1
|
Rohaim MA, Naggar RFE, Atasoy MO, Munir M. Molecular Virology of Orthopoxviruses with Special Reference to Monkeypox Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:111-124. [PMID: 38801574 DOI: 10.1007/978-3-031-57165-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses are large (200-450 nm) and enveloped viruses carrying double-stranded DNA genome with an epidermal cell-specific adaptation. The genus Orthopoxvirus within Poxviridae family constitutes several medically and veterinary important viruses including variola (smallpox), vaccinia, monkeypox virus (MPXV), and cowpox. The monkeypox disease (mpox) has recently emerged as a public health emergency caused by MPXV. An increasing number of human cases of MPXV have been documented in non-endemic nations without any known history of contact with animals brought in from endemic and enzootic regions, nor have they involved travel to an area where the virus was typically prevalent. Here, we review the MPXV replication, virus pathobiology, mechanism of viral infection transmission, virus evasion the host innate immunity and antiviral therapies against Mpox. Moreover, preventive measures including vaccination were discussed and concluded that cross-protection against MPXV may be possible using antibodies that are directed against an Orthopoxvirus. Despite the lack of a specialised antiviral medication, several compounds such as Cidofovir and Ribavirin warrant consideration against mpox.
Collapse
Affiliation(s)
- Mohammed A Rohaim
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Rania F El Naggar
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Mustafa O Atasoy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK.
| |
Collapse
|
2
|
Javelle E, Ficko C, Savini H, Mura M, Ferraris O, Tournier JN, de Laval F. Monkeypox clinical disease: Literature review and a tool proposal for the monitoring of cases and contacts. Travel Med Infect Dis 2023; 52:102559. [PMID: 36809829 PMCID: PMC9946014 DOI: 10.1016/j.tmaid.2023.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/26/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
The human monkeypox disease has mainly been described in Western and Central Africa. Since May 2022, the monkeypox virus has been spreading worldwide in a new epidemiological pattern, where cases result from person-to-person transmission, and develop clinically milder or less typical illness than during previous outbreaks in endemic areas. The newly-emerging monkeypox disease needs to be described over the long term, to improve cases definitions, to implement prompt control measures against epidemics, and to provide supportive care. Hence, we first conducted a review of historical and recent outbreaks to define the full clinical spectrum of the monkeypox disease and its course known so far. Then, we built a self-administrated questionnaire collecting daily symptoms of the monkeypox infection to follow cases and their contacts, even remotely. This tool will assist in the management of cases, the surveillance of contacts, and the conduct of clinical studies.
Collapse
Affiliation(s)
- Emilie Javelle
- Institut de Recherche Biomédicale des Armées IRBA, Microbiology and Infectious Diseases Department, Marseille, France; Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Laveran Military Teaching Hospital, Marseille, France.
| | - Cécile Ficko
- Bégin Military Teaching Hospital, Saint-Mandé, France; Ecole Du Val-de-Grâce, Paris, France
| | - Hélène Savini
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Laveran Military Teaching Hospital, Marseille, France
| | - Marie Mura
- Institut de Recherche Biomédicale des Armées IRBA, Microbiology and Infectious Diseases Department, Brétigny-sur-Orge, France; Institut Pasteur, Innovation Lab: Vaccines, Paris, France
| | - Olivier Ferraris
- Institut de Recherche Biomédicale des Armées IRBA, Microbiology and Infectious Diseases Department, Brétigny-sur-Orge, France; CNR-LE National Reference Center-expert Laboratory Orthopoxvirus, IRBA, Brétigny-sur-Orge, France
| | - Jean Nicolas Tournier
- Ecole Du Val-de-Grâce, Paris, France; Institut de Recherche Biomédicale des Armées IRBA, Microbiology and Infectious Diseases Department, Brétigny-sur-Orge, France; Institut Pasteur, Innovation Lab: Vaccines, Paris, France
| | - Franck de Laval
- Service de Santé des Armées SSA, French Armed Forces Center for Epidemiology and Public Health CESPA, Marseille, France; Aix Marseille University, INSERM, IRD, Sciences Economiques Sociales de La Santé & Traitement de L'Information Médicale SESSTIM, Marseille, France
| |
Collapse
|
3
|
Phelippeau M, Loison G, Rucay P, Le Guillou-Guillemette H, Ndiaye D, Dubée V, Legeay C. Fortuitous diagnosis of monkeypox in a patient hospitalized for several days: risk assessment and follow-up for exposed healthcare workers. J Hosp Infect 2023; 131:244-246. [PMID: 36379369 PMCID: PMC9652207 DOI: 10.1016/j.jhin.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Affiliation(s)
- M. Phelippeau
- Infectious and Tropical Diseases Department, Angers University Hospital, Angers, France
