1
|
Gary EN, Kathuria N, Makurumidze G, Curatola A, Ramamurthi A, Bernui ME, Myles D, Yan J, Pankhong P, Muthumani K, Haddad E, Humeau L, Weiner DB, Kutzler MA. CCR10 expression is required for the adjuvant activity of the mucosal chemokine CCL28 when delivered in the context of an HIV-1 Env DNA vaccine. Vaccine 2020; 38:2626-2635. [PMID: 32057572 PMCID: PMC10681704 DOI: 10.1016/j.vaccine.2020.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/05/2019] [Accepted: 01/07/2020] [Indexed: 01/07/2023]
Abstract
An effective prophylactic vaccine targeting HIV must induce a robust humoral response and must direct the bulk of this response to the mucosa-the primary site of HIV transmission. The chemokine, CCL28, is secreted by epithelial cells at mucosal surfaces and recruits' cells expressing its receptor CCR10. CCR10 is predominantly expressed by IgA + ASCs. We hypothesized that co-immunization with plasmid DNA encoding consensus envelope antigens with plasmid-encoded CCL28 would enhance anti-HIV IgA responses at mucosal surfaces. Indeed, animals receiving pCCL28 and pEnvA/C had significantly increased HIV-specific IgA in fecal extract. Surprisingly, CCL28 co-immunization induced a significant increase in anti-HIV IgG in the serum in mice compared to those receiving pEnvA/C alone. These robust antibody responses were not associated with changes in the frequency of germinal center B cells but depended upon the expression of CCR10, as these responses we abolished in CCR10-deficient animals. Finally, immunization with CCL28 led to increased frequencies in HIV-specific CCR10 + and CCR10 + IgA + B cells in the small intestine and Peyer's patches of vaccinated animals as compared to those receiving pEnvA/C alone. These data indicate that CCL28 administration can enhance antigen-specific humoral responses systemically and at mucosal surfaces.
Collapse
Affiliation(s)
- E N Gary
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - N Kathuria
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - G Makurumidze
- The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A Curatola
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A Ramamurthi
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - M E Bernui
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States; The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - D Myles
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA, United States
| | - J Yan
- Inovio Pharmaceuticals, Blue Bell, PA, United States
| | - P Pankhong
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA, United States
| | - K Muthumani
- The Wistar Institute, Philadelphia, PA, United States
| | - E Haddad
- The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - L Humeau
- Inovio Pharmaceuticals, Blue Bell, PA, United States
| | - D B Weiner
- The Wistar Institute, Philadelphia, PA, United States
| | - M A Kutzler
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States; The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
2
|
Hefferon KL. Broadly neutralizing antibodies and the promise of universal vaccines: where are we now? Immunotherapy 2014; 6:51-7. [DOI: 10.2217/imt.13.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent research has provided strong support for the utility of broadly neutralizing antibodies generated against viruses, which inherently possess a high degree of antigenic variability (such as influenza virus or HIV) as a feasible means to prevent infection. Many of these antibodies share the ability to bind to highly conserved regions within the stem of the virus ‘spike’ or surface glycoprotein, in such a way that they interfere with virus entry, including membrane fusion. As a result, broadly neutralizing antibodies could be supplied to patients as a form of passive immunotherapy, as well as play a role in the design of new ‘universal’ vaccines and antiviral agents. The following article describes the most recent innovations in this exciting field.
Collapse
Affiliation(s)
- Kathleen L Hefferon
- University of Toronto, Toronto, Ontario, Canada and Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
HIV-1 suppression and durable control by combining single broadly neutralizing antibodies and antiretroviral drugs in humanized mice. Proc Natl Acad Sci U S A 2013; 110:16538-43. [PMID: 24043801 DOI: 10.1073/pnas.1315295110] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Effective control of HIV-1 infection in humans is achieved using combinations of antiretroviral therapy (ART) drugs. In humanized mice (hu-mice), control of viremia can be achieved using either ART or by immunotherapy using combinations of broadly neutralizing antibodies (bNAbs). Here we show that treatment of HIV-1-infected hu-mice with a combination of three highly potent bNAbs not only resulted in complete viremic control but also led to a reduction in cell-associated HIV-1 DNA. Moreover, lowering the initial viral load by coadministration of ART and immunotherapy enabled prolonged viremic control by a single bNAb after ART was withdrawn. Similarly, a single injection of adeno-associated virus directing expression of one bNAb produced durable viremic control after ART was terminated. We conclude that immunotherapy reduces plasma viral load and cell-associated HIV-1 DNA and that decreasing the initial viral load enables single bNAbs to control viremia in hu-mice.
Collapse
|
4
|
Girard MP, Picot V, Longuet C, Nabel GJ. Report of the Cent Gardes HIV Vaccine Conference: The B-cell response to HIV Part 2: Non-neutralizing antibodies. Vaccine 2013; 31:2984-7. [DOI: 10.1016/j.vaccine.2013.02.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 02/27/2013] [Indexed: 10/26/2022]
|