1
|
Castillo-Esparza JF, Gómez-Lim MA. Transient Expression in Cytoplasm and Apoplast of Rotavirus VP6 Protein Fused to Anti-DEC205 Antibody in Nicotiana benthamiana and Nicotiana sylvestris. Mol Biotechnol 2021; 63:973-982. [PMID: 34146324 PMCID: PMC8214057 DOI: 10.1007/s12033-021-00359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
Rotavirus is the most common cause of severe diarrhea in infants and children worldwide and is responsible for about 215,000 deaths annually. Over 85% of these deaths originate in low-income/developing countries in Asia and Africa. Therefore, it is necessary to explore the development of vaccines that avoid the use of "living" viruses and furthermore, vaccines that have viral antigens capable of generating powerful heterotypic responses. Our strategy is based on the expression of the fusion of the anti-DEC205 single-chain variable fragment (scFv) coupled by an OLLAS tag to a viral protein (VP6) of Rotavirus in Nicotiana plants. It was possible to express transiently in N. benthamiana and N. sylvestris a recombinant protein consisting of the single chain variable fragment linked by an OLLAS tag to the VP6 protein. The presence of the recombinant protein, which had a molecular weight of approximately 75 kDa, was confirmed by immunodetection, in both plant species and in both cellular compartments (cytoplasm and apoplast) where it was expressed. In addition, the recombinant protein was modeled, and it was observed that some epitopes of interest are exposed on the surface, which could favor their immunogenic response.
Collapse
Affiliation(s)
- J Francisco Castillo-Esparza
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, 36824, Irapuato, Guanajuato, Mexico.
| | - Miguel A Gómez-Lim
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, 36824, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
2
|
Ali F, Chorsiya A, Anjum V, Khasimbi S, Ali A. A systematic review on phytochemicals for the treatment of dengue. Phytother Res 2020; 35:1782-1816. [PMID: 33118251 DOI: 10.1002/ptr.6917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/23/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Dengue fever is prevalent in subtopic regions, producing mortality and morbidity worldwide, which have been of major concern to different governments and World Health Organization. The search of new anti-dengue agents from phytochemicals was assumed to be highly emergent in past. The phytochemicals have been used in wide distribution of vector ailments such as malaria. The demand of the phytochemicals is based on the medicines which are mostly considered to be safer, less harmful than synthetic drugs and nontoxic. This review mentions majorly about the phytochemicals potentially inhibiting dengue fever around the world. The phytochemicals have been isolated from different species, have potential for the treatment of dengue. Different crude extracts and essential oils obtained from different species showed a broad activity against different phytochemicals. The current studies showed that natural products represent a rich source of medicines toward the dengue fever. Furthermore, ethnobotanical surveys and laboratory investigation established identified natural plants species in the development of drug discovery to control the dengue fever.
Collapse
Affiliation(s)
- Faraat Ali
- Department of Inspection and Licensing, Laboratory Services, Botswana Medicines Regulatory Authority, Gaborone, Botswana
| | - Anushma Chorsiya
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Varisha Anjum
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Shaik Khasimbi
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Asad Ali
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
3
|
Intradermal Delivery of Dendritic Cell-Targeting Chimeric mAbs Genetically Fused to Type 2 Dengue Virus Nonstructural Protein 1. Vaccines (Basel) 2020; 8:vaccines8040565. [PMID: 33019498 PMCID: PMC7712967 DOI: 10.3390/vaccines8040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Targeting dendritic cells (DCs) by means of monoclonal antibodies (mAbs) capable of binding their surface receptors (DEC205 and DCIR2) has previously been shown to enhance the immunogenicity of genetically fused antigens. This approach has been repeatedly demonstrated to enhance the induced immune responses to passenger antigens and thus represents a promising therapeutic and/or prophylactic strategy against different infectious diseases. Additionally, under experimental conditions, chimeric αDEC205 or αDCIR2 mAbs are usually administered via an intraperitoneal (i.p.) route, which is not reproducible in clinical settings. In this study, we characterized the delivery of chimeric αDEC205 or αDCIR2 mAbs via an intradermal (i.d.) route, compared the elicited humoral immune responses, and evaluated the safety of this potential immunization strategy under preclinical conditions. As a model antigen, we used type 2 dengue virus (DENV2) nonstructural protein 1 (NS1). The results show that the administration of chimeric DC-targeting mAbs via the i.d. route induced humoral immune responses to the passenger antigen equivalent or superior to those elicited by i.p. immunization with no toxic effects to the animals. Collectively, these results clearly indicate that i.d. administration of DC-targeting chimeric mAbs presents promising approaches for the development of subunit vaccines, particularly against DENV and other flaviviruses.
Collapse
|
4
|
Muñoz-Talavera A, Gómez-Lim MÁ, Salazar-Olivo LA, Reinders J, Lim K, Escobedo-Moratilla A, López-Calleja AC, Islas-Carbajal MC, Rincón-Sánchez AR. Expression of the Biologically Active Insulin Analog SCI-57 in Nicotiana Benthamiana. Front Pharmacol 2019; 10:1335. [PMID: 31798448 PMCID: PMC6868099 DOI: 10.3389/fphar.2019.01335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/18/2019] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus is a growing problem worldwide; however, only 23% of low-income countries have access to insulin, and ironically it costs higher in such countries than high-income ones. Therefore, new strategies for insulin and insulin analogs production are urgently required to improve low-cost access to therapeutic products, so as to contain the diabetes epidemic. SCI-57 is an insulin analog with a greater affinity for the insulin receptor and lower thermal degradation than native insulin. It also shows native mitogenicity and insulin-like biological activity. In this work, SCI-57 was transiently expressed in the Nicotiana benthamiana (Nb) plant, and we also evaluated some of its relevant biological effects. An expression plasmid was engineered to translate an N-terminal ubiquitin and C-terminal endoplasmic reticulum-targeting signal KDEL, in order to increase protein expression and stability. Likewise, the effect of co-expression of influenza M2 ion channel (M2) on the expression of insulin analog SCI-57 (SCI-57/M2) was evaluated. Although using M2 increases yield, it tends to alter the SCI-57 amino acid sequence, possibly promoting the formation of oligomers. Purification of SCI-57 was achieved by FPLC cation exchange and ultrafiltration of N. benthamiana leaf extract (NLE). SCI-57 exerts its anti-diabetic properties by stimulating glucose uptake in adipocytes, without affecting the lipid accumulation process. Expression of the insulin analog in agroinfiltrated plants was confirmed by SDS-PAGE, RP-HPLC, and MS. Proteome changes related to the expression of heterologous proteins on N. benthamiana were not observed; up-regulated proteins were related to the agroinfiltration process. Our results demonstrate the potential for producing a biologically active insulin analog, SCI-57, by transient expression in Nb.