| | - G. Loison
- Infection Control and Prevention Team, Angers University Hospital, Angers, France
| | - P. Rucay
- Occupational Health Services, Angers University Hospital, Angers, France
| | | | - D. Ndiaye
- Infectious and Tropical Diseases Department, Angers University Hospital, Angers, France
| | - V. Dubée
- Infectious and Tropical Diseases Department, Angers University Hospital, Angers, France
| | - C. Legeay
- Infection Control and Prevention Team, Angers University Hospital, Angers, France,Corresponding author. Address: Infection Control and Prevention Team, Angers University Hospital, Angers, France. Tel.: +33 2 41 35 49 36; fax: +33 2 41 35 53 18
| |
Collapse
|
4
|
Lum FM, Torres-Ruesta A, Tay MZ, Lin RTP, Lye DC, Rénia L, Ng LFP. Monkeypox: disease epidemiology, host immunity and clinical interventions. Nat Rev Immunol 2022; 22:597-613. [PMID: 36064780 PMCID: PMC9443635 DOI: 10.1038/s41577-022-00775-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 12/11/2022]
Abstract
Monkeypox virus (MPXV), which causes disease in humans, has for many years been restricted to the African continent, with only a handful of sporadic cases in other parts of the world. However, unprecedented outbreaks of monkeypox in non-endemic regions have recently taken the world by surprise. In less than 4 months, the number of detected MPXV infections has soared to more than 48,000 cases, recording a total of 13 deaths. In this Review, we discuss the clinical, epidemiological and immunological features of MPXV infections. We also highlight important research questions and new opportunities to tackle the ongoing monkeypox outbreak.
Collapse
Affiliation(s)
- Fok-Moon Lum
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Matthew Z Tay
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Raymond T P Lin
- National Public Health Laboratory, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David C Lye
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
5
|
Abstract
The global vaccination programme against smallpox led to its successful eradication and averted millions of deaths. Monkeypox virus (MPXV) is a close relative of the Variola (smallpox) virus. Due to antigenic similarity, smallpox vaccines cross-protect against MPXV. However, over 70% of people living today were never vaccinated against smallpox. Symptoms of monkeypox (MPX) include fever, head- and muscle ache, lymphadenopathy and a characteristic rash that develops into papules, vesicles and pustules which eventually scab over and heal. MPX is less often fatal (case fatality rates range from <1% to up to 11%) than smallpox (up to 30%). MPXV is endemic in sub-Saharan Africa, infecting wild animals and causing zoonotic outbreaks. Exotic animal trade and international travel, combined with the increasing susceptibility of the human population due to halted vaccination, facilitated the spread of MPXV to new areas. The ongoing outbreak, with >10,000 cases in >50 countries between May and July 2022, shows that MPXV can significantly spread between people and may thus become a serious threat to public health with global consequences. Here, we summarize the current knowledge about this re-emerging virus, discuss available strategies to limit its spread and pathogenicity and evaluate its risk to the human population.
Collapse
Affiliation(s)
- Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany;
| | | |
Collapse
|
6
|
Costantino V, Kunasekaran M, MacIntyre CR. Modelling of optimal vaccination strategies in response to a bioterrorism associated smallpox outbreak. Hum Vaccin Immunother 2021; 17:738-746. [PMID: 33734944 PMCID: PMC7993194 DOI: 10.1080/21645515.2020.1800324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The reemergence of smallpox as a bioterrorism attack is now an increasing and legitimate concern. Advances in synthetic biology have now made it possible for the virus to be synthesized in a laboratory, with methods publicly available. Smallpox introduction into a susceptible population, with increased immunosuppression and an aging population, raises questions of how vaccination should be used in an epidemic situation when supply may be limited. We constructed three modified susceptible-latent-infectious-recovered (SEIR) models to simulate targeted, ring and mass vaccination in response to a smallpox outbreak in Sydney, Australia. We used age-specific distributions of susceptibility, infectivity, contact rates, and tested outputs under different assumptions. The number of doses needed of second- and third-generation vaccines are estimated, along with the total number of deaths at the end of the epidemic. We found a faster response is the key and ring vaccination of traced contacts is the most effective strategy and requires a smaller number of doses. However if public health authorities are unable to trace a high proportion of contacts, mass vaccination with at least 125,000 doses delivered per day is required. This study informs a better preparedness and response planning for vaccination in a case of a smallpox outbreak in a setting such as Sydney.
