1
|
Liu J, Sun J, Ding X, Liu W, Wang Y, Wang Z, Peng H, Zhang Y, Su W, Jiang C. A nucleoside-modified mRNA vaccine forming rabies virus-like particle elicits strong cellular and humoral immune responses against rabies virus infection in mice. Emerg Microbes Infect 2024; 13:2389115. [PMID: 39129566 PMCID: PMC11328811 DOI: 10.1080/22221751.2024.2389115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Rabies is a lethal zoonotic disease that threatens human health. As the only viral surface protein, the rabies virus (RABV) glycoprotein (G) induces main neutralizing antibody (Nab) responses; however, Nab titre is closely correlated with the conformation of G. Virus-like particles (VLP) formed by the co-expression of RABV G and matrix protein (M) improve retention and antigen presentation, inducing broad, durable immune responses. RABV nucleoprotein (N) can elicit humoral and cellular immune responses. Hence, we developed a series of nucleoside-modified RABV mRNA vaccines encoding wild-type G, soluble trimeric RABV G formed by an artificial trimer motif (tG-MTQ), membrane-anchored prefusion-stabilized G (preG). Furthermore, we also developed RABV VLP mRNA vaccine co-expressing preG and M to generate VLPs, and VLP/N mRNA vaccine co-expressing preG, M, and N. The RABV mRNA vaccines induced higher humoral and cellular responses than inactivated rabies vaccine, and completely protected mice against intracerebral challenge. Additionally, the IgG and Nab titres in RABV preG, VLP and VLP/N mRNA groups were significantly higher than those in G and tG-MTQ groups. A single administration of VLP or VLP/N mRNA vaccines elicited protective Nab responses, the Nab titres were significantly higher than that in inactivated rabies vaccine group at day 7. Moreover, RABV VLP and VLP/N mRNA vaccines showed superior capacities to elicit potent germinal centre, long-lived plasma cell and memory B cell responses, which linked to high titre and durable Nab responses. In summary, our data demonstrated that RABV VLP and VLP/N mRNA vaccines could be promising candidates against rabies.
Collapse
MESH Headings
- Animals
- Rabies Vaccines/immunology
- Rabies Vaccines/administration & dosage
- Rabies Vaccines/genetics
- Rabies/prevention & control
- Rabies/immunology
- Rabies virus/immunology
- Rabies virus/genetics
- Mice
- Immunity, Humoral
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Immunity, Cellular
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Female
- mRNA Vaccines/immunology
- Mice, Inbred BALB C
- Nucleosides/immunology
- Glycoproteins/immunology
- Glycoproteins/genetics
- Humans
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Viral Matrix Proteins/immunology
- Viral Matrix Proteins/genetics
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/immunology
Collapse
Affiliation(s)
- Jie Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Jie Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Xue Ding
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Wenhao Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Yipeng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Zihan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Hanyu Peng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
2
|
Askri H, Kallèl H, Rourou S, Snoussi MA, Lachheb J. Analytical Methods for Evaluating the Immunogenicity of Recombinant Rabies Virus Glycoprotein Expressed in the Yeast Komagataella phaffii. Immunol Invest 2024; 53:1308-1329. [PMID: 39252192 DOI: 10.1080/08820139.2024.2399589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND Rabies is a fatal viral disease preventable by vaccination. The multiple-dose regimens, along with the high production costs of current rabies vaccines, limit their use in rabies-endemic countries with developing economies and consequently there is a need for new efficacious, low-cost rabies vaccines. This study investigates the immunogenicity of recombinant rabies virus glycoprotein (rRABVG), expressed in the yeast Komagataella phaffii (K. phaffii), as a candidate subunit rabies vaccine. METHODS Monoclonal antibodies were used to confirm neutralizing epitopes presence on the rRABVG. The rRABVG potency was estimated by antigen quantification methods using ELISA and SRID. Serological methods, specifically ELISA and RFFIT, were applied to investigate the immune response of mice groups immunized with rRABVG varying doses, with or without adjuvant. RESULTS The potency estimated by antigen quantification was dependent on the method employed. Active immunization assessment using ELISA was effective when the solid-phase antigen is the rRABVG. The RFFIT data indicated that a single adjuvanted dose of 20 µg rRABVG is sufficient for virus-neutralizing antibodies induction at a protective level of 0.5 IU/mL within 10 days post immunization. CONCLUSION These data demonstrate that K. phaffii produced rRABVG is immunoactive and could be an attractive candidate to develop a low-cost subunit rabies vaccine.
Collapse
Affiliation(s)
- Hana Askri
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Hela Kallèl
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Samia Rourou
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mohamed Ali Snoussi
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Jihene Lachheb
- Laboratory of Epidemiology and Veterinary Microbiology LR 16 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
3
|
Chen X, Liao B, Ren T, Liao Z, Huang Z, Lin Y, Zhong S, Li J, Wen S, Li Y, Lin X, Du X, Yang Y, Guo J, Zhu X, Lin H, Liu R, Wang J. Adjuvant activity of cordycepin, a natural derivative of adenosine from Cordyceps militaris, on an inactivated rabies vaccine in an animal model. Heliyon 2024; 10:e24612. [PMID: 38293396 PMCID: PMC10826310 DOI: 10.1016/j.heliyon.2024.e24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Vaccination is the most feasible way of preventing rabies, an ancient zoonosis that remains a major public health concern globally. However, administration of inactivated rabies vaccination without adjuvants is always inefficient and necessitates four to five injections. In the current study, we explored the adjuvant characteristics of cordycepin, a major bioactive component of Cordyceps militaris, to boost immune responses against a commercially available rabies vaccine. We found that cordycepin could stimulate stronger phenotypic and functional maturation of dendritic cells (DCs). For animal experiments, mice were immunized 3 times with rabies vaccine in the presence or absence of cordycepin at 1-week interval. Analysis of T cell differentiation and serum antibody isotypes showed that humoral immunity was dominant with a Th2 biased immune response. These results were also supported by the raised ratio of follicular helper T cells (TFH) and germinal center B cells (GCB). Thus, titer of rabies virus neutralizing antibody (RVNAb) and rabies virus-specific memory B cells were both raised as a result. Furthermore, administration of cordycepin did not cause pathological phenomena or body weight loss. The findings indicate that cordycepin could be used as a promising adjuvant for rabies vaccines to get a higher range of protection without any side effects.
