1
|
Herrera AL, Potts R, Huber VC, Chaussee MS. Influenza enhances host susceptibility to non-pulmonary invasive Streptococcus pyogenes infections. Virulence 2023; 14:2265063. [PMID: 37772916 PMCID: PMC10566429 DOI: 10.1080/21505594.2023.2265063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
Streptococcus pyogenes (group A streptococcus; GAS) causes a variety of invasive diseases (iGAS) such as bacteremia, toxic shock syndrome, and pneumonia, which are associated with high mortality despite the susceptibility of the bacteria to penicillin ex vivo. Epidemiologic studies indicate that respiratory influenza virus infection is associated with an increase in the frequency of iGAS diseases, including those not directly involving the lung. We modified a murine model of influenza A (IAV)-GAS superinfection to determine if viral pneumonia increased the susceptibility of mice subsequently infected with GAS in the peritoneum. The results showed that respiratory IAV infection increased the morbidity (weight loss) of mice infected intraperitoneally (i.p.) with GAS 3, 5, and 10 d after the initial viral infection. Mortality was also significantly increased when mice were infected with GAS 3 and 5 d after pulmonary IAV infection. Increased mortality among mice infected with virus 5 d prior to bacterial infection correlated with increased dissemination of GAS from the peritoneum to the blood, spleen, and lungs. The interval was also associated with a significant increase in the pro-inflammatory cytokines IFN-γ, IL-12, TNF-α, MCP-1 and IL-27 in sera. We conclude, using a murine model, that respiratory influenza virus infection increases the likelihood and severity of systemic iGAS disease, even when GAS infection does not originate in the respiratory tract.
Collapse
Affiliation(s)
- Andrea L. Herrera
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Rashaun Potts
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Michael S. Chaussee
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
2
|
Li L, Guo T, Yuan Y, Xiao J, Yang R, Wang H, Xu W, Yin Y, Zhang X. ΔA146Ply-HA stem protein immunization protects mice against influenza A virus infection and co-infection with Streptococcus pneumoniae. Mol Immunol 2023; 161:91-103. [PMID: 37531919 DOI: 10.1016/j.molimm.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Influenza virus (IV) is a common pathogen affecting the upper respiratory tract, that causes various diseases. Secondary bacterial pneumonia is a common complication and a major cause of death in influenza patients. Streptococcus pneumoniae (S. pneumoniae) is the predominant co-infected bacteria in the pandemic, which colonizes healthy people but can cause diseases in immunocompromised individuals. Vaccination is a crucial strategy for avoiding infection, however, no universal influenza vaccine (UIV) that is resistant to multiple influenza viruses is available. Despite its limited immunogenicity, the hemagglutinin (HA) stem is a candidate peptide for UIV. ΔA146Ply (pneumolysin with a single deletion of A146) not only retains the Toll-like receptor 4 agonist effect but also is a potential vaccine adjuvant and a candidate protein for the S. pneumoniae vaccine. We constructed the fusion protein ΔA146Ply-HA stem and studied its immunoprotective effect in mice infection models. The results showed that intramuscular immunization of ΔA146Ply-HA stem without adjuvant could induce specific antibodies against HA stem and specific CD4+ T and CD8+ T cellular immunity in BALB/c and C57BL/6 mice, which could improve the survival rate of mice infected with IAV and co-infected with S. pneumoniae, but the protective effect on BALB/c mice was better than that on C57BL/6 mice. ΔA146Ply-HA stem serum antibody could protect BALB/c and C57BL/6 mice from IAV, and recognized HA polypeptides of H3N2, H5N1, H7N9, and H9N2 viruses. Moreover, ΔA146Ply-HA stem intramuscular immunization had a high safety profile with no obvious toxic side effects. The results indicated that coupling ΔA146Ply with influenza protein as a vaccine was a safe and effective strategy against the IV and secondary S. pneumoniae infection.