Collapse
Affiliation(s)
- Valentina Costantino
- Biosecurity Program, Kirby Institute, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Mohana Kunasekaran
- Biosecurity Program, Kirby Institute, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Chandini Raina MacIntyre
- Biosecurity Program, Kirby Institute, Faculty of Medicine, The University of New South Wales, Sydney, Australia.,College of Public Service and Community Solutions, Arizona State University, Arizona, USA
| |
Collapse
|
7
|
Russo AT, Grosenbach DW, Chinsangaram J, Honeychurch KM, Long PG, Lovejoy C, Maiti B, Meara I, Hruby DE. An overview of tecovirimat for smallpox treatment and expanded anti-orthopoxvirus applications. Expert Rev Anti Infect Ther 2020; 19:331-344. [PMID: 32882158 PMCID: PMC9491074 DOI: 10.1080/14787210.2020.1819791] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction Tecovirimat (TPOXX®; ST-246) was approved for the treatment of symptomatic smallpox by the USFDA in July of 2018 and has been stockpiled by the US government for use in a smallpox outbreak. While there has not been a reported case of smallpox since 1978 it is still considered a serious bioterrorism threat. Areas covered A brief history of smallpox from its proposed origins as a human disease through its eradication in the late 20th century is presented. The current smallpox threat and the current public health response plans are described. The discovery, and development of tecovirimat through NDA submission and subsequent approval for treatment of smallpox are discussed. Google Scholar and PubMed were searched over all available dates for relevant publications. Expert opinion Approval of tecovirimat to treat smallpox represents an important milestone in biosecurity preparedness. Incorporating tecovirimat into the CDC smallpox response plan, development of pediatric liquid and intravenous formulations, and approval for post-exposure prophylaxis would provide additional health security benefit. Tecovirimat shows broad efficacy against orthopoxviruses in vitro and in vivo and could be developed for use against emerging orthopoxvirus diseases such as monkeypox, vaccination-associated adverse events, and side effects of vaccinia oncolytic virus therapy.
Collapse
Affiliation(s)
- Andrew T Russo
- Poxvirus Research Group, SIGA Technologies, Inc, Corvallis, OR, USA
| | | | | | | | - Paul G Long
- Regulatory Affairs, SIGA Technologies, Inc, Corvallis, OR, USA
| | - Candace Lovejoy
- Program Management, SIGA Technologies, Inc, Corvallis, OR, USA
| | - Biswajit Maiti
- Drug Metabolism & Pharmacokinetics, SIGA Technologies, Inc, Corvallis, OR, USA
| | - Ingrid Meara
- Clinical Research, SIGA Technologies, Inc, Corvallis, OR, USA
| | - Dennis E Hruby
- Chief Scientific Officer, SIGA Technologies, Inc, Corvallis, OR, USA
| |
Collapse
|
8
|
IMVAMUNE ® and ACAM2000 ® Provide Different Protection against Disease When Administered Postexposure in an Intranasal Monkeypox Challenge Prairie Dog Model. Vaccines (Basel) 2020; 8:vaccines8030396. [PMID: 32698399 PMCID: PMC7565152 DOI: 10.3390/vaccines8030396] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The protection provided by smallpox vaccines when used after exposure to Orthopoxviruses is poorly understood. Postexposu re administration of 1st generation smallpox vaccines was effective during eradication. However, historical epidemiological reports and animal studies on postexposure vaccination are difficult to extrapolate to today’s populations, and 2nd and 3rd generation vaccines, developed after eradication, have not been widely tested in postexposure vaccination scenarios. In addition to concerns about preparedness for a potential malevolent reintroduction of variola virus, humans are becoming increasingly exposed to naturally occurring zoonotic orthopoxviruses and, following these exposures, disease severity is worse in individuals who never received smallpox vaccination. This study investigated whether postexposure vaccination of prairie dogs with 2nd and 3rd generation smallpox vaccines was protective against monkeypox disease in four exposure scenarios. We infected animals with monkeypox virus at doses of 104 pfu (2× LD50) or 106 pfu (170× LD50) and vaccinated the animals with IMVAMUNE® or ACAM2000® either 1 or 3 days after challenge. Our results indicated that postexposure vaccination protected the animals to some degree from the 2× LD50, but not the 170× LD5 challenge. In the 2× LD50 challenge, we also observed that administration of vaccine at 1 day was more effective than administration at 3 days postexposure for IMVAMUNE®, but ACAM2000® was similarly effective at either postexposure vaccination time-point. The effects of postexposure vaccination and correlations with survival of total and neutralizing antibody responses, protein targets, take formation, weight loss, rash burden, and viral DNA are also presented.