Collapse
Affiliation(s)
- Adriana Muñoz-Talavera
- Department of Physiology, Institute of Experimental and Clinical Therapeutics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Miguel Ángel Gómez-Lim
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato, Mexico
| | - Luis A Salazar-Olivo
- Division of Molecular Biology, Institute for Scientific and Technological Research of San Luis Potosí, San Luis Potosí, Mexico
| | - Jörg Reinders
- Scientific Support Unit Analytical Chemistry, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Katharina Lim
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Abraham Escobedo-Moratilla
- CONACYT-Consortium for Research, Innovation, and Development of the Drylands (CIIDZA), IPICYT, San Luis Potosí, Mexico
| | - Alberto Cristian López-Calleja
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato, Mexico
| | - María Cristina Islas-Carbajal
- Department of Physiology, Institute of Experimental and Clinical Therapeutics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Ana Rosa Rincón-Sánchez
- Institute of Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomic, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
5
|
Evaluation of a Recombinant Mouse X Pig Chimeric Anti-Porcine DEC205 Antibody Fused with Structural and Nonstructural Peptides of PRRS Virus. Vaccines (Basel) 2019; 7:vaccines7020043. [PMID: 31126125 PMCID: PMC6631554 DOI: 10.3390/vaccines7020043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Activation of the immune system using antigen targeting to the dendritic cell receptor DEC205 presents great potential in the field of vaccination. The objective of this work was to evaluate the immunogenicity and protectiveness of a recombinant mouse x pig chimeric antibody fused with peptides of structural and nonstructural proteins of porcine respiratory and reproductive syndrome virus (PRRSV) directed to DEC205+ cells. Priming and booster immunizations were performed three weeks apart and administered intradermally in the neck area. All pigs were challenged with PRRSV two weeks after the booster immunization. Immunogenicity was evaluated by assessing the presence of antibodies anti-PRRSV, the response of IFN-γ-producing CD4+ cells, and the proliferation of cells. Protection was determined by assessing the viral load in the blood, lungs, and tonsils using qRT-PCR. The results showed that the vaccine exhibited immunogenicity but conferred limited protection. The vaccine group had a lower viral load in the tonsils and a significantly higher production of antibodies anti-PRRSV than the control group (p < 0.05); the vaccine group also produced more CD4+IFN-γ+ cells in response to peptides from the M and Nsp2 proteins. In conclusion, this antigenized recombinant mouse x pig chimeric antibody had immunogenic properties that could be enhanced to improve the level of protection and vaccine efficiency.
Collapse
|
6
|
Corzo-Gómez J, García-Cordero J, Montes Gómez AE, Bernal-Siria K, Namorado-Tónix K, Gutierrez-Castañeda B, Cedillo-Barrón L. Expression and purification of domain III proteins from Dengue and Zika viruses. Protein Expr Purif 2019; 162:38-43. [PMID: 31112759 DOI: 10.1016/j.pep.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 11/28/2022]
Abstract
The envelope (E) protein from Dengue and Zika viruses comprises three functional and structural domains (DI, DII, and DIII). Domain III induces most of the neutralizing antibodies and, as such, is considered as having the highest antigenic potential for the evaluation of population-level surveillance and for detecting past infections in both Dengue and Zika patients. The present study aimed to clone and express recombinant proteins of domain III from Dengue virus serotype 2 and from Zika virus in a prokaryotic system, as well as evaluate their immunogenicity and cross-reactivity. Both antigens were successfully purified and their antigenicity was assessed in mice. The antibodies elicited by domain III of Zika and Dengue virus antigens recognized specifically the native proteins in infected cells. Furthermore, the antigens showed a more specific immunogenic response than that of domain III proteins from Dengue virus. The generated recombinant proteins can be potentially used in subunit vaccines or for surveillance studies.
Collapse
Affiliation(s)
- Josselin Corzo-Gómez
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, 07360, México City, Mexico
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, 07360, México City, Mexico
| | - Alfredo E Montes Gómez
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, 07360, México City, Mexico
| | - Karen Bernal-Siria
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, 07360, México City, Mexico
| | - Karime Namorado-Tónix
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, 07360, México City, Mexico
| | - Benito Gutierrez-Castañeda
- Immunology Department (UMF) Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, 54090, Edo. de México, Mexico
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, 07360, México City, Mexico.
| |
Collapse
|
7
|
Jáuregui-Zúñiga D, Pedraza-Escalona M, Merino-Guzman R, Possani LD. Construction and expression of a single-chain variable fragment antibody against chicken DEC 205 for targeting the bacterial expressed hemagglutinin-neuraminidase of Newcastle disease virus. Vet Immunol Immunopathol 2019; 212:9-14. [PMID: 31213252 DOI: 10.1016/j.vetimm.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/14/2023]
Abstract
Targeting antigens to endocytic receptors on the surface of dendritic cells is a new strategy for increasing the adaptive immune response. The objective of the current study was the construction and bacterial expression of a recombinant antibody single-chain fragment variable (ScFv) directed against chicken DEC 205, an endocytic receptor, for use in the genetic fusion of antigens. In particular, we use as antigen the hemagglutinin-neuraminidase (HN) of Newcastle disease virus. Our results show that inoculation of chickens with HN genetically fused to the ScFv anti-DEC 205 induced an evidently higher immune response against HN, in contrast to inoculation with unconjugated HN. In addition, neutralizing antibodies against Newcastle disease virus were detected only in the serum from chickens immunized with HN fused to ScFv anti-DEC 205. Inoculated fused antigens to ScFv against endocytic receptor DEC 205 resulted in a greater antibody-specific anti-HN production compared with antigens applied alone. The results of this study show that the strategy described here has the potential to be used in the development of more effective vaccines against infectious diseases in chickens.