Collapse
Affiliation(s)
- Xin Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Boyu Liao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Tianci Ren
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhipeng Liao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zijie Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yujuan Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Shouhao Zhong
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jiaying Li
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Shun Wen
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yingyan Li
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiaohan Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xingchen Du
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yuhui Yang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Jiubiao Guo
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiaohui Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Haishu Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Rui Liu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jingbo Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| |
Collapse
|
4
|
Li M, Fang E, Wang Y, Shi L, Li J, Peng Q, Li X, Zhao D, Liu X, Liu X, Liu J, Xu H, Wang H, Huang Y, Yang R, Yue G, Suo Y, Wu X, Cao S, Li Y. An mRNA vaccine against rabies provides strong and durable protection in mice. Front Immunol 2023; 14:1288879. [PMID: 37954577 PMCID: PMC10639119 DOI: 10.3389/fimmu.2023.1288879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Rabies is a serious public health problem worldwide for which an effective treatment method is lacking but can be prevented by vaccines. Current vaccines are produced in cell or egg cultures, which are both costly and time consuming. Methods Here, a non-replicating mRNA vaccine (RV021) encoding the rabies virus glycoprotein was developed in vitro, and its immunogenicity and protective efficacy against live virus was evaluated in mice. Results A two-dose vaccination with 1 μg of RV021 at 7-day intervals induced a protective level of neutralizing antibody that was maintained for at least 260 days. RV021 induced a robust cellular immune response that was significantly superior to that of an inactivated vaccine. Two doses of 1 μg RV021 provided full protection against challenge with CVS of 30~60-fold lethal dose, 50%. Vaccine potency testing (according to the National Institutes of Health) in vivo revealed that the potency of RV021 at 15 μg/dose was 7.5 IU/dose, which is substantially higher than the standard for lot release of rabies vaccines for current human use. Conclusion The mRNA vaccine RV021 induces a strong protective immune response in mice, providing a new and promising strategy for human rabies prevention and control.
Collapse
Affiliation(s)
- Miao Li
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- Vaccines R&D Department, Changchun Institute of Biological Products, Changchun, China
| | - Enyue Fang
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yunpeng Wang
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Leitai Shi
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jia Li
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Qinhua Peng
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xingxing Li
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Danhua Zhao
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaohui Liu
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- Vaccines R&D Department, Changchun Institute of Biological Products, Changchun, China
| | - Xinyu Liu
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jingjing Liu
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Hongshan Xu
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Hongyu Wang
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yanqiu Huang
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Ren Yang
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Guangzhi Yue
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yue Suo
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaohong Wu
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Shouchun Cao
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yuhua Li
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
5
|
Miao L, Wang X, Zhao C, Li Y, He W, Li Y, Zhang J, Xu X, Feng X. A New Antibody Binding Test for Potency Assessment of the Human Rabies Vaccine. Viral Immunol 2023; 36:122-126. [PMID: 36827324 DOI: 10.1089/vim.2022.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
This study established a new protocol of the antibody binding test to evaluate the potency of the rabies vaccine containing the final bulk and the product. The principle of this experiment is to combine rabies vaccine with quantitative anti-rabies virus neutralizing antibody. After combination, the remaining rabies vaccine is combined with the quantitative fluorescent labeled rabies virus. After this, observe the remaining fluorescent labeled rabies virus, calculate the fluorescence area with fluorescence observation equipment, then calculate the potency of rabies vaccine by Reed and Muench method. The test results of many batches of rabies vaccine final bulk and finished products showed that the potency detected by this method was consistent with that of National Institute of Health method.