Collapse
|
9
|
Russo AT, Berhanu A, Bigger CB, Prigge J, Silvera PM, Grosenbach DW, Hruby D. Co-administration of tecovirimat and ACAM2000™ in non-human primates: Effect of tecovirimat treatment on ACAM2000 immunogenicity and efficacy versus lethal monkeypox virus challenge. Vaccine 2020; 38:644-654. [PMID: 31677948 PMCID: PMC6954297 DOI: 10.1016/j.vaccine.2019.10.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Naturally occurring smallpox has been eradicated but research stocks of variola virus (VARV), the causative agent of smallpox, still exist in secure laboratories. Clandestine stores of the virus or resurrection of VARV via synthetic biology are possible and have led to concerns that VARV could be used as a biological weapon. The US government has prepared for such an event by stockpiling smallpox vaccines and TPOXX®, SIGA Technologies' smallpox antiviral drug. While vaccination is effective as a pre-exposure prophylaxis, protection is limited when administered following exposure. Safety concerns preclude general use of the vaccine unless there is a smallpox outbreak. TPOXX is approved by the FDA for use after confirmed diagnosis of smallpox disease. Tecovirimat, the active pharmaceutical ingredient in TPOXX, targets a highly conserved orthopoxviral protein, inhibiting long-range dissemination of virus. Although indications for use of the vaccine and TPOXX do not overlap, concomitant use is possible, especially if the TPOXX indication is expanded to include post-exposure prophylaxis. It is therefore important to understand how vaccine and TPOXX may interact. In studies presented here, monkeys were vaccinated with the ACAM2000TM live attenuated smallpox vaccine and concomitantly treated with tecovirimat or placebo. Immune responses to the vaccine and protective efficacy versus a lethal monkeypox virus (MPXV) challenge were evaluated. In two studies, primary and anamnestic humoral immune responses were similar regardless of tecovirimat treatment while the third study showed reduction in vaccine elicited humoral immunity. Following lethal MPXV challenge, all (12 of 12) vaccinated/placebo treated animals survived, and 12 of 13 vaccinated/tecovirimat treated animals survived. Clinical signs of disease were elevated in tecovirimat treated animals compared to placebo treated animals. This suggests that TPOXX may affect the immunogenicity of ACAM2000 if administered concomitantly. These studies may inform on how vaccine and TPOXX are used during a smallpox outbreak.
Collapse
Affiliation(s)
- Andrew T Russo
- Poxvirus Research Group, SIGA Technologies Inc., Corvallis, OR, United States.
| | | | | | - Jon Prigge
- Southern Research Institute, Frederick, MD, United States
| | | | - Douglas W Grosenbach
- Poxvirus Research Group, SIGA Technologies, Inc., Corvallis, OR 97333, United States.
| | - Dennis Hruby
- SIGA Technologies, Inc., Corvallis, OR 97333, United States
| |
Collapse
|
10
|
Brabin B. An Analysis of the United States and United Kingdom Smallpox Epidemics (1901-5) - The Special Relationship that Tested Public Health Strategies for Disease Control. MEDICAL HISTORY 2020; 64:1-31. [PMID: 31933500 PMCID: PMC6945217 DOI: 10.1017/mdh.2019.74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
At the end of the nineteenth century, the northern port of Liverpool had become the second largest in the United Kingdom. Fast transatlantic steamers to Boston and other American ports exploited this route, increasing the risk of maritime disease epidemics. The 1901-3 epidemic in Liverpool was the last serious smallpox outbreak in Liverpool and was probably seeded from these maritime contacts, which introduced a milder form of the disease that was more difficult to trace because of its long incubation period and occurrence of undiagnosed cases. The characteristics of these epidemics in Boston and Liverpool are described and compared with outbreaks in New York, Glasgow and London between 1900 and 1903. Public health control strategies, notably medical inspection, quarantine and vaccination, differed between the two countries and in both settings were inconsistently applied, often for commercial reasons or due to public unpopularity. As a result, smaller smallpox epidemics spread out from Liverpool until 1905. This paper analyses factors that contributed to this last serious epidemic using the historical epidemiological data available at that time. Though imperfect, these early public health strategies paved the way for better prevention of imported maritime diseases.