Collapse
Affiliation(s)
- David Jáuregui-Zúñiga
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62210, México.
| | - Martha Pedraza-Escalona
- CONACYT-UDIBI-ENCB-Instituto Politecnico Nacional. Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, México
| | - Rubén Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia Universidad Nacional Autónoma de México, UNAM, C.U., Ciudad de México 04510, México
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62210, México
| |
Collapse
|
8
|
Targeting M2e to DEC-205 induces an enhanced serum antibody-dependent heterosubtypic protection against influenza A virus infection. Vaccine 2019; 37:2624-2633. [DOI: 10.1016/j.vaccine.2019.02.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/23/2019] [Accepted: 02/15/2019] [Indexed: 01/07/2023]
|
9
|
Chrun T, Lacôte S, Urien C, Richard CA, Tenbusch M, Aubrey N, Pulido C, Lakhdar L, Marianneau P, Schwartz-Cornil I. A DNA Vaccine Encoding the Gn Ectodomain of Rift Valley Fever Virus Protects Mice via a Humoral Response Decreased by DEC205 Targeting. Front Immunol 2019; 10:860. [PMID: 31105695 PMCID: PMC6494931 DOI: 10.3389/fimmu.2019.00860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
The Rift Valley fever virus (RVFV) is responsible for a serious mosquito-borne viral disease in humans and ruminants. The development of a new and safer vaccine is urgently needed due to the risk of introduction of this arbovirus into RVFV-free continents. We recently showed that a DNA vaccine encoding eGn, the ectodomain of the RVFV Gn glycoprotein, conferred a substantial protection in the sheep natural host and that the anti-eGn IgG levels correlated to protection. Addressing eGn to DEC205 reduced the protective efficacy while decreasing the antibody and increasing the IFNγ T cell responses in sheep. In order to get further insight into the involved mechanisms, we evaluated our eGn-encoding DNA vaccine strategy in the reference mouse species. A DNA vaccine encoding eGn induced full clinical protection in mice and the passive transfer of immune serum was protective. This further supports that antibodies, although non-neutralizing in vitro, are instrumental in the protection against RVFV. Addressing eGn to DEC205 was also detrimental to protection in mice, and in this species, both the antibody and the IFNγ T cell responses were strongly decreased. Conversely when using a plasmid encoding a different antigen, i.e., mCherry, DEC205 targeting promoted the antibody response. Altogether our results show that the outcome of targeting antigens to DEC205 depends on the species and on the fused antigen and is not favorable in the case of eGn. In addition, we bring evidences that eGn in itself is a pertinent antigen to be included in a DNA vaccine and that next developments should aim at promoting the anti-eGn antibody response.
Collapse
Affiliation(s)
- Tiphany Chrun
- VIM-INRA-Université Paris-Saclay, Jouy-en-Josas, France.,ANSES-Laboratoire de Lyon, Unité Virologie, Lyon, France
| | - Sandra Lacôte
- ANSES-Laboratoire de Lyon, Unité Virologie, Lyon, France
| | - Céline Urien
- VIM-INRA-Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolas Aubrey
- ISP, INRA, Université de Tours, UMR 1282 Team BioMAP, Nouzilly, France
| | - Coralie Pulido
- ANSES-Laboratoire de Lyon, Plateforme d'Expérimentation Animale, Lyon, France
| | - Latifa Lakhdar
- ANSES-Laboratoire de Lyon, Plateforme d'Expérimentation Animale, Lyon, France
| | | | | |
Collapse
|
10
|
Auerswald H, Klepsch L, Schreiber S, Hülsemann J, Franzke K, Kann S, Y B, Duong V, Buchy P, Schreiber M. The Dengue ED3 Dot Assay, a Novel Serological Test for the Detection of Denguevirus Type-Specific Antibodies and Its Application in a Retrospective Seroprevalence Study. Viruses 2019; 11:v11040304. [PMID: 30934772 PMCID: PMC6521013 DOI: 10.3390/v11040304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/08/2023] Open
Abstract
There are four distinct antigenic serotypes of dengue viruses (DENV-1-4). Sequential infections with different serotypes lead to cross-reactive but also serotype-specific neutralizing antibody responses. Neutralization assays are considered as gold standard for serotype-specific antibody detection. However, for retrospective seroprevalence studies, access to large serum quantities is limited making neutralization assays well-nigh impossible. Therefore, a serological test, wasting only 10 µL serum, was developed using fusion proteins of maltose binding protein and E protein domain 3 (MBP-ED3) as antigens. Twelve MBP-ED3 antigens for DENV-1-4, three MBP-ED3 antigens for WNV, JEV, and TBEV, and MBP were dotted onto a single nitrocellulose strip. ED3 dot assay results were compared to virus neutralization and ED3 ELISA test results, showing a >90% accordance for DENV-1 and a 100% accordance for DENV-2, making the test specifically useful for DENV-1/-2 serotype-specific antibody detection. Since 2010, DENV-1 has replaced DENV-2 as the dominant serotype in Cambodia. In a retrospective cohort analysis, sera collected during the DENV-1/-2 endemic period showed a shift to DENV-2-specific antibody responses in 2012 paralleled by the decline of DENV-2 infections. Altogether, the ED3 dot assay is a serum-, time- and money-saving diagnostic tool for serotype-specific antibody detection, especially when serum samples are limited.
Collapse
Affiliation(s)
- Heidi Auerswald
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany.
| | - Leonard Klepsch
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany.
| | - Sebastian Schreiber
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany.
| | - Janne Hülsemann
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany.
| | - Kati Franzke
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany.
| | - Simone Kann
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany.
| | - Bunthin Y
- Virology Unit, Institut Pasteur in Cambodia, 5 Monivong Boulevard, 12201 Phnom Penh, Cambodia.
| | - Veasna Duong
- Virology Unit, Institut Pasteur in Cambodia, 5 Monivong Boulevard, 12201 Phnom Penh, Cambodia.
| | - Philippe Buchy
- Virology Unit, Institut Pasteur in Cambodia, 5 Monivong Boulevard, 12201 Phnom Penh, Cambodia.
- GlaxoSmithKline, Vaccines R&D, 23 Rochester Park, Singapore 139234, Singapore.
| | - Michael Schreiber
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany.
| |
Collapse
|
11
|
Blundell PA, Lu D, Wilkinson M, Dell A, Haslam S, Pleass RJ. Insertion of N-Terminal Hinge Glycosylation Enhances Interactions of the Fc Region of Human IgG1 Monomers with Glycan-Dependent Receptors and Blocks Hemagglutination by the Influenza Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1595-1611. [PMID: 30683699 PMCID: PMC6379808 DOI: 10.4049/jimmunol.1801337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/29/2018] [Indexed: 11/28/2022]
Abstract
In therapeutic applications in which the Fc of IgG is critically important, the receptor binding and functional properties of the Fc are lost after deglycosylation or removal of the unique Asn297 N-X-(T/S) sequon. A population of Fcs bearing sialylated glycans has been identified as contributing to this functionality, and high levels of sialylation also lead to longer serum retention times advantageous for therapy. The efficacy of sialylated Fc has generated an incentive to modify the unique N-linked glycosylation site at Asn297, either through chemical and enzymatic methods or by mutagenesis of the Fc, that disrupts the protein-Asn297 carbohydrate interface. In this study, we took an alternative approach by inserting or deleting N-linked attachment sites into the body of the Fc to generate a portfolio of mutants with tailored effector functions. For example, we describe mutants with enhanced binding to low-affinity inhibitory human Fcγ and glycan receptors that may be usefully incorporated into existing Ab engineering approaches to treat or vaccinate against disease. The IgG1 Fc fragments containing complex sialylated glycans attached to the N-terminal Asn221 sequon bound influenza virus hemagglutinin and disrupted influenza A-mediated agglutination of human erythrocytes.