Collapse
Affiliation(s)
- Lian Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Ting Guo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yuan Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Rui Yang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Hanyi Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Wenlong Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Okahashi N, Sumitomo T, Nakata M, Kawabata S. Secondary streptococcal infection following influenza. Microbiol Immunol 2022; 66:253-263. [PMID: 35088451 DOI: 10.1111/1348-0421.12965] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/01/2022]
Abstract
Secondary bacterial infection following influenza A virus (IAV) infection is a major cause of morbidity and mortality during influenza epidemics. Streptococcus pneumoniae has been identified as a predominant pathogen in secondary pneumonia cases that develop following influenza. Although IAV has been shown to enhance susceptibility to the secondary bacterial infection, the underlying mechanism of the viral-bacterial synergy leading to disease progression is complex and remains elusive. In this review, cooperative interactions of viruses and streptococci during co- or secondary infection with IAV are described. IAV infects the upper respiratory tract, therefore, streptococci that inhabit or infect the respiratory tract are of special interest. Since many excellent reviews on the co-infection of IAV and S. pneumoniae have already been published, this review is intended to describe the unique interactions between other streptococci and IAV. Both streptococcal and IAV infections modulate the host epithelial barrier of the respiratory tract in various ways. IAV infection directly disrupts epithelial barriers, though at the same time the virus modifies the properties of infected cells to enhance streptococcal adherence and invasion. Mitis group streptococci produce neuraminidases, which promote IAV infection in a unique manner. The studies reviewed here have revealed intriguing mechanisms underlying secondary streptococcal infection following influenza. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nobuo Okahashi
- Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| |
Collapse
|
4
|
Wijewantha N, Eikanger MM, Antony RM, Potts RA, Rezvani K, Sereda G. Targeting Colon Cancer Cells with Enzyme-Triggered Casein-Gated Release of Cargo from Mesoporous Silica-Based Nanoparticles. Bioconjug Chem 2021; 32:2353-2365. [PMID: 34672618 PMCID: PMC8776503 DOI: 10.1021/acs.bioconjchem.1c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Colorectal cancer (CRC) is one of the most widely diagnosed cancers worldwide. Despite notable improvements in therapeutic strategies available to CRC patients, late stages of CRC have a higher incidence rate of drug resistance, which is associated with a higher mortality rate. The development of therapeutic strategies that use nanoparticles as a drug delivery system has become one of the most promising potential approaches for cancer therapy. Previous studies have shown that a natural plant alkaloid, veratridine (VTD), suppresses colon cancer cell migration and invasion, two essential factors in tumor metastasis, through activation of the gene that encodes the tumor-suppressor protein UBXN2A. The goal of this study is to develop a nanoassembly to selectively deliver VTD to cancer cells and release it on demand while leaving normal cells intact. We packaged the targeted therapy anticancer molecule VTD inside mesoporous silica nanoparticles (MSNs) impermeable to the blood-brain barrier (BBB) and with selective affinity to CRC cells and sealed the VTD-loaded nanoparticles with an enzymatically cleavable protein. The particles will deliver and release VTD only at the targeted colorectal tumor sites. Since the enzyme MMP-7 protease is dominantly secreted by CRC cells, the release triggered by the enzymes will increase VTD concentration at tumor cells, enhancing the efficiency of the new therapy. We have proven the selective affinity of two types of VTD-carrying particles to CRC cells and enzyme- or acid-triggered VTD release. Negatively surface-charged MSNs showed significant affinity toward positively charged cancer cells but not negatively charged normal fibroblast colon cells, making VTD-MSNs a promising anticancer drug with minimal side effects.
