1
|
Amanna IJ, Thomas A, Engelmann F, Hammarlund E, Raué HP, Bailey AL, Poore EA, Quintel BK, Lewis AD, Axthelm MK, Johnson AL, Colgin LMA, Diamond MS, Messaoudi I, Slifka MK. Development of a hydrogen peroxide-inactivated vaccine that protects against viscerotropic yellow fever in a non-human primate model. Cell Rep Med 2024; 5:101655. [PMID: 39019010 PMCID: PMC11293362 DOI: 10.1016/j.xcrm.2024.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Yellow fever virus (YFV) is endemic in >40 countries and causes viscerotropic disease with up to 20%-60% mortality. Successful live-attenuated yellow fever (YF) vaccines were developed in the mid-1930s, but their use is restricted or formally contraindicated in vulnerable populations including infants, the elderly, and people with compromised immune systems. In these studies, we describe the development of a next-generation hydrogen peroxide-inactivated YF vaccine and determine immune correlates of protection based on log neutralizing index (LNI) and neutralizing titer-50% (NT50) studies. In addition, we compare neutralizing antibody responses and protective efficacy of hydrogen peroxide-inactivated YF vaccine candidates to live-attenuated YFV-17D (YF-VAX) in a rhesus macaque model of viscerotropic YF. Our results indicate that an optimized, inactivated YF vaccine elicits protective antibody responses that prevent viral dissemination and lethal infection in rhesus macaques and may be a suitable alternative for vaccinating vulnerable populations who are not eligible to receive replicating live-attenuated YF vaccines.
Collapse
Affiliation(s)
- Ian J Amanna
- Najít Technologies, Inc., Beaverton, OR 97006, USA
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Flora Engelmann
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY 40506, USA
| | - Erika Hammarlund
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Hans-Peter Raué
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Adam L Bailey
- Department of Pathology & Laboratory Medicine, University of Wisconsin - Madison, Madison, WI 53706, USA
| | | | | | - Anne D Lewis
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Michael K Axthelm
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, and The Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Amanda L Johnson
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Lois M A Colgin
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY 40506, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
2
|
Guo H, Ding X, Hua D, Liu M, Yang M, Gong Y, Ye N, Chen X, He J, Zhang Y, Xu X, Li J. Enhancing Dengue Virus Production and Immunogenicity with Celcradle™ Bioreactor: A Comparative Study with Traditional Cell Culture Methods. Vaccines (Basel) 2024; 12:563. [PMID: 38932292 PMCID: PMC11209354 DOI: 10.3390/vaccines12060563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
The dengue virus, the primary cause of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, is the most widespread mosquito-borne virus worldwide. In recent decades, the prevalence of dengue fever has increased markedly, presenting substantial public health challenges. Consequently, the development of an efficacious vaccine against dengue remains a critical goal for mitigating its spread. Our research utilized Celcradle™, an innovative tidal bioreactor optimized for high-density cell cultures, to grow Vero cells for dengue virus production. By maintaining optimal pH levels (7.0 to 7.4) and glucose concentrations (1.5 g/L to 3.5 g/L) during the proliferation of cells and viruses, we achieved a peak Vero cell count of approximately 2.46 × 109, nearly ten times the initial count. The use of Celcradle™ substantially decreased the time required for cell yield and virus production compared to conventional Petri dish methods. Moreover, our evaluation of the immunogenicity of the Celcradle™-produced inactivated DENV4 through immunization of mice revealed that sera from these mice demonstrated cross-reactivity with DENV4 cultured in Petri dishes and showed elevated antibody titers compared to those from mice immunized with virus from Petri dishes. These results indicate that the dengue virus cultivated using the Celcradle™ system exhibited enhanced immunogenicity relative to that produced in traditional methods. In conclusion, our study highlights the potential of the Celcradle™ bioreactor for large-scale production of inactivated dengue virus vaccines, offering significant promise for reducing the global impact of dengue virus infections and accelerating the development of effective vaccination strategies.
Collapse
Affiliation(s)
- Hongxia Guo
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaoyan Ding
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Dong Hua
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Minchi Liu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Maocheng Yang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Yuanxin Gong
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Nan Ye
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaozhong Chen
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Jiuxiang He
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaofeng Xu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| |
Collapse
|
3
|
Sanchez-Felipe L, Alpizar YA, Ma J, Coelmont L, Dallmeier K. YF17D-based vaccines - standing on the shoulders of a giant. Eur J Immunol 2024; 54:e2250133. [PMID: 38571392 DOI: 10.1002/eji.202250133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.