Collapse
Affiliation(s)
- Patricia A Blundell
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| | - Dongli Lu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mark Wilkinson
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stuart Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard J Pleass
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| |
Collapse
|
12
|
Zaneti AB, Yamamoto MM, Sulczewski FB, Almeida BDS, Souza HFS, Ferreira NS, Maeda DLNF, Sales NS, Rosa DS, Ferreira LCDS, Boscardin SB. Dendritic Cell Targeting Using a DNA Vaccine Induces Specific Antibodies and CD4 + T Cells to the Dengue Virus Envelope Protein Domain III. Front Immunol 2019; 10:59. [PMID: 30761131 PMCID: PMC6362411 DOI: 10.3389/fimmu.2019.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/10/2019] [Indexed: 01/18/2023] Open
Abstract
Dengue fever has become a global threat, causing millions of infections every year. An effective vaccine against all four serotypes of dengue virus (DENV) has not been developed yet. Among the different vaccination strategies available today, DNA vaccines are safe and practical, but currently induce relatively weak immune responses in humans. In order to improve immunogenicity, antigens may be targeted to dendritic cells (DCs), the main antigen presenting cells and orchestrators of the adaptive immune response, inducing T and B cell activation. It was previously shown that a DNA vaccine encoding a fusion protein comprised of an antigen and a single-chain Fv antibody (scFv) specific for the DC endocytic receptor DEC205 induced strong immune responses to the targeted antigen. In this work, we evaluate this strategy to improve the immunogenicity of dengue virus (DENV) proteins. Plasmids encoding the scFv αDEC205, or an isotype control (scFv ISO), fused to the DENV2 envelope protein domain III (EDIII) were generated, and EDIII specific immune responses were evaluated in immunized mice. BALB/c mice were intramuscularly (i.m.) immunized three times with plasmid DNAs encoding either scDEC-EDIII or scISO-EDIII followed by electroporation. Analyses of the antibody responses indicated that EDIII fusion with scFv targeting the DEC205 receptor significantly enhanced serum anti-EDIII IgG titers that inhibited DENV2 infection. Similarly, mice immunized with the scDEC-EDIII plasmid developed a robust CD4+ T cell response to the targeted antigen, allowing the identification of two linear epitopes recognized by the BALB/c haplotype. Taken together, these results indicate that targeting DENV2 EDIII protein to DCs using a DNA vaccine encoding the scFv αDEC205 improves both antibody and CD4+ T cell responses. This strategy opens perspectives for the use of DNA vaccines that encode antigens targeted to DCs as a strategy to increase immunogenicity.
Collapse
Affiliation(s)
- Arthur Baruel Zaneti
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcio Massao Yamamoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Bianca da Silva Almeida
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Higo Fernando Santos Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natália Soares Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Natiely Silva Sales
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCTiii, São Paulo, Brazil
| | | | - Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCTiii, São Paulo, Brazil
| |
Collapse
|
13
|
Fahimi H, Sadeghizadeh M, Hassan ZM, Auerswald H, Schreiber M. Immunogenicity of a novel tetravalent dengue envelope protein domain III-based antigen in mice. EXCLI JOURNAL 2018; 17:1054-1068. [PMID: 30564083 PMCID: PMC6295631 DOI: 10.17179/excli2018-1664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/20/2018] [Indexed: 01/01/2023]
Abstract
Dengue virus is a mosquito-borne pathogen that causes dengue diseases. All four serotypes of dengue virus are infectious for humans. Therefore, an efficacious dengue vaccine should be tetravalent to provide protection against all types of virus. The goal of this study was to design a new tetravalent recombinant protein from envelope protein of dengue viruses to induce virus-neutralizing antibodies against all four serotypes in mice. A chimeric protein was designed from domain III of envelope protein of all serotypes of dengue virus. Four domain III fragments were linked together by alpha helix making linkers. The final sequence of the designed protein was analyzed in silico and the coding gene sequence was deduced by reverse translation. After cloning and expression of the recombinant protein (ED3-tetravalent protein), identity of the purified protein was confirmed using a pan-dengue specific monoclonal antibody in Western blotting. Then, the immunogenicity of the purified protein was studied in mice using antibody titration. The efficacy of induced antibodies in neutralization of the virus was studies by FRNT method. Furthermore, the induction of cellular immunity was studied by measurement of cytokines using ELISA method and measurement of lymphocyte proliferation using MTT assay. The ED3-tetravalent protein was able to enhance neutralizing immunogenic response against all four dengue serotypes; in similar way to that of tetravalent formulation of four individual domain III-based polypeptides. It is suggested that the ED3-tetravalent fusion protein can induce broadly neutralizing antibody responses against all four serotypes of dengue virus in mice.
Collapse
Affiliation(s)
- Hossein Fahimi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zuhair M Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Heidi Auerswald
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michael Schreiber
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
14
|
Induction of neutralizing antibody response against koala retrovirus (KoRV) and reduction in viral load in koalas following vaccination with recombinant KoRV envelope protein. NPJ Vaccines 2018; 3:30. [PMID: 30083396 PMCID: PMC6072795 DOI: 10.1038/s41541-018-0066-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022] Open
Abstract
Koala retrovirus (KoRV) infects the majority of Australia’s koalas (Phascolarctos cinereus) and has been linked to several life-threatening diseases such as lymphoma and leukemia, as well as Chlamydia and thus poses a threat to the continued survival of this species. While quarantine and antiretroviral drug treatment are possible control measures, they are impractical, leaving vaccination as the only realistic option. In this study, we examined the effect of a recombinant envelope protein-based anti-KoRV vaccine in two groups of South Australian koalas: KoRV infected or KoRV free. We report a successful vaccination response in the koalas with no vaccine-associated side effects. The vaccine induced a significant humoral immune response as well as the production of neutralizing antibodies in both groups of koalas. We also identified B-cell epitopes that were differentially recognized in KoRV-infected versus KoRV-free koalas following vaccination. Importantly, we also showed that vaccination had a therapeutic effect on koalas infected exogenously with KoRV by reducing their circulating viral load. Together, this study highlights the possibility of successfully developing a vaccine against KoRV infection in koalas. A vaccine candidate for Koala retrovirus elicits a protective antibody response and reduces the viral load in already-infected koalas. Koala retrovirus (KoRV), first identified in the last 20 years, is a life-threatening, endemic pathogen affecting Australian koalas. In pursuit of an effective KoRV vaccine, the University of the Sunshine Coast’s Peter Timms led a group of Australian scientists to develop a candidate based on the transmembrane section of the virus’ envelope protein. The six koalas vaccinated in the study all generated a strong antibody response to the envelope protein, and a strong neutralizing antibody response was reported during in vitro tests. Vaccinated koalas with pre-existing KoRV infection benefited from an average 79% reduction in viral load when measured 12 weeks after vaccination. Further research should be prioritized to provide much-needed protection to Australia’s koalas.