Collapse
Affiliation(s)
- Nisitha Wijewantha
- Department of Chemistry, The University of South Dakota, 414 E Clark Street, Vermillion, South Dakota 57069, United States
| | - Morgan M Eikanger
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, South Dakota 57069, United States
| | - Ryan M Antony
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, South Dakota 57069, United States
| | - Rashaun A Potts
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, South Dakota 57069, United States
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, South Dakota 57069, United States
| | - Grigoriy Sereda
- Department of Chemistry, The University of South Dakota, 414 E Clark Street, Vermillion, South Dakota 57069, United States
| |
Collapse
|
5
|
Zaman M, Huber VC, Heiden DL, DeHaan KN, Chandra S, Erickson D, Ozberk V, Pandey M, Bailly B, Martin G, Langshaw EL, Zaid A, von Itzstein M, Good MF. Combinatorial liposomal peptide vaccine induces IgA and confers protection against influenza virus and bacterial super-infection. Clin Transl Immunology 2021; 10:e1337. [PMID: 34527244 PMCID: PMC8432089 DOI: 10.1002/cti2.1337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives The upper respiratory tract is the major entry site for Streptococcus pyogenes and influenza virus. Vaccine strategies that activate mucosal immunity could significantly reduce morbidity and mortality because of these pathogens. The severity of influenza is significantly greater if a streptococcal infection occurs during the viraemic period and generally viral infections complicated by a subsequent bacterial infection are known as super-infections. We describe an innovative vaccine strategy against influenza virus:S. pyogenes super-infection. Moreover, we provide the first description of a liposomal multi-pathogen-based platform that enables the incorporation of both viral and bacterial antigens into a vaccine and constitutes a transformative development. Methods Specifically, we have explored a vaccination strategy with biocompatible liposomes that express conserved streptococcal and influenza A virus B-cell epitopes on their surface and contain encapsulated diphtheria toxoid as a source of T-cell help. The vaccine is adjuvanted by inclusion of the synthetic analogue of monophosphoryl lipid A, 3D-PHAD. Results We observe that this vaccine construct induces an Immunoglobulin A (IgA) response in both mice and ferrets. Vaccination reduces viral load in ferrets from influenza challenge and protects mice from both pathogens. Notably, vaccination significantly reduces both mortality and morbidity associated with a super-infection. Conclusion The vaccine design is modular and could be adapted to include B-cell epitopes from other mucosal pathogens where an IgA response is required for protection.
Collapse
Affiliation(s)
- Mehfuz Zaman
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Victor C Huber
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Dustin L Heiden
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Katerina N DeHaan
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Sanyogita Chandra
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Demi Erickson
- Division of Basic Biomedical SciencesSanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Victoria Ozberk
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Manisha Pandey
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Benjamin Bailly
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Gael Martin
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Emma L Langshaw
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| | - Ali Zaid
- The Emerging Viruses, Inflammation and Therapeutics GroupMenzies Health Institute QueenslandGriffith UniversityGold CoastQLDAustralia
- School of Medical SciencesGriffith UniversityGold CoastQLDAustralia
- Global Virus Network (GVN) Centre of Excellence in ArbovirusesGriffith UniversityGold CoastQLDAustralia
| | | | - Michael F Good
- Institute for GlycomicsGriffith UniversityGold CoastQLDAustralia
| |
Collapse
|
6
|
Hu Y, Liu Y, Yin Y, Zhang X. Protective efficacy of mucosal and subcutaneous immunization with DnaJ-ΔA146Ply against influenza and Streptococcus pneumoniae co-infection in mice. Microbes Infect 2021; 23:104813. [PMID: 33798714 DOI: 10.1016/j.micinf.2021.104813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
Respiratory tract coinfections, specifically involving influenza A virus (IAV) and Streptococcus pneumoniae (S. pneumoniae), remain a major health problem worldwide. Secondary bacterial pneumonia is a common complication and an important cause of mortality related to seasonal and pandemic influenza infections. Vaccination is a basic control strategy against influenza and S. pneumoniae. The fusion protein DnaJ-ΔA146Ply is a vaccine candidate which can induce immune responses against pneumococcal infections via mucosal and subcutaneous immunization in mice. In the present study, we established a co-infection model using mouse-adapted laboratory strains of IAV (PR8) and S. pneumoniae (19F) in mice intranasally and subcutaneously immunized with DnaJ-ΔA146Ply. Our results showed that vaccinated mice suffered decreased weight loss compared with control mice. The survival rates were higher in intranasally and subcutaneously immunized mice than in control mice. In addition, the bacterial loads in nasal washes and lung homogenates were lower in vaccinated mice than in control mice. Furthermore, lung damage was alleviated in vaccinated mice compared with control mice, with less broken alveoli and less proinflammatory cytokine production. Taken together, these results indicate that vaccination with DnaJ-ΔA146Ply shows protective potential against influenza and S. pneumoniae co-infection in mice.