Collapse
Affiliation(s)
- Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| |
Collapse
|
4
|
Zhang Y, Yang R, Yuan G, Li W, Cui Z, Xiao Z, Dong X, Yang H, Liu X, Zhang L, Hou Y, Liu M, Liu S, Hao Y, Zhang Y, Zheng X. Enhancing Inactivated Yellow Fever 17D Vaccine-Induced Immune Responses in Balb/C Mice Using Alum/CpG. Vaccines (Basel) 2023; 11:1744. [PMID: 38140149 PMCID: PMC10747526 DOI: 10.3390/vaccines11121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
There are some concerns about the safety of live attenuated yellow fever vaccines (YF-live), particularly viscerotropic adverse events, which have a high mortality rate. The cellular production of the vaccine will not cause these adverse effects and has the potential to extend applicability to those who have allergic reactions, immunosuppression, and age. In this study, inactivated yellow fever (YF) was prepared and adsorbed with Alum/CpG. The cellular and humoral immunities were investigated in a mouse model. The results showed that Alum/CpG (20 μg/mL) could significantly increase the binding and neutralizing activities of the antibodies against YF. Moreover, the antibody level at day 28 after one dose was similar to that of the attenuated vaccine, but significantly higher after two doses. At the same time, Alum/CpG significantly increased the levels of IFN-γ and IL-4 cytokines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited, Beijing 100170, China; (Y.Z.); (R.Y.); (G.Y.); (W.L.); (Z.C.); (Z.X.); (X.D.); (H.Y.); (X.L.); (L.Z.); (Y.H.); (M.L.); (S.L.); (Y.H.)
| | - Xiaotong Zheng
- Beijing Institute of Biological Products Company Limited, Beijing 100170, China; (Y.Z.); (R.Y.); (G.Y.); (W.L.); (Z.C.); (Z.X.); (X.D.); (H.Y.); (X.L.); (L.Z.); (Y.H.); (M.L.); (S.L.); (Y.H.)
| |
Collapse
|
5
|
Simões M, da Silva SA, Lúcio KA, de Oliveira Vieira R, Schwarcz WD, de Lima SMB, Camacho LAB. Standardization, validation, and comparative evaluation of a faster and high-performance test for quantification of yellow fever neutralizing antibodies. J Immunol Methods 2023; 522:113568. [PMID: 37748728 DOI: 10.1016/j.jim.2023.113568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/06/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Although it is considered the reference for quantification of neutralizing antibodies, classical method of the plaque reduction neutralization test (PRNT) is labor intensive, requires specific equipment and inputs, besides a long time for its finalization, even in the micro-PRNT version (in 96-well plates). It has a higher sample throughput, however the smaller wells make the reading of plaques more difficult. With an immunoenzymatic revelation step and a semi-automated reading, the μFRN-HRP (micro Focus Reduction Neutralization - Horseradish Peroxidase) is a faster and more efficient test for the quantification of YF neutralizing antibodies. This study aimed to standardize, validate, and compare it with the reference method in 6-well plates (PRNT). Once the execution protocol was standardized, precision, accuracy, selectivity, and robustness were evaluated to validate the μFRN-HRP. In addition, 200 sera of vaccinees were processed by the μFRN-HRP and by the micro-PRNT to compare with the reference test, estimating agreement by Intraclass Correlation Coefficient (ICC). The standardization and validation of the μFRN-HRP was carried out successfully. Weak to moderate agreement was observed between μFRN-HRP and PRNT for titers in reciprocal dilution, while the same comparison between the classical tests resulted in a better ICC. However, titers in milli-international units obtained by μFRN-HRP showed a substantial agreement with PRNT, while the agreement between micro-PRNT and PRNT was inferior. Therefore, μFRN-HRP can be used in the confirmation of natural YF infection and immune response to vaccination, replacing the micro-PRNT, gaining agility, while preserving the specificity of the result.