Collapse
|
15
|
Dengue viruses and promising envelope protein domain III-based vaccines. Appl Microbiol Biotechnol 2018; 102:2977-2996. [PMID: 29470620 DOI: 10.1007/s00253-018-8822-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/13/2022]
Abstract
Dengue viruses are emerging mosquito-borne pathogens belonging to Flaviviridae family which are transmitted to humans via the bites of infected mosquitoes Aedes aegypti and Aedes albopictus. Because of the wide distribution of these mosquito vectors, more than 2.5 billion people are approximately at risk of dengue infection. Dengue viruses cause dengue fever and severe life-threatening illnesses as well as dengue hemorrhagic fever and dengue shock syndrome. All four serotypes of dengue virus can cause dengue diseases, but the manifestations are nearly different depending on type of the virus in consequent infections. Infection by any serotype creates life-long immunity against the corresponding serotype and temporary immunity to the others. This transient immunity declines after a while (6 months to 2 years) and is not protective against other serotypes, even may enhance the severity of a secondary heterotypic infection with a different serotype through a phenomenon known as antibody-depended enhancement (ADE). Although, it can be one of the possible explanations for more severe dengue diseases in individuals infected with a different serotype after primary infection. The envelope protein (E protein) of dengue virus is responsible for a wide range of biological activities, including binding to host cell receptors and fusion to and entry into host cells. The E protein, and especially its domain III (EDIII), stimulates host immunity responses by inducing protective and neutralizing antibodies. Therefore, the dengue E protein is an important antigen for vaccine development and diagnostic purposes. Here, we have provided a comprehensive review of dengue disease, vaccine design challenges, and various approaches in dengue vaccine development with emphasizing on newly developed envelope domain III-based dengue vaccine candidates.
Collapse
|
16
|
Lakhrif Z, Moreau A, Hérault B, Di-Tommaso A, Juste M, Moiré N, Dimier-Poisson I, Mévélec MN, Aubrey N. Targeted Delivery of Toxoplasma gondii Antigens to Dendritic Cells Promote Immunogenicity and Protective Efficiency against Toxoplasmosis. Front Immunol 2018. [PMID: 29515595 PMCID: PMC5826183 DOI: 10.3389/fimmu.2018.00317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Toxoplasmosis is a major public health problem and the development of a human vaccine is of high priority. Efficient vaccination against Toxoplasma gondii requires both a mucosal and systemic Th1 immune response. Moreover, dendritic cells play a critical role in orchestrating the innate immune functions and driving specific adaptive immunity to T. gondii. In this study, we explore an original vaccination strategy that combines administration via mucosal and systemic routes of fusion proteins able to target the major T. gondii surface antigen SAG1 to DCs using an antibody fragment single-chain fragment variable (scFv) directed against DEC205 endocytic receptor. Our results show that SAG1 targeting to DCs by scFv via intranasal and subcutaneous administration improved protection against chronic T. gondii infection. A marked reduction in brain parasite burden is observed when compared with the intranasal or the subcutaneous route alone. DC targeting improved both local and systemic humoral and cellular immune responses and potentiated more specifically the Th1 response profile by more efficient production of IFN-γ, interleukin-2, IgG2a, and nasal IgA. This study provides evidence of the potential of DC targeting for the development of new vaccines against a range of Apicomplexa parasites.
Collapse
|
17
|
Parra-Sánchez H, Puebla-Clark L, Reséndiz M, Valenzuela O, Hernández J. Characterization and expression of DEC205 in the cDC1 and cDC2 subsets of porcine dendritic cells from spleen, tonsil, and submaxillary and mesenteric lymph nodes. Mol Immunol 2018; 96:1-7. [PMID: 29433077 PMCID: PMC7112646 DOI: 10.1016/j.molimm.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/08/2017] [Accepted: 02/01/2018] [Indexed: 12/31/2022]
Abstract
This study describes the characterization of cDCs, cDC1 and cDC2 in porcine lymphoid tissues. Results show that the spleen had the highest frequency of cDCs. The cDC1:cDC2 ratio showed a predominant presence of cDC1 in all lymphoid tissues. DEC205 was expressed on cDC1 and cDC2 cells from all analyzed tissues.
Conventional dendritic cells (cDCs) are divided into the following different subtypes: cDC1, which promotes a Th1 response, and cDC2, which stimulates a Th2 and Th17 response. These cells have not been characterized in porcine lymphoid tissues. DEC205 is a receptor that increases antigen presentation and allows DCs to cross-present antigens. The objectives of this work were to characterize cDCs subsets in the tonsil, submaxillary and mesenteric lymph nodes and spleen lymphoid tissues and to determine their expression of DEC205 by flow cytometry. The cDC1 (MHCIIhighCADM1highCD172a−/low) and cDC2 (MHCIIhighCADM1highCD172a+) phenotypes were confirmed by the expression of characteristic cDC1 and cDC2 transcripts (FLT3, XCR1 and FCER1α). Among all lymphoid tissues, the spleen had the highest frequency of total cDCs. The cDC1:cDC2 ratio showed that all lymph tissues had higher levels of cDC1 than levels of cDC2. DEC205+ cDCs were found in all analyzed tissues, albeit with different frequencies. Our research will facilitate the study on the function of these cells and the investigation of the strategies for DEC205 targeting and functional studies.