Collapse
Affiliation(s)
- Yi Hu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Yusi Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Percopo CM, Ma M, Mai E, Redes JL, Kraemer LS, Minai M, Moore IN, Druey KM, Rosenberg HF. Alternaria alternata Accelerates Loss of Alveolar Macrophages and Promotes Lethal Influenza A Infection. Viruses 2020; 12:v12090946. [PMID: 32867061 PMCID: PMC7552021 DOI: 10.3390/v12090946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic inhalation of fungi and fungal components has been linked to the development of respiratory disorders, although their role with respect to the pathogenesis of acute respiratory virus infection remains unclear. Here, we evaluate inflammatory pathology induced by repetitive administration of a filtrate of the ubiquitous fungus, Alternaria alternata, and its impact on susceptibility to infection with influenza A. We showed previously that A. alternata at the nasal mucosae resulted in increased susceptibility to an otherwise sublethal inoculum of influenza A in wild-type mice. Here we demonstrate that A. alternata-induced potentiation of influenza A infection was not dependent on fungal serine protease or ribonuclease activity. Repetitive challenge with A. alternata prior to virus infection resulted proinflammatory cytokines, neutrophil recruitment, and loss of alveolar macrophages to a degree that substantially exceeded that observed in response to influenza A infection alone. Concomitant administration of immunomodulatory Lactobacillus plantarum, a strategy shown previously to limit virus-induced inflammation in the airways, blocked the exaggerated lethal response. These observations promote an improved understanding of severe influenza infection with potential clinical relevance for individuals subjected to continuous exposure to molds and fungi.
Collapse
Affiliation(s)
- Caroline M. Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
| | - Michelle Ma
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
| | - Eric Mai
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
| | - Jamie L. Redes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.R.); (K.M.D.)
| | - Laura S. Kraemer
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.M.); (I.N.M.)
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.M.); (I.N.M.)
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.R.); (K.M.D.)
| | - Helene F. Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
- Correspondence: ; Tel.: +1-301-761-6682
| |
Collapse
|
8
|
Herrera AL, Van Hove C, Hanson M, Dale JB, Tweten RK, Huber VC, Diel D, Chaussee MS. Immunotherapy targeting the Streptococcus pyogenes M protein or streptolysin O to treat or prevent influenza A superinfection. PLoS One 2020; 15:e0235139. [PMID: 32574205 PMCID: PMC7310742 DOI: 10.1371/journal.pone.0235139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections complicated by a bacterial infection are typically referred to as coinfections or superinfections. Streptococcus pyogenes, the group A streptococcus (GAS), is not the most common bacteria associated with influenza A virus (IAV) superinfections but did cause significant mortality during the 2009 influenza pandemic even though all isolates are susceptible to penicillin. One approach to improve the outcome of these infections is to use passive immunization targeting GAS. To test this idea, we assessed the efficacy of passive immunotherapy using antisera against either the streptococcal M protein or streptolysin O (SLO) in a murine model of IAV-GAS superinfection. Prophylactic treatment of mice with antiserum to either SLO or the M protein decreased morbidity compared to mice treated with non-immune sera; however, neither significantly decreased mortality. Therapeutic use of antisera to SLO decreased morbidity compared to mice treated with non-immune sera but neither antisera significantly reduced mortality. Overall, the results suggest that further development of antibodies targeting the M protein or SLO may be a useful adjunct in the treatment of invasive GAS diseases, including IAV-GAS superinfections, which may be particularly important during influenza pandemics.