Collapse
Affiliation(s)
- Marisol Simões
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, RJ, Brazil.
| | - Stephanie Almeida da Silva
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Kelly Araújo Lúcio
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Renan de Oliveira Vieira
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Waleska Dias Schwarcz
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Sheila Maria Barbosa de Lima
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
6
|
Gomes MPDB, Linhares JHR, Dos Santos TP, Pereira RC, Santos RT, da Silva SA, Souza MCDO, da Silva JFA, Trindade GF, Gomes VS, Barreto-Vieira DF, Carvalho MMVF, Ano Bom APD, Gardinali NR, Müller R, Alves NDS, Moura LDC, Neves PCDC, Esteves GS, Schwarcz WD, Missailidis S, Mendes YDS, de Lima SMB. Inactivated and Immunogenic SARS-CoV-2 for Safe Use in Immunoassays and as an Immunization Control for Non-Clinical Trials. Viruses 2023; 15:1486. [PMID: 37515173 PMCID: PMC10386713 DOI: 10.3390/v15071486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successful SARS-CoV-2 inactivation allows its safe use in Biosafety Level 2 facilities, and the use of the whole viral particle helps in the development of analytical methods and a more reliable immune response, contributing to the development and improvement of in vitro and in vivo assays. In order to obtain a functional product, we evaluated several inactivation protocols and observed that 0.03% beta-propiolactone for 24 h was the best condition tested, as it promoted SARS-CoV-2 inactivation above 99.99% and no cytopathic effect was visualized after five serial passages. Moreover, RT-qPCR and transmission electron microscopy revealed that RNA quantification and viral structure integrity were preserved. The antigenicity of inactivated SARS-CoV-2 was confirmed by ELISA using different Spike-neutralizing monoclonal antibodies. K18-hACE2 mice immunized with inactivated SARS-CoV-2, formulated in AddaS03TM, presented high neutralizing antibody titers, no significant weight loss, and longer survival than controls from a lethal challenge, despite RNA detection in the oropharyngeal swab, lung, and brain. This work emphasizes the importance of using different techniques to confirm viral inactivation and avoid potentially disastrous contamination. We believe that an efficiently inactivated product can be used in several applications, including the development and improvement of molecular diagnostic kits, as an antigen for antibody production as well as a control for non-clinical trials.
Collapse
Affiliation(s)
| | | | | | - Renata Carvalho Pereira
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Renata Tourinho Santos
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | | | | | - Gisela Freitas Trindade
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Viviane Silva Gomes
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | | | - Ana Paula Dinis Ano Bom
- Immunological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Noemi Rovaris Gardinali
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Rodrigo Müller
- Pre-Clinical Trials Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Luma da Cruz Moura
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Gabriela Santos Esteves
- Recombinant Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Waleska Dias Schwarcz
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Sotiris Missailidis
- Institute of Technology in Immunobiologicals, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Ygara da Silva Mendes
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | |
Collapse
|
7
|
Montalvo Zurbia-Flores G, Rollier CS, Reyes-Sandoval A. Re-thinking yellow fever vaccines: fighting old foes with new generation vaccines. Hum Vaccin Immunother 2022; 18:1895644. [PMID: 33974507 PMCID: PMC8920179 DOI: 10.1080/21645515.2021.1895644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/07/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the existence of a highly efficient yellow fever vaccine, yellow fever reemergence throughout Africa and the Americas has put 900 million people in 47 countries at risk of contracting the disease. Although the vaccine has been key to controlling yellow fever epidemics, its live-attenuated nature comes with a range of contraindications that prompts advising against its administration to pregnant and lactating women, immunocompromised individuals, and those with hypersensitivity to chicken egg proteins. Additionally, large outbreaks have highlighted problems with insufficient vaccine supply, whereby manufacturers rely on slow traditional manufacturing processes that prevent them from ramping up production. These limitations have contributed to an inadequate control of yellow fever and have favored the pursuit of novel yellow fever vaccine candidates that aim to circumvent the licensed vaccine's restrictions. Here, we review the live-attenuated vaccine's limitations and explore the epitome of a yellow fever vaccine, whilst scrutinizing next-generation vaccine candidates.