Collapse
Affiliation(s)
- Héctor Parra-Sánchez
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Kilómetro 0.6 carretera a la Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Lucinda Puebla-Clark
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Kilómetro 0.6 carretera a la Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Mónica Reséndiz
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Kilómetro 0.6 carretera a la Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Olivia Valenzuela
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Kilómetro 0.6 carretera a la Victoria, 83304, Hermosillo, Sonora, Mexico.
| |
Collapse
|
18
|
Plant-based chimeric HPV-virus-like particles bearing amyloid-β epitopes elicit antibodies able to recognize amyloid plaques in APP-tg mouse and Alzheimer’s disease brains. Inflammopharmacology 2017; 26:817-827. [DOI: 10.1007/s10787-017-0408-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
19
|
Magaña-Ortíz D, Fernández F, Loske AM, Gómez-Lim MA. Extracellular Expression in Aspergillus niger of an Antibody Fused to Leishmania sp. Antigens. Curr Microbiol 2017; 75:40-48. [PMID: 28861662 DOI: 10.1007/s00284-017-1348-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/23/2017] [Indexed: 02/07/2023]
Abstract
Nucleoside hydrolase and sterol 24-c-methyltransferase, two antigenic proteins of Leishmania sp., were expressed in Aspergillus niger. Genetic transformation of conidia was achieved using underwater shock waves. scFv antibody addressed to DEC205, a receptor of dendritic cells, was fused to two proteins of Leishmania sp. Receptor 205 has a relevant role in the immune system in mammals; it can modulate T cell response to different antigens. Extracellular expression strategy of recombinant antibody was achieved using a fragment of native glucoamylase A (514 aa) as a carrier. Fermentations in shake flasks showed that the recombinant protein (104 kDa) was expressed and secreted only when maltose was used as carbon source; on the contrary, the expression was highly repressed in presence of xylose. Noteworthy, recombinant protein was secreted without glucoamylase-carrier and accumulation at intracellular level was not observed. The results presented here demonstrate the high value of Aspergillus niger as biotechnological platform for recombinant antibodies against Leishmania sp. at low cost. To the best of our knowledge, this is the first report about the recombinant expression of antigenic proteins of Leishmania sp. in filamentous fungi. The protein obtained can be used to explore novel strategies to induce immunity against Leishmania sp. or it can be employed in diagnostic kits to detect this neglected disease.
Collapse
Affiliation(s)
- Denis Magaña-Ortíz
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Mérida, Av. Tecnológico km. 4.5 S/N, 97118, Mérida, Yucatán, Mexico
| | - Francisco Fernández
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230, Querétaro, Querétaro, Mexico
| | - Achim M Loske
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230, Querétaro, Querétaro, Mexico.
| | - Miguel A Gómez-Lim
- Departamento de Ingeniería Genética, CINVESTAV Irapuato, km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| |
Collapse
|
20
|
Montes-Gómez AE, Vivanco-Cid H, Bustos-Arriaga J, Zaidi MB, Garcia-Machorro J, Gutierrez-Castañeda B, Cedillo-Barron L. Construct and expression of recombinant domains I/II of dengue virus- 2 and its efficacy to evaluate immune response in endemic area: Possible use in prognosis. Acta Trop 2017; 171:233-238. [PMID: 28427960 DOI: 10.1016/j.actatropica.2017.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 11/30/2022]
Abstract
The envelope (E) protein from DENV, contain three functional and structural domains (DI, DII and DIII). Some studies suggest that neutralizing antibodies during natural DENV infection are predominantly against DI and DII, in contrast, low proportion of the antibodies were against DIII. Thus it is necessary to establish the proportion of human antibodies against DENV E protein that bind to DI and DII during the normal course of infection; as an indicator of the quality of the antibody response and to further design new vaccine candidates for DENV. The aim of this study was to express recombinant proteins harboring a 240-aminoacid fragment of the E protein from DI and DII of DENV serotypes 2 and 3 in a eukaryotic S2 system. Further, we evaluate the antibodies against these antigens in samples from patients in acute phase of DF or DHF and compare it with the response of samples from healthy individuals from the same endemic areas and samples from healthy individuals from a non-endemic area (EA and NEA, respectively). These results suggest that the presence of antibodies against rEDI/DII might be used to identify patients at risk for severe disease.
Collapse
Affiliation(s)
- Alfredo Eduardo Montes-Gómez
- Departamento de Biomedicina Molecular, CINVESTAV IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, 07360 México City, Mexico
| | - Hector Vivanco-Cid
- Laboratorio Multidisciplinario en Ciencias Biomédicas, Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico
| | - José Bustos-Arriaga
- Molecular Biology and Immunology of Arbovirus Laboratory 17, Biomedicine Unit (UBIMED), Mexico
| | - Mussaret Bano Zaidi
- Infectious Diseases Research Unit, Hospital General O'Horan, Merida, Mexico; Department of Epidemiology and Biostatistics, Michigan State University, Lansing, USA
| | - Jazmin Garcia-Machorro
- Laboratorios de Modelado Molecular y Diseño de Fármacos, Bioquímica, Medicina de Conservación, Fisiología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional Plan de San Luis y Díaz Mirón s/n, 11340, Mexico
| | - Benito Gutierrez-Castañeda
- Immunology Department (UMF) Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México, 54090, Mexico
| | - Leticia Cedillo-Barron
- Departamento de Biomedicina Molecular, CINVESTAV IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, 07360 México City, Mexico.
| |
Collapse
|
21
|
Chen J, Wen K, Li XQ, Yi HS, Ding XX, Huang YF, Pan YX, Hu DM, Di B, Che XY, Fu N. Functional properties of DENV EDIII‑reactive antibodies in human DENV‑1‑infected sera and rabbit antiserum to EDIII. Mol Med Rep 2016; 14:1799-808. [PMID: 27357403 DOI: 10.3892/mmr.2016.5454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 03/14/2016] [Indexed: 11/06/2022] Open
Abstract
The envelope domain III (EDIII) of the dengue virus (DENV) has been confirmed to be involved in receptor binding. It is the target of specific neutralizing antibodies, and is considered to be a promising subunit dengue vaccine candidate. However, several recent studies have shown that anti‑EDIII antibodies contribute little to the neutralizing or enhancing ability of human DENV‑infected serum. The present study involved an analysis of the neutralization and antibody‑dependent enhancement (ADE) activities of EDIII‑reactive antibodies in human convalescent sera from patients with primary DENV‑1 infection and rabbit antiserum immunized with recombinant DENV‑1 EDIII protein. The results indicated that serum neutralization was not associated with titres of EDIII‑binding antibodies in the human DENV‑1‑infected sera. The depletion of anti‑EDIII antibodies from these serum samples revealed that the anti‑EDIII antibodies of the patients contributed little to neutralization and ADE. However, the EDIII‑reactive antibodies from the rabbit antiserum exhibited protective abilities of neutralization at a high dilution (~1:50,000) and ADE at a low dilution (~1:5,000) for the homotypic DENV infection. Notably, the rabbit antiserum displayed ADE activity only at a dilution of 1:40 for the heterotypic virus infection, which suggests that EDIII‑reactive antibodies may be safe in secondary infection with heterotypic viruses. These results suggest that DENV EDIII is not the predominant antigen of the DENV infection process; however, purified or recombinant DENV EDIII may be used as a subunit vaccine to provoke an effective and safe antibody response.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Kun Wen
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xiao-Quan Li
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Hai-Su Yi
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xi-Xia Ding
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Yan-Fen Huang
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Yu-Xian Pan
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Dong-Mei Hu
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Biao Di
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong 510440, P.R. China
| | - Xiao-Yan Che
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Ning Fu
- Laboratory of Emerging Infectious Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
22
|
Enhanced performance of an innovative dengue IgG/IgM rapid diagnostic test using an anti-dengue EDI monoclonal antibody and dengue virus antigen. Sci Rep 2015; 5:18077. [PMID: 26655854 PMCID: PMC4676027 DOI: 10.1038/srep18077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022] Open
Abstract
High levels of anti-dengue IgM or IgG can be detected using numerous rapid diagnostic tests (RDTs). However, the sensitivity and specificity of these tests are reduced by changes in envelope glycoprotein antigenicity that inevitably occur in limited expression systems. A novel RDT was designed to enhance diagnostic sensitivity. Dengue viruses cultured in animal cells were used as antigens to retain the native viral coat protein. Monoclonal antibodies (mAbs) were then developed, for the first time, against domain I of envelope glycoprotein (EDI). The anti-dengue EDI mAb was employed as a capturer, and EDII and EDIII, which are mainly involved in the induction of neutralizing antibodies in patients, were fully available to bind to anti-dengue IgM or IgG in patients. A one-way automatic blood separation device prevented reverse migration of plasma and maximize the capture of anti-dengue antibodies at the test lines. A clinical evaluation in the field proved that the novel RDT (sensitivities of 96.5% and 96.7% for anti-dengue IgM and IgG) is more effective in detecting anti-dengue antibodies than two major commercial tests (sensitivities of 54.8% and 82% for SD BIOLINE; 50.4% and 75.3% for PanBio). The innovative format of RDT can be applied to other infectious viral diseases.