Collapse
Affiliation(s)
- Bernard Brabin
- Clinical Division, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Institute of Infection and Global Health, University of Liverpool, UK
- Global Child Health Group, Academic Medical Centre, University of Amsterdam, The Netherlands
| |
Collapse
|
11
|
Logue J, Crozier I, Jahrling PB, Kuhn JH. Post-exposure prophylactic vaccine candidates for the treatment of human Risk Group 4 pathogen infections. Expert Rev Vaccines 2020; 19:85-103. [PMID: 31937163 PMCID: PMC7011290 DOI: 10.1080/14760584.2020.1713756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
Abstract
Introduction: The development of therapeutics and vaccines to combat Risk Group 4 pathogens, which are associated with high case-fatality rates, is a high priority. Postexposure prophylactic vaccines have the potential to bridge classical therapeutic and vaccine applications, but little progress has been reported to date.Areas covered: This review provides an overview of postexposure prophylactic vaccine candidates against Risk Group 4 pathogens.Expert opinion: A few candidate postexposure prophylactic vaccines protect experimental animals infected with a few Risk Group 4 pathogens, such as filoviruses or hantaviruses, but the efficacy of candidate vaccines has not been similarly reported for most other high-consequence pathogens. A major drawback for the further development of existing candidates is the lack of understanding of their mechanisms of action, knowledge of which could help to identify focused paths forward in vaccine development and licensure. These drawbacks to further development ultimately slow progress toward postexposure prophylactic vaccine licensure.
Collapse
Affiliation(s)
- James Logue
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Ian Crozier
- Integrated Research Facility at Fort Detrick, Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
12
|
Andreani J, Arnault JP, Bou Khalil JY, Abrahão J, Tomei E, Vial E, Le Bideau M, Raoult D, La Scola B. Atypical Cowpox Virus Infection in Smallpox-Vaccinated Patient, France. Emerg Infect Dis 2019; 25:212-219. [PMID: 30666929 PMCID: PMC6346447 DOI: 10.3201/eid2502.171433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report a case of atypical cowpox virus infection in France in 2016. The patient sought care for thoracic lesions after injury from the sharp end of a metallic guardrail previously stored in the ground. We isolated a cowpox virus from the lesions and sequenced its whole genome. The patient reported that he had been previously vaccinated against smallpox. We describe an alternative route of cowpox virus infection and raise questions about the immunological status of smallpox-vaccinated patients for circulating orthopoxviruses.
Collapse
|
13
|
Merchlinsky M, Albright A, Olson V, Schiltz H, Merkeley T, Hughes C, Petersen B, Challberg M. The development and approval of tecoviromat (TPOXX ®), the first antiviral against smallpox. Antiviral Res 2019; 168:168-174. [PMID: 31181284 DOI: 10.1016/j.antiviral.2019.06.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022]
Abstract
The classification of smallpox by the U.S. Centers for Disease Control and Prevention (CDC) as a Category A Bioterrorism threat agent has resulted in the U.S. Government investing significant funds to develop and stockpile a suite of medical countermeasures to ameliorate the consequences of a smallpox epidemic. This stockpile includes both vaccines for prophylaxis and antivirals to treat symptomatic patients. In this manuscript, we describe the path to approval for the first therapeutic against smallpox, identified during its development as ST-246, now known as tecovirimat and TPOXX®, a small-molecule antiviral compound sponsored by SIGA Technologies to treat symptomatic smallpox. Because the disease is no longer endemic, the development and approval of TPOXX® was only possible under the U.S. Food and Drug and Administration Animal Rule (FDA 2002). In this article, we describe the combination of animal model studies and clinical trials that were used to satisfy the FDA requirements for the approval of TPOXX ® under the Animal Rule.
Collapse
Affiliation(s)
- Michael Merchlinsky
- Biomedical Advanced Research and Development Authority, 300 C Street SW, Washington DC, 20201, USA.