Collapse
Affiliation(s)
- Li Miao
- Department of Vaccine Research, Changchun Zhuoyi Biological Co., Ltd., Changchun, China
| | - Xiaoli Wang
- Department of Vaccine Research, Changchun Zhuoyi Biological Co., Ltd., Changchun, China
| | - Chengshuang Zhao
- Department of Vaccine Research, Changchun Zhuoyi Biological Co., Ltd., Changchun, China
| | - Yanyu Li
- Department of Vaccine Research, Changchun Zhuoyi Biological Co., Ltd., Changchun, China
| | - Wei He
- Department of Vaccine Research, Changchun Zhuoyi Biological Co., Ltd., Changchun, China
| | - Yue Li
- Department of Vaccine Research, Changchun Zhuoyi Biological Co., Ltd., Changchun, China
| | - Jingzhi Zhang
- Department of Vaccine Research, Changchun Zhuoyi Biological Co., Ltd., Changchun, China
| | - Xiuzhi Xu
- Department of Vaccine Research, Changchun Zhuoyi Biological Co., Ltd., Changchun, China
| | - Xingfu Feng
- Department of Vaccine Research, Changchun Zhuoyi Biological Co., Ltd., Changchun, China
| |
Collapse
|
6
|
Bai S, Yang T, Zhu C, Feng M, Zhang L, Zhang Z, Wang X, Yu R, Pan X, Zhao C, Xu J, Zhang X. A single vaccination of nucleoside-modified Rabies mRNA vaccine induces prolonged highly protective immune responses in mice. Front Immunol 2023; 13:1099991. [PMID: 36761167 PMCID: PMC9907168 DOI: 10.3389/fimmu.2022.1099991] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Rabies is a lethal zoonotic disease that kills approximately 60,000 people each year. Although inactivated rabies vaccines are available, multiple-dose regimensare recommended for pre-exposure prophylaxis or post-exposure prophylaxis,which cuts down the cost- and time-effectiveness, especially in low- and middle incomecountries. Methods We developed a nucleoside-modified Rabies mRNA-lipid nanoparticle vaccine (RABV-G mRNA-LNP) encoding codon-optimized viral glycoprotein and assessed the immunogenicity and protective efficacy of this vaccine in mice comparing to a commercially available inactivated vaccine. Results We first showed that, when evaluated in mice, a single vaccination of RABV-G mRNA with a moderate or high dose induces more potent humoral and T-cell immune responses than that elicited by three inoculations of the inactivated vaccine. Importantly, mice receiving a single immunization of RABV-G mRNA, even at low doses, showed full protection against the lethal rabies challenge. We further demonstrated that the humoral immune response induced by single RABV-G mRNA vaccination in mice could last for at least 25 weeks, while a two-dose strategy could extend the duration of the highly protective response to one year or even longer. In contrast, the three-dose regimen of inactivated vaccine failed to do so. Conclusion Our study confirmed that it is worth developing a single-dose nucleoside-modified Rabies mRNA-LNP vaccine, which could confer much prolonged and more effective protection.
Collapse
Affiliation(s)
- Shimeng Bai
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tianhan Yang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meiqi Feng
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ziling Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang Wang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Rui Yu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xinghao Pan
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China,*Correspondence: Xiaoyan Zhang, ; Jianqing Xu, ; Chen Zhao,
| | - Jianqing Xu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Clinical Center of Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, China,*Correspondence: Xiaoyan Zhang, ; Jianqing Xu, ; Chen Zhao,
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Clinical Center of Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, China,*Correspondence: Xiaoyan Zhang, ; Jianqing Xu, ; Chen Zhao,
| |
Collapse
|
7
|
Performance Comparison of Recombinant Baculovirus and Rabies Virus-like Particles production Using Two Culture Platforms. Vaccines (Basel) 2022; 11:vaccines11010039. [PMID: 36679884 PMCID: PMC9867115 DOI: 10.3390/vaccines11010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
This work aimed to assess, following upstream optimization in Schott flasks, the scalability from this culture platform to a stirred-tank bioreactor in order to yield rabies-recombinant baculovirus, bearing genes of G (BVG) and M (BVM) proteins, and to obtain rabies virus-like particles (VLP) from them, using Sf9 insect cells as a host. Equivalent assays in Schott flasks and a bioreactor were performed to compare both systems and a multivariate statistical approach was also carried out to maximize VLP production as a function of BVG and BVM's multiplicity of infection (MOI) and harvest time (HT). Viable cell density, cell viability, virus titer, BVG and BVM quantification by dot-blot, and BVG quantification by Enzyme-Linked Immunosorbent Assay (ELISA) were monitored throughout the assays. Furthermore, transmission electron microscopy was used to characterize rabies VLP. The optimal combination for maximum VLP expression was BVG and BVM MOI of 2.3 pfu/cell and 5.1 pfu/cell, respectively, and 108 h of harvest time. The current study confirmed that the utilization of Schott flasks and a benchtop bioreactor under the conditions applied herein are equivalent regarding the cell death kinetics corresponding to the recombinant baculovirus infection process in Sf9 cells. According to the results, the hydrodynamic and chemical differences in both systems seem to greatly affect the virus and VLP integrity after release.
Collapse
|
8
|
Zhang Y, Zhang M, Liao X, Yu Y, Liu Q, Luo Y, Luo J, Guo X. Interleukin-25 enhances humoral immune responses caused by the rabies virus. Virulence 2022; 13:1446-1454. [PMID: 35999776 PMCID: PMC9423819 DOI: 10.1080/21505594.2022.2116146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Rabies is an important zoonotic disease caused by the rabies virus (RABV). Currently, no effective treatment is available for this condition. The prevention and control of rabies mainly depend on effective vaccination. Therefore, it is crucial to enhance the immune responses induced by the rabies vaccine. Virus neutralizing antibodies (VNA) induced by rabies vaccines are important for the clearance of RABV. Interleukin-25 (IL-25) has been demonstrated to activate T helper type 2 cells that contribute to humoral immune responses. The IL-25 gene was inserted into the genome of RABV, and the immunogenicity of recombinant RABV with IL-25 gene was investigated to develop more efficient rabies vaccines. Here, we found that the expression of IL-25 did not affect RABV production in vitro and pathogenicity in vivo. However, recombinant RABV expression of IL-25 induced a better VNA level than the parental virus in mice. In addition, expression of IL-25 enhanced the IgG1 level induced by RABV. Furthermore, mice immunized with recombinant RABV showed a higher survival rate and milder clinical signs than those immunized with the parent strain after challenge with CVS-11. Thus, these results showed that IL-25 could enhance the humoral immune responses induced by RABV, suggesting that IL-25 can be used as a viral vaccine adjuvant.