Collapse
|
23
|
Lam JH, Ong LC, Alonso S. Key concepts, strategies, and challenges in dengue vaccine development: an opportunity for sub-unit candidates? Expert Rev Vaccines 2015; 15:483-95. [PMID: 26508565 DOI: 10.1586/14760584.2016.1106318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite 70 years of research that has intensified in the past decade, a safe and efficacious dengue vaccine has yet to be available. In addition to the expected challenges such as identifying immune correlates of protection, the dengue vaccine field has faced additional hurdles including the necessity to design a tetravalent formulation and the risk of antibody-mediated disease enhancement. Nevertheless, tetravalent live attenuated vaccine candidates have reached efficacy trials and demonstrated some benefit, despite imbalanced immunogenicity and incomplete protection against the four serotypes. Meanwhile, the development of sub-unit dengue vaccines has gained momentum. As the target of most of the neutralizing antibodies so far reported, the virus envelope E protein has been the focus of much effort and represents the leading dengue sub-unit vaccine candidate. However, its notorious poor immunogenicity has prompted the development of innovative approaches to make E-derived constructs part of the second generation dengue vaccines portfolio.
Collapse
Affiliation(s)
- Jian Hang Lam
- a Department of Microbiology and Immunology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore
| | - Li Ching Ong
- b Immunology programme, Life Sciences Institute , National University of Singapore , Singapore
| | - Sylvie Alonso
- a Department of Microbiology and Immunology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore.,b Immunology programme, Life Sciences Institute , National University of Singapore , Singapore
| |
Collapse
|
24
|
Uribe-Campero L, Monroy-García A, Durán-Meza AL, Villagrana-Escareño MV, Ruíz-García J, Hernández J, Núñez-Palenius HG, Gómez-Lim MA. Plant-based porcine reproductive and respiratory syndrome virus VLPs induce an immune response in mice. Res Vet Sci 2015; 102:59-66. [PMID: 26412521 DOI: 10.1016/j.rvsc.2015.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/10/2015] [Accepted: 07/19/2015] [Indexed: 01/14/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) significantly affects the swine industry worldwide. An efficient, protective vaccine is still lacking. Here, we report for the first time the generation and purification of PRRSV virus like particles (VLPs) by expressing GP5, M and N genes in Nicotiana silvestris plants. The particles were clearly visible by transmission electron microscopy (TEM) with a size of 60-70 nm. Hydrodynamic diameter of the particles was obtained and it was confirmed that the VLPs had the appropriate size for PRRS virions and that the VLPs were highly pure. By measuring the Z potential we described the electrophoretic mobility behavior of VLPs and the best conditions for stability of the VLPs were determined. The particles were immunogenic in mice. A western blot of purified particles allowed detection of three coexpressed genes. These VLPs may serve as a platform to develop efficient PRRSV vaccines.
Collapse
Affiliation(s)
- Laura Uribe-Campero
- Departamento de Ingeniería Genética, CINVESTAV-IPN, Km 9.6 Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, México.
| | - Alberto Monroy-García
- Unidad de Investigación Médica en Enfermedades Oncológicas, IMSS, CMN SXXI, México, D.F., México; Laboratorio de Inmunobiología, Lab, 3PB, Unidad de Investigación en Diferenciación Celular y Cáncer, Facultad de Estudios Superiores Zaragoza, UMIEZ, Campus II, UNAM, Batalla 5 de mayo s/n, Col. E. Oriente, Esquina Fuerte Loreto, Iztapalapa, CP 09230 México, D.F., México.
| | - Ana L Durán-Meza
- Laboratorio de Física Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP 78000, México.
| | - María V Villagrana-Escareño
- Laboratorio de Física Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP 78000, México.
| | - Jaime Ruíz-García
- Laboratorio de Física Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP 78000, México.
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a La Victoria km 0.6, Hermosillo, Sonora C.P. 83304, México.
| | - Héctor G Núñez-Palenius
- División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Exhacienda El Copal s/n, A.P. 311, Irapuato, Gto. C.P. 36500, México.
| | - Miguel A Gómez-Lim
- Departamento de Ingeniería Genética, CINVESTAV-IPN, Km 9.6 Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, México.
| |
Collapse
|
25
|
Cedillo-Barrón L, García-Cordero J, Bustos-Arriaga J, León-Juárez M, Gutiérrez-Castañeda B. Antibody response to dengue virus. Microbes Infect 2014; 16:711-20. [PMID: 25124542 DOI: 10.1016/j.micinf.2014.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 12/23/2022]
Abstract
In this review, we discuss the current knowledge of the role of the antibody response against dengue virus and highlight novel insights into targets recognized by the human antibody response. We also discuss how the balance of pathological and protective antibody responses in the host critically influences clinical aspects of the disease.