| | - Andrew Albright
- Biomedical Advanced Research and Development Authority, 300 C Street SW, Washington DC, 20201, USA
| | - Victoria Olson
- National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Mail Stop G-06, 1600 Clifton Road, NE, Atlanta, 30333, Georgia
| | - Helen Schiltz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, 5601 Fishers Lane, Rockville, MD, 20851, USA
| | - Tyler Merkeley
- Biomedical Advanced Research and Development Authority, 300 C Street SW, Washington DC, 20201, USA
| | - Claiborne Hughes
- Biomedical Advanced Research and Development Authority, 300 C Street SW, Washington DC, 20201, USA
| | - Brett Petersen
- National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Mail Stop G-06, 1600 Clifton Road, NE, Atlanta, 30333, Georgia
| | - Mark Challberg
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, 5601 Fishers Lane, Rockville, MD, 20851, USA
| |
Collapse
|
14
|
Gallagher T, Lipsitch M. Postexposure Effects of Vaccines on Infectious Diseases. Epidemiol Rev 2019; 41:13-27. [PMID: 31680134 PMCID: PMC7159179 DOI: 10.1093/epirev/mxz014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
We searched the PubMed database for clinical trials and observational human studies about postexposure vaccination effects, targeting infections with approved vaccines and vaccines licensed outside the United States against dengue, hepatitis E, malaria, and tick-borne encephalitis. Studies of animal models, serologic testing, and pipeline vaccines were excluded. Eligible studies were evaluated by definition of exposure; attempts to distinguish pre- and postexposure effects were rated on a scale of 1 to 4. We screened 4,518 articles and ultimately identified for this review 14 clinical trials and 31 observational studies spanning 7 of the 28 vaccine-preventable diseases. For secondary attack rate, the following medians were found for postexposure vaccination effectiveness: hepatitis A, 85% (interquartile range (IQR), 28; n = 5 sources); hepatitis B, 85% (IQR, 22; n = 5 sources); measles, 83% (IQR, 21; n = 8 sources); varicella, 67% (IQR: 48; n = 9 sources); smallpox, 45% (IQR, 39; n = 4 sources); and mumps, 38% (IQR, 7; n = 2 sources). For case fatality proportions resulting from rabies and smallpox, the median vaccine postexposure efficacies were 100% (IQR, 0; n = 6 sources) and 63% (IQR, 50; n = 8 sources), respectively. Many available vaccines can modify or preclude disease if administered after exposure. This postexposure effectiveness could be important to consider during vaccine trials and while developing new vaccines.
Collapse
Affiliation(s)
- Tara Gallagher
- Dartmouth College Department of Physics and Astronomy, Hanover, New Hampshire
| | - Marc Lipsitch
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| |
Collapse
|
15
|
Singh SK, Kuhn JH. Clinical Management of Patients Infected with Highly Pathogenic Microorganisms. DEFENSE AGAINST BIOLOGICAL ATTACKS 2019. [PMCID: PMC7123672 DOI: 10.1007/978-3-030-03053-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The clinical management of high consequence infectious diseases (HCID) poses an immense challenge, seen largely varying standards in terms of infection prevention control (IPC) as well as in quality of clinical care. This chapter gives an overview of possible treatment as well as IPC options. Lessons learned within the German Permanent Working Group of Competence and Treatment Centres for highly infectious, life-threatening diseases (STAKOB) are taken into account.
Collapse
Affiliation(s)
- Sunit K. Singh
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jens H. Kuhn
- NIH/NIAID, Division of Clinical Research, Integrated Research Facility at Fort Detrick, Frederick, MD USA
| |
Collapse
|
16
|
Russo AT, Grosenbach DW, Brasel TL, Baker RO, Cawthon AG, Reynolds E, Bailey T, Kuehl PJ, Sugita V, Agans K, Hruby DE. Effects of Treatment Delay on Efficacy of Tecovirimat Following Lethal Aerosol Monkeypox Virus Challenge in Cynomolgus Macaques. J Infect Dis 2018; 218:1490-1499. [PMID: 29982575 PMCID: PMC6151088 DOI: 10.1093/infdis/jiy326] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Background Tecovirimat (ST-246) is being developed as an antiviral therapeutic for smallpox for use in the event of an accidental or intentional release. The last reported case of smallpox was 1978 but the potential for use of variola virus for biowarfare has renewed interest in smallpox antiviral therapeutics. Methods Cynomolgus macaques were challenged with a lethal dose of monkeypox virus (MPXV) by aerosol as a model for human smallpox and treated orally with 10 mg/kg tecovirimat once daily starting up to 8 days following challenge. Monkeys were monitored for survival, lesions, and clinical signs of disease. Samples were collected for measurement of viremia by quantitative real-time polymerase chain reaction, and for white blood cell counts. Results Survival in animals initiating treatment up to 5 days postchallenge was 100%. In animals treated starting 6, 7, or 8 days following challenge, survival was 67%, 100%, and 50%, respectively. Treatment initiation up to 4 days following challenge reduced severity of clinical manifestations of infection. Conclusions Tecovirimat treatment initiated up to 8 days following a lethal aerosol MPXV challenge improves survival and, when initiated earlier than 5 days after challenge, provides protection from clinical effects of disease, supporting the conclusion that it is a promising smallpox antiviral therapeutic candidate.