Collapse
Affiliation(s)
- Yue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengwei Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xilan Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yunsong Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Ng WM, Fedosyuk S, English S, Augusto G, Berg A, Thorley L, Haselon AS, Segireddy RR, Bowden TA, Douglas AD. Structure of trimeric pre-fusion rabies virus glycoprotein in complex with two protective antibodies. Cell Host Microbe 2022; 30:1219-1230.e7. [PMID: 35985336 PMCID: PMC9605875 DOI: 10.1016/j.chom.2022.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
Rabies virus (RABV) causes lethal encephalitis and is responsible for approximately 60,000 deaths per year. As the sole virion-surface protein, the rabies virus glycoprotein (RABV-G) mediates host-cell entry. RABV-G's pre-fusion trimeric conformation displays epitopes bound by protective neutralizing antibodies that can be induced by vaccination or passively administered for post-exposure prophylaxis. We report a 2.8-Å structure of a RABV-G trimer in the pre-fusion conformation, in complex with two neutralizing and protective monoclonal antibodies, 17C7 and 1112-1, that recognize distinct epitopes. One of these antibodies is a licensed prophylactic (17C7, Rabishield), which we show locks the protein in pre-fusion conformation. Targeted mutations can similarly stabilize RABV-G in the pre-fusion conformation, a key step toward structure-guided vaccine design. These data reveal the higher-order architecture of a key therapeutic target and the structural basis of neutralization by antibodies binding two key antigenic sites, and this will facilitate the development of improved vaccines and prophylactic antibodies.
Collapse
Affiliation(s)
- Weng M Ng
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Sofiya Fedosyuk
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Solomon English
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Gilles Augusto
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Adam Berg
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Luke Thorley
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anna-Sophie Haselon
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Rameswara R Segireddy
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Alexander D Douglas
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
10
|
Interferon Inhibition Enhances the Pilot-Scale Production of Rabies Virus in Human Diploid MRC-5 Cells. Viruses 2021; 14:v14010049. [PMID: 35062253 PMCID: PMC8779192 DOI: 10.3390/v14010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/21/2022] Open
Abstract
Inactivated vaccines based on cell culture are very useful in the prevention and control of many diseases. The most popular strategy for the production of inactivated vaccines is based on monkey-derived Vero cells, which results in high productivity of the virus but has a certain carcinogenic risk due to non-human DNA contamination. Since human diploid cells, such as MRC-5 cells, can produce a safer vaccine, efforts to develop a strategy for inactivated vaccine production using these cells have been investigated using MRC-5 cells. However, most viruses do not replicate efficiently in MRC-5 cells. In this study, we found that rabies virus (RABV) infection activated a robust interferon (IFN)-β response in MRC-5 cells but almost none in Vero cells, suggesting that the IFN response could be a key limiting factor for virus production. Treatment of the MRC-5 cells with IFN inhibitors increased RABV titers by 10-fold. Additionally, the RABV titer yield was improved five-fold when using IFN receptor 1 (IFNAR1) antibodies. As such, we established a stable IFNAR1-deficient MRC-5 cell line (MRC-5IFNAR1−), which increased RABV production by 6.5-fold compared to normal MRC-5 cells. Furthermore, in a pilot-scale production in 1500 square centimeter spinner flasks, utilization of the MRC-5IFNAR1− cell line or the addition of IFN inhibitors to MRC cells increased RABV production by 10-fold or four-fold, respectively. Thus, we successfully established a human diploid cell-based pilot scale virus production platform via inhibition of IFN response for rabies vaccines, which could also be used for other inactivated virus vaccine production.
Collapse
|
11
|
Embregts CWE, Begeman L, Voesenek CJ, Martina BEE, Koopmans MPG, Kuiken T, GeurtsvanKessel CH. Street RABV Induces the Cholinergic Anti-inflammatory Pathway in Human Monocyte-Derived Macrophages by Binding to nAChr α7. Front Immunol 2021; 12:622516. [PMID: 33679766 PMCID: PMC7933221 DOI: 10.3389/fimmu.2021.622516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Rabies virus (RABV) is able to reach the central nervous system (CNS) without triggering a strong immune response, using multiple mechanisms to evade and suppress the host immune system. After infection via a bite or scratch from a rabid animal, RABV comes into contact with macrophages, which are the first antigen-presenting cells (APCs) that are recruited to the area and play an essential role in the onset of a specific immune response. It is poorly understood how RABV affects macrophages, and if the interaction contributes to the observed immune suppression. This study was undertaken to characterize the interactions between RABV and human monocyte-derived macrophages (MDMs). We showed that street RABV does not replicate in human MDMs. Using a recombinant trimeric RABV glycoprotein (rRABV-tG) we showed binding to the nicotinic acetylcholine receptor alpha 7 (nAChr α7) on MDMs, and confirmed the specificity using the nAChr α7 antagonist alpha-bungarotoxin (α-BTX). We found that this binding induced the cholinergic anti-inflammatory pathway (CAP), characterized by a significant decrease in tumor necrosis factor α (TNF-α) upon LPS challenge. Using confocal microscopy we found that induction of the CAP is associated with significant cytoplasmic retention of nuclear factor κB (NF-κB). Co-cultures of human MDMs exposed to street RABV and autologous T cells further revealed that the observed suppression of MDMs might affect their function as T cell activators as well, as we found a significant decrease in proliferation of CD8+ T cells and an increased production of the anti-inflammatory cytokine IL-10. Lastly, using flow cytometric analysis we observed a significant increase in expression of the M2-c surface marker CD163, hinting that street RABV might be able to affect macrophage polarization. Taken together, these results show that street RABV is capable of inducing an anti-inflammatory state in human macrophages, possibly affecting T cell functioning.