Collapse
Affiliation(s)
- Gerardo Montalvo Zurbia-Flores
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford. The Henry Wellcome Building for Molecular Physiology, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford. The Henry Wellcome Building for Molecular Physiology, Oxford, UK
- Instituto Politécnico Nacional, IPN. Av. Luis Enrique Erro S/n. Unidad Adolfo López Mateos. CP, Mexico City, Mexico
| |
Collapse
|
8
|
Cajaraville ACDRA, Gomes MPDB, Azamor T, Pereira RC, Neves PCDC, De Luca PM, de Lima SMB, Gaspar LP, Caride E, Freire MDS, Medeiros MA. Evaluation of Two Adjuvant Formulations for an Inactivated Yellow Fever 17DD Vaccine Candidate in Mice. Vaccines (Basel) 2022; 11:73. [PMID: 36679918 PMCID: PMC9865672 DOI: 10.3390/vaccines11010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
The attenuated yellow fever (YF) vaccine is one of the most successful vaccines ever developed. After a single dose administration YF vaccine can induce balanced Th1/Th2 immune responses and long-lasting neutralizing antibodies. These attributes endorsed it as a model of how to properly stimulate the innate response to target protective immune responses. Despite their longstanding success, attenuated YF vaccines can cause rare fatal adverse events and are contraindicated for persons with immunosuppression, egg allergy and age < 6 months and >60 years. These drawbacks have encouraged the development of a non-live vaccine. The aim of the present study is to characterize and compare the immunological profile of two adjuvant formulations of an inactivated YF 17DD vaccine candidate. Inactivated YF vaccine formulations based on alum (Al(OH)3) or squalene (AddaVax®) were investigated by immunization of C57BL/6 mice in 3-dose or 2-dose schedules, respectively, and compared with a single dose of attenuated YF virus 17DD. Sera were analyzed by ELISA and Plaque Reduction Neutralization Test (PRNT) for detection of total IgG and neutralizing antibodies against YF virus. In addition, splenocytes were collected to evaluate cellular responses by ELISpot. Both inactivated formulations were able to induce high titers of IgG against YF, although neutralizing antibodies levels were borderline on pre-challenge samples. Analysis of IgG subtypes revealed a predominance of IgG2a associated with improved neutralizing capacity in animals immunized with the attenuated YF vaccine, and a predominance of IgG1 in groups immunized with experimental non-live formulations (alum and AddaVax®). After intracerebral (IC) challenge, attenuated and inactivated vaccine formulations showed an increase in neutralizing antibodies. The AddaVax®-based inactivated vaccine and the attenuated vaccine achieved 100% protection, and alum-based equivalent formulation achieved 70% protection.
Collapse
Affiliation(s)
| | - Mariana Pierre de Barros Gomes
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Tamiris Azamor
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Renata Carvalho Pereira
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Patrícia Cristina da Costa Neves
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Paula Mello De Luca
- Instituto Oswaldo Cruz (IOC), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Sheila Maria Barbosa de Lima
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Luciane Pinto Gaspar
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Elena Caride
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Marcos da Silva Freire
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Marco Alberto Medeiros
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
9
|
Lima MRQ, Nunes PCG, Dos Santos FB. Serological Diagnosis of Dengue. Methods Mol Biol 2022; 2409:173-196. [PMID: 34709642 DOI: 10.1007/978-1-0716-1879-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A reliable and specific diagnosis is imperative in viral diagnosis, both for clinical management and surveillance, and to ensure that early treatment and control measures are carried out. The number of days of illness is important to choose the most appropriate method to be used and for the correct interpretation of the results obtained. Specific IgM is elicited after that period, indicating an active infection and usually lasts up to 3 months. However, in DENV secondary infections, IgM levels may be significantly lower or undetectable. After 10-12 days, a lifetime specific IgG is produced. Routinely, the laboratory diagnosis of DENV infections can be performed by viral isolation and/or detection of viral nucleic acid, serological assays for the detection of specific antibodies (IgM/IgG), antigen (NS1) and the detection of viral antigens in tissues, which are suitable during certain phases of the disease. For serological diagnosis, serum, plasma, or cerebrospinal fluid (CSF) samples may be investigated. If the test is carried out a few days after collection, the specimens can be stored at 4 °C, since the immunoglobulins are stable in serum or plasma. If the storage period is extended, the material must be kept at -20 °C or -70 °C. In serology, several methods can be used to detect specific viral antigens and/or antibodies, produced by the host in response to DENV infection. Routinely, serological tests include the hemagglutination inhibition (HI) assay, the plaque reduction neutralizing test (PRNT), the gold standard assay for dengue immune response characterization, and ELISAs to detect IgM (MAC-ELISA) and IgG (IgG-ELISA).