Collapse
Affiliation(s)
- Andrew T Russo
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- Poxvirus Research Group, SIGA Technologies, Inc, Corvallis, Oregon
| | | | - Trevor L Brasel
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston
| | - Robert O Baker
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- Microbiology and Molecular Biology Division, Illinois Institute of Technology Research Institute, Chicago
| | - Andrew G Cawthon
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- Bacteriology, Virology and In Vitro Operations, Battelle Memorial Institute, Columbus, Ohio
| | - Erin Reynolds
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- Department of Pathology, University of Texas Medical Branch, Galveston
| | - Tara Bailey
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- Covance Laboratories, Madison, Wisconsin
| | - Philip J Kuehl
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Victoria Sugita
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- University of New Mexico, Albuquerque
| | - Krystle Agans
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | | |
Collapse
|
17
|
Melamed S, Israely T, Paran N. Challenges and Achievements in Prevention and Treatment of Smallpox. Vaccines (Basel) 2018; 6:vaccines6010008. [PMID: 29382130 PMCID: PMC5874649 DOI: 10.3390/vaccines6010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/15/2018] [Accepted: 01/26/2018] [Indexed: 01/17/2023] Open
Abstract
Declaration of smallpox eradication by the WHO in 1980 led to discontinuation of the worldwide vaccination campaign. The increasing percentage of unvaccinated individuals, the existence of its causative infectious agent variola virus (VARV), and the recent synthetic achievements increase the threat of intentional or accidental release and reemergence of smallpox. Control of smallpox would require an emergency vaccination campaign, as no other protective measure has been approved to achieve eradication and ensure worldwide protection. Experimental data in surrogate animal models support the assumption, based on anecdotal, uncontrolled historical data, that vaccination up to 4 days postexposure confers effective protection. The long incubation period, and the uncertainty of the exposure status in the surrounding population, call for the development and evaluation of safe and effective methods enabling extension of the therapeutic window, and to reduce the disease manifestations and vaccine adverse reactions. To achieve these goals, we need to evaluate the efficacy of novel and already licensed vaccines as a sole treatment, or in conjunction with immune modulators and antiviral drugs. In this review, we address the available data, recent achievements, and open questions.
Collapse
Affiliation(s)
- Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| |
Collapse
|
18
|
|
19
|
Berhanu A, Prigge JT, Silvera PM, Honeychurch KM, Hruby DE, Grosenbach DW. Treatment with the smallpox antiviral tecovirimat (ST-246) alone or in combination with ACAM2000 vaccination is effective as a postsymptomatic therapy for monkeypox virus infection. Antimicrob Agents Chemother 2015; 59:4296-300. [PMID: 25896687 PMCID: PMC4468657 DOI: 10.1128/aac.00208-15] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/08/2015] [Indexed: 12/17/2022] Open
Abstract
The therapeutic efficacies of smallpox vaccine ACAM2000 and antiviral tecovirimat given alone or in combination starting on day 3 postinfection were compared in a cynomolgus macaque model of lethal monkeypox virus infection. Postexposure administration of ACAM2000 alone did not provide any protection against severe monkeypox disease or mortality. In contrast, postexposure treatment with tecovirimat alone or in combination with ACAM2000 provided full protection. Additionally, tecovirimat treatment delayed until day 4, 5, or 6 postinfection was 83% (days 4 and 5) or 50% (day 6) effective.