Collapse
Affiliation(s)
| | - Lineke Begeman
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | | | | | | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
12
|
Abramova EG, Nikiforov AK, Movsesyants AA, Zhulidov IM. Rabies and rabies immunobiological preparations: vaccinations Pasteur to the contemporary biotechnology. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2019. [DOI: 10.36233/0372-9311-2019-5-83-94] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The review provides information on topical issues of rabies spread in the world and the Russian Federation, the stages of development and directions of improvement of available preventive anti-rabies immunobiological preparation used in medical practice for active and passive immunization against rabies. The current level of biotechnology development with the use of molecular biology and genetic engineering methods opens up prospects for the design of new safe effective anti-rabies drugs using recombinant technologies. Expanding the range of immunobiological drugs against rabies and their introduction into health practice will contribute to the elimination of human mortality from rabies.
Collapse
Affiliation(s)
| | - A. K. Nikiforov
- Russian Research Institute for Plague Control «Microb»;
Vavilov Saratov State Agrarian University
| | | | | |
Collapse
|
13
|
Luo J, Zhang Y, He H, Liu Q, Huang S, Guo X. Artesunate enhances the immune response of rabies vaccine as an adjuvant. Vaccine 2019; 37:7478-7481. [PMID: 31582270 DOI: 10.1016/j.vaccine.2019.09.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
Rabies is an ancient zoonosis that continues to be an important health problem worldwide. Vaccination with rabies vaccine is the most important strategy to prevent rabies. Adjuvants contribute to the immune response of viral vaccine. The aim of this study was to investigate whether artemisinin derivatives artesunate and dihydroartemisinin could enhance the immunogenicity of inactivated rabies virus in mice. Administration of artesunate or dihydroartemisinin by intramuscular injection at a dose of 5 mg/kg did not cause body weight loss and unusual symptoms in mice. Mice were immunized with inactivated CVS-11 or inactivated rHEP-dG together with either artesunate or dihydroartemisinin through intramuscular injection. Blood samples were collected to investigate the virus-neutralizing antibody (VNA) titers, and challenge assays were then conducted. The results showed that the rabies VNA titers in mice co-treated with artesunate rather than dihydroartemisinin were significantly higher than in the control animals treated with the phosphate buffered saline (PBS). In addition, mice co-treated with artesunate survived from lethal rabies virus challenge compared with those treated with PBS. In contrast, co-treatment with dihydroartemisinin did not improve the survival rate of the challenged mice. The findings indicate that artesunate could be used as a new candidate adjuvant for rabies vaccination.
Collapse
Affiliation(s)
- Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Yue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hongling He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Debnath A, Pathak DC, Ramamurthy N, Mohd G, Pandey AB, Upmanyu V, Tiwari AK, Saravanan R, Chellappa MM, Dey S. Serological profiling of rabies antibodies by enzyme-linked immunosorbent assay and its comparative analysis with rapid fluorescent focus inhibition test in mouse model. Vet World 2019; 12:126-130. [PMID: 30936665 PMCID: PMC6431817 DOI: 10.14202/vetworld.2019.126-130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/11/2018] [Indexed: 11/30/2022] Open
Abstract
Aim: In this study, we have used enzyme-linked immunosorbent assay (ELISA) as an alternative test to replace the cumbersome rapid fluorescent focus inhibition test (RFFIT) to ascertain the immune status of immunized mice against rabies virus. Materials and Methods: Rabies is a devastating disease worldwide caused by rabies virus. Proper usage of pre- or post-exposure rabies vaccine can prevent the disease transmission. In this study, mice were immunized with Vero cell-adapted inactivated rabies vaccine. RFFIT was used as a test to determine the serum neutralizing titers in infected/vaccinated mice. Seroprofiling of mice sera was done in vitro by ELISA. Results: Twenty-one days post-immunization, both ELISA and RFFIT assays indicated similar antibody levels in mice sera that were immunized with Vero cell-adapted inactivated rabies vaccine. Both the tests were correlated, and the linearity was verified by the regression line (R²=0.979). Conclusion: In this study, we profiled the serological status of Vero cell-adapted inactivated rabies vaccine through ELISA in mice model that correlated well with the OIE gold standard test RFFIT.
Collapse
Affiliation(s)
- Ashis Debnath
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Dinesh C Pathak
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Narayan Ramamurthy
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Gulam Mohd
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A B Pandey
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vikramaditya Upmanyu
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A K Tiwari
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - R Saravanan
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Madhan Mohan Chellappa
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sohini Dey
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
15
|
Development of a Time and Cost Benefit Antibody Binding Test-Based Method for Determination of Rabies Vaccine Potency. Viral Immunol 2017; 30:204-209. [DOI: 10.1089/vim.2016.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
16
|
Morgeaux S, Poirier B, Ragan CI, Wilkinson D, Arabin U, Guinet-Morlot F, Levis R, Meyer H, Riou P, Shaid S, Volokhov D, Tordo N, Chapsal JM. Replacement of in vivo human rabies vaccine potency testing by in vitro glycoprotein quantification using ELISA – Results of an international collaborative study. Vaccine 2017; 35:966-971. [DOI: 10.1016/j.vaccine.2016.12.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 01/02/2023]
|
17
|
Expression of interleukin-6 by a recombinant rabies virus enhances its immunogenicity as a potential vaccine. Vaccine 2017; 35:938-944. [DOI: 10.1016/j.vaccine.2016.12.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 11/13/2022]
|
18
|
Rabies vaccine development by expression of recombinant viral glycoprotein. Arch Virol 2016; 162:323-332. [PMID: 27796547 DOI: 10.1007/s00705-016-3128-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
The rabies virus envelope glycoprotein (RVGP) is the main antigen of rabies virus and is the only viral component present in all new rabies vaccines being proposed. Many approaches have been taken since DNA recombinant technology became available to express an immunogenic recombinant rabies virus glycoprotein (rRVGP). These attempts are reviewed here, and the relevant results are discussed with respect to the general characteristics of the rRVGP, the expression system used, the expression levels achieved, the similarity of the rRVGP to the native glycoprotein, and the immunogenicity of the vaccine preparation. The most recent studies of rabies vaccine development have concentrated on in vivo expression of rRVGP by viral vector transduction, serving as the biotechnological basis for a new generation of rabies vaccines.