Collapse
Affiliation(s)
- Andrea L. Herrera
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - Christopher Van Hove
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - Mary Hanson
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - James B. Dale
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Rodney K. Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - Diego Diel
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States of America
| | - Michael S. Chaussee
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| |
Collapse
|
9
|
Abstract
BACKGROUND Influenza virus is one of the most common respiratory pathogens for all age groups and may cause seasonal outbreaks. Our aim was to identify risk groups and factors associated with severe clinical course including mortality in children with influenza-related lower respiratory tract infection (LRTI). METHODS We conducted a retrospective study in children hospitalized with influenza virus LRTI from 2008 to 2018. Data on demographic features, influenza type, viral coinfection, primary and secondary bacterial infections (SBIs), time of onset of antiviral treatment, comorbidities, hospitalization length, pediatric intensive care unit admission/invasive mechanical ventilation (IMV) need and mortality were collected from medical records. RESULTS There were 280 patients hospitalized with LRTI and median hospitalization length was 9 days. Congenital heart disease, neuromuscular disease, SBIs and late-onset antiviral treatment were independent risk factors for prolonged hospital stay (P < 0.05). Pediatric intensive care unit admission was present in 20.4% (57) of the patients and 17.1% (48) of all patients required IMV. SBIs, lymphopenia, neutrophilia, immunosuppression and human bocavirus coinfection were independent risk factors for IMV support (P < 0.05). Eighteen patients died and immunosuppression, lymphopenia and SBIs were independent risk factors for mortality (P < 0.05). CONCLUSIONS Presence of comorbidity, SBIs, neutrophilia and lymphopenia at admission identified as risk factors for severe influenza infections including need for IMV and death. Although several studies showed that antiviral treatment reduce hospitalization, complications and mortality, there is a lack of prospective trials and patients for antiviral therapy should be carefully chosen by the clinician.
Collapse
|
10
|
TIV Vaccination Modulates Host Responses to Influenza Virus Infection that Correlate with Protection against Bacterial Superinfection. Vaccines (Basel) 2019; 7:vaccines7030113. [PMID: 31547409 PMCID: PMC6789870 DOI: 10.3390/vaccines7030113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Influenza virus infection predisposes to secondary bacterial pneumonia. Currently licensed influenza vaccines aim at the induction of neutralizing antibodies and are less effective if the induction of neutralizing antibodies is low and/or the influenza virus changes its antigenic surface. We investigated the effect of suboptimal vaccination on the outcome of post-influenza bacterial superinfection. Methods: We established a mouse vaccination model that allows control of disease severity after influenza virus infection despite inefficient induction of virus-neutralizing antibody titers by vaccination. We investigated the effect of vaccination on virus-induced host immune responses and on the outcome of superinfection with Staphylococcus aureus. Results: Vaccination with trivalent inactivated virus vaccine (TIV) reduced morbidity after influenza A virus infection but did not prevent virus replication completely. Despite the poor induction of influenza-specific antibodies, TIV protected from mortality after bacterial superinfection. Vaccination limited loss of alveolar macrophages and reduced levels of infiltrating pulmonary monocytes after influenza virus infection. Interestingly, TIV vaccination resulted in enhanced levels of eosinophils after influenza virus infection and recruitment of neutrophils in both lungs and mediastinal lymph nodes after bacterial superinfection. Conclusion: These observations highlight the importance of disease modulation by influenza vaccination, even when suboptimal, and suggest that influenza vaccination is still beneficial to protect during bacterial superinfection in the absence of complete virus neutralization.
Collapse
|
11
|
The Streptococcus pyogenes fibronectin/tenascin-binding protein PrtF.2 contributes to virulence in an influenza superinfection. Sci Rep 2018; 8:12126. [PMID: 30108238 PMCID: PMC6092322 DOI: 10.1038/s41598-018-29714-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) and Streptococcus pyogenes (the group A Streptococcus; GAS) are important contributors to viral-bacterial superinfections, which result from incompletely defined mechanisms. We identified changes in gene expression following IAV infection of A549 cells. Changes included an increase in transcripts encoding proteins with fibronectin-type III (FnIII) domains, such as fibronectin (Fn), tenascin N (TNN), and tenascin C (TNC). We tested the idea that increased expression of TNC may affect the outcome of an IAV-GAS superinfection. To do so, we created a GAS strain that lacked the Fn-binding protein PrtF.2. We found that the wild-type GAS strain, but not the mutant, co-localized with TNC and bound to purified TNC. In addition, adherence of the wild-type strain to IAV-infected A549 cells was greater compared to the prtF.2 mutant. The wild-type strain was also more abundant in the lungs of mice 24 hours after superinfection compared to the mutant strain. Finally, all mice infected with IAV and the prtF.2 mutant strain survived superinfection compared to only 42% infected with IAV and the parental GAS strain, indicating that PrtF.2 contributes to virulence in a murine model of IAV-GAS superinfection.