Collapse
Affiliation(s)
- Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular, CINVESTAV IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, CINVESTAV IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico
| | - José Bustos-Arriaga
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, 20892 MD, USA
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Montes Urales #800, Col. Lomas de Virreyes, 11000, Mexico
| | - Benito Gutiérrez-Castañeda
- Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Autónoma de México, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
26
|
Jacinto-Tinajero JC, Ascencio D, Marquina B, Barrios-Payán J, Gutierrez MC, Lim MG, Pando RH. Induction of bone formation in abdominal implants constituted by collagen sponges embedded with plant-based human transforming growth factor family proteins in ectopic dog model. J Exp Orthop 2014; 1:11. [PMID: 26914756 PMCID: PMC4648846 DOI: 10.1186/s40634-014-0011-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/12/2014] [Indexed: 11/23/2022] Open
Abstract
Background Trauma, osteomyelitis, bone tumour resections and congenital deformities are the main causes of bone deficiency in which autologous graft is the preferred treatment, but usually the bone supplies are limited. Methods An experimental model of heterotopic bone formation in the subcutaneous abdominal area of dogs was developed. This model consists in omentum wrapped implants constituted by collagen type 1 sponges embedded with demineralized bone powder, calcium cloride, thrombin and platelet rich plasma; the implant is totally converted in trabecular bone after four months of implantation. This model was improved by accelerating bone production, after the isolation of the most conspicuous histological constituents (inflammatory, bone and adipose tissues) by laser microdisection and purified from them RNA that was used to determine by RT-PCR the gene expression kinetics of the most important growth bone factors. Then, the most abundant and rapidly synthesized factors were produced by genetic engineering in tobacco plants. Results Bone morphogenetic proteins 2 and 7 and transforming growth factor-β1were the most rapidly and highly synthesized factors, and they were efficiently produced in a genetic engineering plant based system in tobacco leaves. Their incorporation as recombinant proteins in the scaffold collagen sponge induced in just one month mature heterotopic bone. Conclusion This study demonstrates for the first time that this plant system is able to produce recombinant bone growth factors in high amount and at low cost, and they were highly efficient to rapidly induce bone formation in abdominal implants potentially useful for autotransplantation.
Collapse
Affiliation(s)
- Juan Carlos Jacinto-Tinajero
- Experimental Pathology and Surgery Departments, National Institute of Medical Sciences and Nutrition "Salvador Zubiran", Mexico city, Mexico.
| | | | - Brenda Marquina
- Experimental Pathology and Surgery Departments, National Institute of Medical Sciences and Nutrition "Salvador Zubiran", Mexico city, Mexico.
| | - Jorge Barrios-Payán
- Experimental Pathology and Surgery Departments, National Institute of Medical Sciences and Nutrition "Salvador Zubiran", Mexico city, Mexico.
| | | | - Miguel Gomez Lim
- Department of Genetic Engineering in Plants, National Politechnique Institute Center of Research and Advanced Studies, Irapuato, Mexico.
| | - Rogelio Hernández Pando
- Experimental Pathology and Surgery Departments, National Institute of Medical Sciences and Nutrition "Salvador Zubiran", Mexico city, Mexico. .,Department of Pathology, Section of Experimental Pathology, National Institute of Medical Sciences and Nutrition 'Salvador Zubirán', Mexico city, 14000, DF, Mexico.
| |
Collapse
|
27
|
Induction of neutralizing antibodies against four serotypes of dengue viruses by MixBiEDIII, a tetravalent dengue vaccine. PLoS One 2014; 9:e86573. [PMID: 24466156 PMCID: PMC3897746 DOI: 10.1371/journal.pone.0086573] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 12/12/2013] [Indexed: 01/14/2023] Open
Abstract
The worldwide expansion of four serotypes of dengue virus (DENV) poses great risk to global public health. Several vaccine candidates are under development. However, none is yet available for humans. In the present study, a novel strategy to produce tetravalent DENV vaccine based on envelope protein domain III (EDIII) was proposed. Tandem EDIIIs of two serotypes (type 1-2 and type 3-4) of DENV connected by a Gly-Ser linker ((Gly4Ser)3) were expressed in E. coli, respectively. Then, the two bivalent recombinant EDIIIs were equally mixed to form the tetravalent vaccine candidate MixBiEDIII, and used to immunize BALB/c mice. The results showed that specific IgG and neutralizing antibodies against all four serotypes of DENV were successfully induced in the MixBiEDIII employing Freund adjuvant immunized mice. Furthermore, in the suckling mouse model, sera from mice immunized with MixBiEDIII provided significant protection against four serotypes of DENV challenge. Our data demonstrated that MixBiEDIII, as a novel form of subunit vaccine candidates, might have the potential to be further developed as a tetravalent dengue vaccine in the near future.
Collapse
|
28
|
García-Machorro J, López-González M, Barrios-Rojas O, Fernández-Pomares C, Sandoval-Montes C, Santos-Argumedo L, Villegas-Sepúlveda N, Gutiérrez-Castañeda B, Cedillo-Barrón L. DENV-2 subunit proteins fused to CR2 receptor-binding domain (P28)-induces specific and neutralizing antibodies to the Dengue virus in mice. Hum Vaccin Immunother 2013; 9:2326-35. [PMID: 23880886 DOI: 10.4161/hv.25673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Domain III (DIII) of the dengue virus (DENV) envelope (E) protein induces strong neutralizing type-specific antibodies. In addition, a region near the fusion loop in domain II (DII) induces the production of cross-reactive antibodies with neutralizing potential. Thus, this study aimed to generate DENV-2 recombinant fusion proteins (i.e., rEII*EIII and rEII*EIII/NS1*) either alone or fused to 3 copies of P28, the minimum CR2-binding domain of the complement protein C3d. The 4 recombinant proteins were generated in a Drosophila melanogaster Schneider 2 (S2) cell system. The expression and secretion of the recombinant proteins were confirmed in vitro using immunofluorescence (IF) and western blot (WB) analyses. Human dengue immune serum samples recognized recombinant proteins. The immunogenicity of the 4 proteins in BALB/c mice was analyzed using ELISA, and the results revealed that the induced specific antibody response was higher in the groups of mice immunized with the P28 fusion proteins. Interestingly, although the 4 recombinant proteins were able to elicit high levels of neutralizing antibodies in BALB/c mice; no adjuvant effect was observed in terms of neutralizing antibodies in the groups immunized with proteins containing P28. Thus, ELISA and PRNT50 assays may evaluate different epitopes and responses, where ELISA showed a wider response that did not always correlate with neutralization. Furthermore, the elicited antibodies were able to recognize the immobilized E glycoprotein of DENV. All mice vaccinated with the DENV-2 recombinant proteins showed induction of higher levels of IgG1 antibodies than of IgG2a antibodies.
Collapse
Affiliation(s)
- Jazmín García-Machorro
- Department of Molecular Biomedicine Centre for Research and Advanced Studies (CINVESTAV-IPN) Av. IPN # 2508 Col.; San Pedro Zacatenco, D.F. Mexico, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|