Collapse
|
19
|
Two potential recombinant rabies vaccines expressing canine parvovirus virion protein 2 induce immunogenicity to canine parvovirus and rabies virus. Vaccine 2016; 34:4392-8. [PMID: 27449079 DOI: 10.1016/j.vaccine.2016.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/25/2022]
Abstract
Both rabies virus (RABV) and canine parvovirus (CPV) cause lethal diseases in dogs. In this study, both high egg passage Flury (HEP-Flury) strains of RABV and recombinant RABV carrying double RABV glycoprotein (G) gene were used to express the CPV virion protein 2 (VP2) gene, and were designated rHEP-VP2 and, rHEP-dG-VP2 respectively. The two recombinant RABVs maintained optimal virus titration according to their viral growth kinetics assay compared with the parental strain HEP-Flury. Western blotting indicated that G protein and VP2 were expressed in vitro. The expression of VP2 in Crandell feline kidney cells post-infection by rHEP-VP2 and rHEP-dG-VP2 was confirmed by indirect immunofluorescence assay with antibody against VP2. Immunogenicity of recombinant rabies viruses was tested in Kunming mice. Both rHEP-VP2 and rHEP-dG-VP2 induced high levels of rabies antibody compared with HEP-Flury. Mice immunized with rHEP-VP2 and rHEP-dG-VP2 both had a high level of antibodies against VP2, which can protect against CPV infection. A challenge experiment indicated that more than 80% mice immunized with recombinant RABVs survived after infection of challenge virus standard 24 (CVS-24). Together, this study showed that recombinant RABVs expressing VP2 induced protective immune responses to RABV and CPV. Therefore, rHEP-VP2 and rHEP-dG-VP2 might be potential combined vaccines for RABV and CPV.
Collapse
|
20
|
Luo J, Zhao J, Tian Q, Mo W, Wang Y, Chen H, Guo X. A recombinant rabies virus carrying GFP between N and P affects viral transcription in vitro. Virus Genes 2016; 52:379-87. [PMID: 26957093 PMCID: PMC4858564 DOI: 10.1007/s11262-016-1313-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/26/2016] [Indexed: 12/21/2022]
Abstract
Several studies have demonstrated the rabies virus to be a perfect potential vaccine vector to insert foreign genes into the target genome. For this study, a green fluorescent protein (GFP) gene was cloned into the rabies virus (RABV) genome between the N and P gene. CT dinucleotide was inserted as intergenic region. The recombinant high egg passage Flury strain (HEP-Flury) of RABV, carrying GFP (rHEP-NP-GFP), was generated in BHK-21 cells using reverse genetics. According to the viral growth kinetics assay, the addition of GFP between N and P gene has little effect on the viral growth compared to the parental strain HEP-Flury. Quantitative real-time PCR (qPCR) indicated that rHEP-NP-GFP showed different viral gene transcription, especially for G gene, compared to HEP-Flury. The same is true for one other recombinant RABV carrying GFP between G and L gene in NA cells. In addition, parent HEP-Flury showed more expression of innate immune-related molecules in NA cells. Compared to HEP-Flury, Western blotting (WB) indicated that insertion of a foreign gene following N gene enhanced the expression of M and G proteins. According to the qPCR and WB, GFP expression levels of rHEP-NP-GFP were significantly higher than rHEP-GFP. This study indicates HEP-Flury as valid vector to express exogenous genes between N and P.
Collapse
Affiliation(s)
- Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jing Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qin Tian
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiyu Mo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yifei Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
21
|
Ben Azoun S, Ben Zakour M, Sghaier S, Kallel H. Expression of rabies virus glycoprotein in the methylotrophic yeast Pichia pastoris. Biotechnol Appl Biochem 2016; 64:50-61. [PMID: 28218973 DOI: 10.1002/bab.1471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/14/2015] [Indexed: 11/10/2022]
Abstract
Rabies is a fatal disease that can be prevented by vaccination. Different approaches were investigated to develop novel human rabies vaccines with improved features compared to the current available vaccines, among them is the use of heterologous gene expression technology. Here, we describe the expression of the surface rabies virus glycoprotein (RABV-G), which is the major antigen responsible for the induction of protective immunity, in Pichia pastoris. Six transformants were selected according to their gene copy number as determined by real time qPCR. Upon induction by methanol, low level of RABV-G was secreted into the culture medium, around 60 ng/mL. To understand the effect of foreign gene dosage on cellular physiology of P. pastoris, transcriptional analysis of key genes involved in unfolded protein response (UPR) and endoplasmic reticulum associated degradation (ERAD) pathway was performed. Results showed that these pathways were highly activated; misfolded RABV-G was degraded in the cytosol via the ERAD mechanism. To study the functionality of the secreted RABV-G, in vitro competitive neutralizing assay was conducted. Data showed the secreted recombinant RABV-G had enabled a reduction of the neutralizing activity of human immune rabies serum, indicating that the secreted recombinant protein had reached its correct conformational form.