Collapse
|
12
|
Okamoto S, Nagase S. Pathogenic mechanisms of invasive group AStreptococcusinfections by influenza virus-group AStreptococcussuperinfection. Microbiol Immunol 2018; 62:141-149. [DOI: 10.1111/1348-0421.12577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Shigefumi Okamoto
- Department of Laboratory Sciences; Faculty of Health Sciences, Kanazawa University; 5-11-80 Kodatsuno Kanazawa Ishikawa 920-0942 Japan
- Wellness Promotion Science Center, Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; 5-11-80 Kodatsuno Kanazawa Ishikawa 920-0942 Japan
| | - Satoshi Nagase
- Department of Laboratory Sciences; Faculty of Health Sciences, Kanazawa University; 5-11-80 Kodatsuno Kanazawa Ishikawa 920-0942 Japan
| |
Collapse
|
13
|
Opatowski L, Baguelin M, Eggo RM. Influenza interaction with cocirculating pathogens and its impact on surveillance, pathogenesis, and epidemic profile: A key role for mathematical modelling. PLoS Pathog 2018; 14:e1006770. [PMID: 29447284 PMCID: PMC5814058 DOI: 10.1371/journal.ppat.1006770] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Evidence is mounting that influenza virus interacts with other pathogens colonising or infecting the human respiratory tract. Taking into account interactions with other pathogens may be critical to determining the real influenza burden and the full impact of public health policies targeting influenza. This is particularly true for mathematical modelling studies, which have become critical in public health decision-making. Yet models usually focus on influenza virus acquisition and infection alone, thereby making broad oversimplifications of pathogen ecology. Herein, we report evidence of influenza virus interactions with bacteria and viruses and systematically review the modelling studies that have incorporated interactions. Despite the many studies examining possible associations between influenza and Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Neisseria meningitidis, respiratory syncytial virus (RSV), human rhinoviruses, human parainfluenza viruses, etc., very few mathematical models have integrated other pathogens alongside influenza. The notable exception is the pneumococcus-influenza interaction, for which several recent modelling studies demonstrate the power of dynamic modelling as an approach to test biological hypotheses on interaction mechanisms and estimate the strength of those interactions. We explore how different interference mechanisms may lead to unexpected incidence trends and possible misinterpretation, and we illustrate the impact of interactions on public health surveillance using simple transmission models. We demonstrate that the development of multipathogen models is essential to assessing the true public health burden of influenza and that it is needed to help improve planning and evaluation of control measures. Finally, we identify the public health, surveillance, modelling, and biological challenges and propose avenues of research for the coming years.
Collapse
Affiliation(s)
- Lulla Opatowski
- Université de Versailles Saint Quentin, Institut Pasteur, Inserm, Paris, France
| | - Marc Baguelin
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- Public Health England, London, United Kingdom
| | - Rosalind M. Eggo
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
14
|
Smith AM, Huber VC. The Unexpected Impact of Vaccines on Secondary Bacterial Infections Following Influenza. Viral Immunol 2017; 31:159-173. [PMID: 29148920 DOI: 10.1089/vim.2017.0138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infections remain a significant health burden worldwide, despite available vaccines. Factors that contribute to this include a lack of broad coverage by current vaccines and continual emergence of novel virus strains. Further complicating matters, when influenza viruses infect a host, severe infections can develop when bacterial pathogens invade. Secondary bacterial infections (SBIs) contribute to a significant proportion of influenza-related mortality, with Streptococcus pneumoniae, Staphylococcus aureus, Streptococcus pyogenes, and Haemophilus influenzae as major coinfecting pathogens. Vaccines against bacterial pathogens can reduce coinfection incidence and severity, but few vaccines are available and those that are, may have decreased efficacy in influenza virus-infected hosts. While some studies indicate a benefit of vaccine-induced immunity in providing protection against SBIs, a comprehensive understanding is lacking. In this review, we discuss the current knowledge of viral and bacterial vaccine availability, the generation of protective immunity from these vaccines, and the effectiveness in limiting influenza-associated bacterial infections.
