102T) of TMEM154. A matrix-assisted laser desorption/ionization–time-of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect these and six previously reported missense and two deletion mutations in TMEM154. In blinded trials, the call rate for the eight most common coding polymorphisms was 99.4% for 499 sheep tested and 96.0% of the animals were assigned paired TMEM154 haplotypes (i.e., diplotypes). The widespread distribution of highly-susceptible TMEM154 alleles suggests that genetic testing and selection may improve the health and productivity of infected flocks.
Collapse
Affiliation(s)
- Michael P. Heaton
- U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, United States of America
- * E-mail: (MPH); (TSK)
| | - Theodore S. Kalbfleisch
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Intrepid Bioinformatics, Louisville, Kentucky, United States of America
- * E-mail: (MPH); (TSK)
| | - Dustin T. Petrik
- GeneSeek, a Neogen company, Lincoln, Nebraska, United States of America
| | - Barry Simpson
- GeneSeek, a Neogen company, Lincoln, Nebraska, United States of America
| | - James W. Kijas
- Division of Animal, Food and Health Sciences, CSIRO, Brisbane, Australia
| | - Michael L. Clawson
- U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, United States of America
| | - Carol G. Chitko-McKown
- U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, United States of America
| | - Gregory P. Harhay
- U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, United States of America
| | - Kreg A. Leymaster
- U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, United States of America
| | | |
Collapse
|