Collapse
Affiliation(s)
- Safa Ben Azoun
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Biofermentation Unit, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Meriem Ben Zakour
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Biofermentation Unit, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Soufien Sghaier
- Institut de Recherche, Vétérinaire de Tunisie, Tunis, Tunisia
| | - Héla Kallel
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Biofermentation Unit, Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
22
|
Immunogenicity of multi-epitope-based vaccine candidates administered with the adjuvant Gp96 against rabies. Virol Sin 2016; 31:168-75. [PMID: 27068655 DOI: 10.1007/s12250-016-3734-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022] Open
Abstract
Rabies, a zoonotic disease, causes > 55,000 human deaths globally and results in at least 500 million dollars in losses every year. The currently available rabies vaccines are mainly inactivated and attenuated vaccines, which have been linked with clinical diseases in animals. Thus, a rabies vaccine with high safety and efficacy is urgently needed. Peptide vaccines are known for their low cost, simple production procedures and high safety. Therefore, in this study, we examined the efficacy of multi-epitope-based vaccine candidates against rabies virus. The ability of various peptides to induce epitope-specific responses was examined, and the two peptides that possessed the highest antigenicity and conservation, i.e., AR16 and hPAB, were coated with adjuvant canine-Gp96 and used to prepare vaccines. The peptides were prepared as an emulsion of oil in water (O/W) to create three batches of bivalent vaccine products. The vaccine candidates possessed high safety. Virus neutralizing antibodies were detected on the day 14 after the first immunization in mice and beagles, reaching 5-6 IU/mL in mice and 7-9 IU/mL in beagles by day 28. The protective efficacy of the vaccine candidates was about 70%-80% in mice challenged by a virulent strain of rabies virus. Thus, a novel multi-epitope-based rabies vaccine with Gp96 as an adjuvant was developed and validated in mice and dogs. Our results suggest that synthetic peptides hold promise for the development of novel vaccines against rabies.
Collapse
|
23
|
Yendo ACA, de Costa F, Cibulski SP, Teixeira TF, Colling LC, Mastrogiovanni M, Soulé S, Roehe PM, Gosmann G, Ferreira FA, Fett-Neto AG. A rabies vaccine adjuvanted with saponins from leaves of the soap tree (Quillaja brasiliensis) induces specific immune responses and protects against lethal challenge. Vaccine 2016; 34:2305-11. [DOI: 10.1016/j.vaccine.2016.03.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
|
24
|
Bengtsson KL, Song H, Stertman L, Liu Y, Flyer DC, Massare MJ, Xu RH, Zhou B, Lu H, Kwilas SA, Hahn TJ, Kpamegan E, Hooper J, Carrion R, Glenn G, Smith G. Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire Ebola/Makona virus glycoprotein (GP) nanoparticle vaccine in mice. Vaccine 2016; 34:1927-35. [PMID: 26921779 DOI: 10.1016/j.vaccine.2016.02.033] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/24/2015] [Accepted: 02/15/2016] [Indexed: 11/19/2022]
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fever for which there is no approved treatment or preventive vaccine. Immunological correlates of protective immunity against EBOV disease are not well understood. However, non-human primate studies have associated protection of experimental vaccines with binding and neutralizing antibodies to the EBOV glycoprotein (GP) as well as EBOV GP-specific CD4(+) and CD8(+) T cells. In this report a full length, unmodified Zaire EBOV GP gene from the 2014 EBOV Makona strain (EBOV/Mak) was cloned into a baculovirus vector. Recombinant EBOV/Mak GP was produced in Sf9 insect cells as glycosylated trimers and, when purified, formed spherical 30-40 nm particles. In mice, EBOV/Mak GP co-administered with the saponin adjuvant Matrix-M was significantly more immunogenic, as measured by virus neutralization titers and anti-EBOV/Mak GP IgG as compared to immunization with AlPO4 adjuvanted or non-adjuvanted EBOV/Mak GP. Similarly, antigen specific T cells secreting IFN-γ were induced most prominently by EBOV/Mak GP with Matrix-M. Matrix-M also enhanced the frequency of antigen-specific germinal center B cells and follicular helper T (TFH) cells in the spleen in a dose-dependent manner. Immunization with EBOV/Mak GP with Matrix-M was 100% protective in a lethal viral challenge murine model; whereas no protection was observed with the AlPO4 adjuvant and only 10% (1/10) mice were protected in the EBOV/Mak GP antigen alone group. Matrix-M adjuvanted vaccine induced a rapid onset of specific IgG and neutralizing antibodies, increased frequency of multifunctional CD4+ and CD8(+) T cells, specific TFH cells, germinal center B cells, and persistence of EBOV GP-specific plasma B cells in the bone marrow. Taken together, the addition of Matrix-M adjuvant to the EBOV/Mak GP nanoparticles enhanced both B and T-cell immune stimulation which may be critical for an Ebola subunit vaccine with broad and long lasting protective immunity.
Collapse
Affiliation(s)
| | - Haifeng Song
- Novavax, Inc., 22 Firstfield Road, Gaithersburg, MD 20878, United States
| | | | - Ye Liu
- Novavax, Inc., 22 Firstfield Road, Gaithersburg, MD 20878, United States
| | - David C Flyer
- Novavax, Inc., 22 Firstfield Road, Gaithersburg, MD 20878, United States.