Collapse
Affiliation(s)
- Amber M Smith
- 1 Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Victor C Huber
- 2 Division of Basic Biomedical Sciences, University of South Dakota , Vermillion, South Dakota
| |
Collapse
|
15
|
Herrera AL, Suso K, Allison S, Simon A, Schlenker E, Huber VC, Chaussee MS. Binding host proteins to the M protein contributes to the mortality associated with influenza- Streptococcus pyogenes superinfections. MICROBIOLOGY-SGM 2017; 163:1445-1456. [PMID: 28942759 DOI: 10.1099/mic.0.000532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mortality associated with influenza A virus (IAV) is often due to the development of secondary bacterial infections known as superinfections. The group A streptococcus (GAS) is a relatively uncommon cause of IAV superinfections, but the mortality of these infections is high. We used a murine model to determine whether the surface-localized GAS M protein contributes to the outcome of IAV-GAS superinfections. A comparison between wild-type GAS and an M protein mutant strain (emm3) showed that the M3 protein was essential to virulence. To determine whether the binding, or recruitment, of host proteins to the bacterial surface contributed to virulence, GAS was suspended with BALF collected from mice that had recovered from a sub-lethal infection with IAV. Following intranasal inoculation of naïve mice, the mortality associated with the wild-type strain, but not the emm3 mutant strain, was greater compared to mice inoculated with GAS suspended with either BALF from uninfected mice or PBS. Further analyses showed that both albumin and fibrinogen (Fg) were more abundant in the respiratory tract 8 days after IAV infection, that M3 bound both proteins to the bacterial surface, and that suspension of GAS with either protein increased GAS virulence in the absence of antecedent IAV infection. Overall, the results showed that M3 is essential to the virulence of GAS in an IAV superinfection and suggested that increased abundance of albumin and Fg in the respiratory tract following IAV infection enhanced host susceptibility to secondary GAS infection.
Collapse
Affiliation(s)
- Andrea L Herrera
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Kuta Suso
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Stephanie Allison
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Abby Simon
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Evelyn Schlenker
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Victor C Huber
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Michael S Chaussee
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
16
|
Abstract
Secondary bacterial pneumonia after viral respiratory infection remains a significant source of morbidity and mortality. Susceptibility is mediated by a variety of viral and bacterial factors, and complex interactions with the host immune system. Prevention and treatment strategies are limited to influenza vaccination and antibiotics/antivirals respectively. Novel approaches to identifying the individuals with influenza who are at increased risk for secondary bacterial pneumonias are urgently needed. Given the threat of further pandemics and the heightened prevalence of these viruses, more research into the immunologic mechanisms of this disease is warranted with the hope of discovering new potential therapies.
Collapse
Affiliation(s)
- Jason E Prasso
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 37-131, Los Angeles, CA 90095, USA
| | - Jane C Deng
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs Healthcare System, University of Michigan, 2215 Fuller Road, 111G Pulmonary, Ann Arbor, MI 48105, USA.
| |
Collapse
|
17
|
Herrera AL, Huber VC, Chaussee MS. The Association between Invasive Group A Streptococcal Diseases and Viral Respiratory Tract Infections. Front Microbiol 2016; 7:342. [PMID: 27047460 PMCID: PMC4800185 DOI: 10.3389/fmicb.2016.00342] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/03/2016] [Indexed: 11/29/2022] Open
Abstract
Viral infections of the upper respiratory tract are associated with a variety of invasive diseases caused by Streptococcus pyogenes, the group A streptococcus, including pneumonia, necrotizing fasciitis, toxic shock syndrome, and bacteremia. While these polymicrobial infections, or superinfections, are complex, progress has been made in understanding the molecular basis of disease. Areas of investigation have included the characterization of virus-induced changes in innate immunity, differences in bacterial adherence and internalization following viral infection, and the efficacy of vaccines in mitigating the morbidity and mortality of superinfections. Here, we briefly summarize viral-S. pyogenes superinfections with an emphasis on those affiliated with influenza viruses.
Collapse
Affiliation(s)
- Andrea L Herrera
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota Vermillion, SD, USA
| | - Victor C Huber
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota Vermillion, SD, USA
| | - Michael S Chaussee
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota Vermillion, SD, USA
| |
Collapse
|