Collapse
|
20
|
Parker S, Crump R, Foster S, Hartzler H, Hembrador E, Lanier ER, Painter G, Schriewer J, Trost LC, Buller RM. Co-administration of the broad-spectrum antiviral, brincidofovir (CMX001), with smallpox vaccine does not compromise vaccine protection in mice challenged with ectromelia virus. Antiviral Res 2014; 111:42-52. [PMID: 25128688 PMCID: PMC9533899 DOI: 10.1016/j.antiviral.2014.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/02/2022]
Abstract
Natural orthopoxvirus outbreaks such as vaccinia, cowpox, cattlepox and buffalopox continue to cause morbidity in the human population. Monkeypox virus remains a significant agent of morbidity and mortality in Africa. Furthermore, monkeypox virus’s broad host-range and expanding environs make it of particular concern as an emerging human pathogen. Monkeypox virus and variola virus (the etiological agent of smallpox) are both potential agents of bioterrorism. The first line response to orthopoxvirus disease is through vaccination with first-generation and second-generation vaccines, such as Dryvax and ACAM2000. Although these vaccines provide excellent protection, their widespread use is impeded by the high level of adverse events associated with vaccination using live, attenuated virus. It is possible that vaccines could be used in combination with antiviral drugs to reduce the incidence and severity of vaccine-associated adverse events, or as a preventive in individuals with uncertain exposure status or contraindication to vaccination. We have used the intranasal mousepox (ectromelia) model to evaluate the efficacy of vaccination with Dryvax or ACAM2000 in conjunction with treatment using the broad spectrum antiviral, brincidofovir (BCV, CMX001). We found that co-treatment with BCV reduced the severity of vaccination-associated lesion development. Although the immune response to vaccination was quantifiably attenuated, vaccination combined with BCV treatment did not alter the development of full protective immunity, even when administered two days following ectromelia challenge. Studies with a non-replicating vaccine, ACAM3000 (MVA), confirmed that BCV’s mechanism of attenuating the immune response following vaccination with live virus was, as expected, by limiting viral replication and not through inhibition of the immune system. These studies suggest that, in the setting of post-exposure prophylaxis, co-administration of BCV with vaccination should be considered a first response to a smallpox emergency in subjects of uncertain exposure status or as a means of reduction of the incidence and severity of vaccine-associated adverse events.
Collapse
Affiliation(s)
- Scott Parker
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Ryan Crump
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Scott Foster
- Chimerix Inc., 2505 Meridian Parkway, Suite 340, Durham, NC 27713, United States
| | - Hollyce Hartzler
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Ed Hembrador
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - E Randall Lanier
- Chimerix Inc., 2505 Meridian Parkway, Suite 340, Durham, NC 27713, United States
| | - George Painter
- Chimerix Inc., 2505 Meridian Parkway, Suite 340, Durham, NC 27713, United States
| | - Jill Schriewer
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Lawrence C Trost
- Chimerix Inc., 2505 Meridian Parkway, Suite 340, Durham, NC 27713, United States
| | - R Mark Buller
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States.
| |
Collapse
|
21
|
Rapid expansion of CD8+ T cells in wild-type and type I interferon receptor-deficient mice correlates with protection after low-dose emergency immunization with modified vaccinia virus Ankara. J Virol 2014; 88:10946-57. [PMID: 25008931 DOI: 10.1128/jvi.00945-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Immunization with modified vaccinia virus Ankara (MVA) can rapidly protect mice against lethal ectromelia virus (ECTV) infection, serving as an experimental model for severe systemic infections. Importantly, this early protective capacity of MVA vaccination completely depends on virus-specific cytotoxic CD8(+) T cell responses. We used MVA vaccination in the mousepox challenge model using ECTV infection to investigate the previously unknown factors required to elicit rapid protective T cell immunity in normal C57BL/6 mice and in mice lacking the interferon alpha/beta receptor (IFNAR(-/-)). We found a minimal dose of 10(5) PFU of MVA vaccine fully sufficient to allow robust protection against lethal mousepox, as assessed by the absence of disease symptoms and failure to detect ECTV in organs from vaccinated animals. Moreover, MVA immunization at low dosage also protected IFNAR(-/-) mice, indicating efficient activation of cellular immunity even in the absence of type I interferon signaling. When monitoring for virus-specific CD8(+) T cell responses in mice vaccinated with the minimal protective dose of MVA, we found significantly enhanced levels of antigen-specific T cells in animals that were MVA vaccinated and ECTV challenged compared to mice that were only vaccinated. The initial priming of naive CD8(+) T cells by MVA immunization appears to be highly efficient and, even at low doses, mediates a rapid in vivo burst of pathogen-specific T cells upon challenge. Our findings define striking requirements for protective emergency immunization against severe systemic infections with orthopoxviruses. IMPORTANCE We demonstrate that single-shot low-dose immunizations with vaccinia virus MVA can rapidly induce T cell-mediated protective immunity against lethal orthopoxvirus infections. Our data provide new evidence for an efficient protective capacity of vaccination with replication-deficient MVA. These data are of important practical relevance for public health, as the effectiveness of a safety-tested, next-generation smallpox vaccine based on MVA is still debated. Furthermore, producing sufficient amounts of vaccine is expected to be a major challenge should an outbreak occur. Moreover, prevention of other infections may require rapidly protective immunization; hence, MVA could be an extremely useful vaccine for delivering heterologous T cell antigens, particularly for infectious diseases that fit a scenario of emergency vaccination.
Collapse
|