| | - Michael J Massare
- Novavax, Inc., 22 Firstfield Road, Gaithersburg, MD 20878, United States
| | - Ren-Huan Xu
- Novavax, Inc., 22 Firstfield Road, Gaithersburg, MD 20878, United States
| | - Bin Zhou
- Novavax, Inc., 22 Firstfield Road, Gaithersburg, MD 20878, United States
| | - Hanxin Lu
- Novavax, Inc., 22 Firstfield Road, Gaithersburg, MD 20878, United States
| | - Steve A Kwilas
- USAMRIID, Fort Detrick, Frederick, MD 21702, United States
| | - Timothy J Hahn
- Novavax, Inc., 22 Firstfield Road, Gaithersburg, MD 20878, United States
| | - Eloi Kpamegan
- Novavax, Inc., 22 Firstfield Road, Gaithersburg, MD 20878, United States
| | - Jay Hooper
- USAMRIID, Fort Detrick, Frederick, MD 21702, United States
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX 78228, United States
| | - Gregory Glenn
- Novavax, Inc., 22 Firstfield Road, Gaithersburg, MD 20878, United States
| | - Gale Smith
- Novavax, Inc., 22 Firstfield Road, Gaithersburg, MD 20878, United States
| |
Collapse
|
25
|
Abstract
Rabies is an acute, rapidly progressive encephalitis that is almost always fatal. Prophylaxis is highly effective but economics limits disease control. The mechanism of death from rabies is unclear. It is poorly cytopathic and poorly inflammatory. Rabies behaves like an acquired metabolic disorder. There may be a continuum of disease severity. History of animal bite is rare. The diagnosis is often missed. Intermittent encephalopathy, dysphagia, hydrophobia and aerophobia, and focal paresthesias or myoclonic jerks suggest rabies. Laboratory diagnosis is cumbersome but sensitive. Treatment is controversial but survivors are increasingly reported, with good outcomes in 4 of 8 survivors.
Collapse
Affiliation(s)
- Rodney E Willoughby
- Pediatric Infectious Diseases, Children's Hospital of Wisconsin, C450, PO Box 1997, Milwaukee, WI 53201-1997, USA.
| |
Collapse
|
26
|
Rupprecht CE, Kuzmin IV. Why we can prevent, control and possibly treat – but will not eradicate – rabies. Future Virol 2015. [DOI: 10.2217/fvl.15.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT Rabies is an acute, progressive viral encephalitis. Despite historical recognition, millions still remain exposed annually. Most fatalities are of children, although this zoonosis is a vaccine-preventable disease. All developed countries interrupted canine transmission and increasingly, Asian and African communities recognize what Latin Americans demonstrated – dog rabies can be eliminated – by mass application of veterinary vaccines. Realistically, rabies is not a candidate for eradication. Management is lacking for major reservoirs, such as bats. Increasing pre-exposure immunization of individuals at risk, simplification of postexposure schedules, enhancing vaccine delivery by alternative routes, development of less expensive biologics and antiviral drugs, may lessen its impact if applied strategically in a One Health context.
Collapse
Affiliation(s)
| | - Ivan V Kuzmin
- University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
27
|
Fontana D, Kratje R, Etcheverrigaray M, Prieto C. Immunogenic virus-like particles continuously expressed in mammalian cells as a veterinary rabies vaccine candidate. Vaccine 2015; 33:4238-46. [PMID: 25869890 DOI: 10.1016/j.vaccine.2015.03.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 03/13/2015] [Accepted: 03/26/2015] [Indexed: 12/25/2022]
Abstract
Rabies is one of the most lethal infectious diseases in the world, with a mortality approaching 100%. There are between 60,000 and 70,000 reported annual deaths, but this is probably an underestimation. Despite the fact that there are vaccines available for rabies, there is a real need of developing more efficacious and cheaper vaccines. This is particularly true for veterinary vaccines because dogs are still the main vector for rabies transmission to human beings. In a previous work, we described the development and characterization of rabies virus-like particles (RV-VLPs) expressed in HEK293 cells. We showed that RV-VLPs are able to induce a specific antibodies response. In this work, we show that VLPs are able to protect mice against virus challenge. Furthermore, we developed a VLPs expressing HEK-293 clone (sP2E5) that grows in serum free medium (SFM) reaching high cell densities. sP2E5 was cultured in perfusion mode in a 5 L bioreactor for 20 days, and the RV-VLPs produced were capable of triggering a protective immune response without the need of concentration or adjuvant addition. Further, these VLPs are able to induce the production of rabies virus neutralizing antibodies. These results demonstrate that RV-VLPs are a promising rabies vaccine candidate.
Collapse
Affiliation(s)
- Diego Fontana
- Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje "El Pozo"-C.C. 242, S3000ZAA Santa Fe, Argentina
| | - Ricardo Kratje
- Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje "El Pozo"-C.C. 242, S3000ZAA Santa Fe, Argentina
| | - Marina Etcheverrigaray
- Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje "El Pozo"-C.C. 242, S3000ZAA Santa Fe, Argentina
| | - Claudio Prieto
- Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje "El Pozo"-C.C. 242, S3000ZAA Santa Fe, Argentina.
| |
Collapse
|
28
|
Kaur M, Garg R, Singh S, Bhatnagar R. Rabies vaccines: where do we stand, where are we heading? Expert Rev Vaccines 2014; 14:369-81. [PMID: 25348036 DOI: 10.1586/14760584.2015.973403] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rabies being the most lethal zoonotic, vaccine-preventable viral disease with worldwide distribution of reservoir wild animals presents unique challenges for its diagnosis, management and control. Although vaccines available are highly effective, which had played the key role in controlling rabies in North America, western Europe and in a number of Asian and Latin American countries, the requirement of multiple doses along with boosters, associated cost to reduce the incidence in wild animals and prophylactic human vaccination has remained a major impediment towards achieving the same goals in poorer parts of the world such as sub-Saharan Africa and southeast Asia. Current efforts to contain rabies worldwide are directed towards the development of more safe, cheaper and efficacious vaccines along with anti-rabies antibodies for post-exposure prophylaxis. The work presented here provides an overview of the advances made towards controlling the human rabies, particularly in last 10 years, and future perspective.
Collapse
Affiliation(s)
- Manpreet Kaur
- BSL3 Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi - 110067, Delhi, India
| | | | | | | |
Collapse
|