Collapse
Affiliation(s)
- Monique R Q Lima
- Laboratório Estratégico de Diagnóstico (LED), Centro de Desenvolvimento Científico, Instituto Butantan, São Paulo, Brazil
| | - Priscila C G Nunes
- Laboratório Municipal de Saúde Pública (LASP), Laboratório de Virologia e Biotério, Subsecretaria de Vigilância, Fiscalização Sanitária e Controle de Zoonoses, Rio de Janeiro, Brazil
- Superintendência de Informações Estratégicas de Vigilância em Saúde (SIEVS/RJ), Secretaria Estadual de Saúde, Rio de Janeiro, Brazil
| | - Flávia B Dos Santos
- Laboratório de Imunologia Viral (LIV), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Hansen CA, Barrett ADT. The Present and Future of Yellow Fever Vaccines. Pharmaceuticals (Basel) 2021; 14:ph14090891. [PMID: 34577591 PMCID: PMC8468696 DOI: 10.3390/ph14090891] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/05/2022] Open
Abstract
The disease yellow fever (YF) is prevented by a live-attenuated vaccine, termed 17D, which has been in use since the 1930s. One dose of the vaccine is thought to give lifelong (35+ years) protective immunity, and neutralizing antibodies are the correlate of protection. Despite being a vaccine-preventable disease, YF remains a major public health burden, causing an estimated 109,000 severe infections and 51,000 deaths annually. There are issues of supply and demand for the vaccine, and outbreaks in 2016 and 2018 resulted in fractional dosing of the vaccine to meet demand. The World Health Organization (WHO) has established the “Eliminate Yellow Fever Epidemics” (EYE) initiative to reduce the burden of YF over the next 10 years. As with most vaccines, the WHO has recommendations to assure the quality, safety, and efficacy of the YF vaccine. These require the use of live 17D vaccine only produced in embryonated chicken eggs, and safety evaluated in non-human primates only. Thus, any second-generation vaccines would require modification of WHO recommendations if they were to be used in endemic countries. There are multiple second-generation YF vaccine candidates in various stages of development that must be shown to be non-inferior to the current 17D vaccine in terms of safety and immunogenicity to progress through clinical trials to potential licensing. The historic 17D vaccine continues to shape the global vaccine landscape in its use in the generation of multiple licensed recombinant chimeric live vaccines and vaccine candidates, in which its structural protein genes are replaced with those of other viruses, such as dengue and Japanese encephalitis. There is no doubt that the YF 17D live-attenuated vaccine will continue to play a role in the development of new vaccines for YF, as well as potentially for many other pathogens.
Collapse
Affiliation(s)
- Clairissa A. Hansen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-4036, USA;
| | - Alan D. T. Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-4036, USA;
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555-4036, USA
- Correspondence:
| |
Collapse
|
11
|
Zeng W, Wang Y, Hu H, Wang Q, Bergmann SM, Wang Y, Li B, Lv Y, Li H, Yin J, Li Y. Cell Culture-Derived Tilapia Lake Virus-Inactivated Vaccine Containing Montanide Adjuvant Provides High Protection against Viral Challenge for Tilapia. Vaccines (Basel) 2021; 9:vaccines9020086. [PMID: 33503930 PMCID: PMC7911875 DOI: 10.3390/vaccines9020086] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Tilapia lake virus (TiLV) is a newly emerging pathogen responsible for high mortality and economic losses in the global tilapia industry. Currently, no antiviral therapy or vaccines are available for the control of this disease. The goal of the present study was to evaluate the immunological effects and protective efficacy of formaldehyde- and β-propiolactone-inactivated vaccines against TiLV in the presence and absence of the Montanide IMS 1312 VG adjuvant in tilapia. We found that β-propiolactone inactivation of viral particles generated a vaccine with a higher protection efficacy against virus challenge than did formaldehyde. The relative percent survivals of vaccinated fish at doses of 108, 107, and 106 50% tissue culture infectious dose (TCID50)/mL were 42.9%, 28.5%, and 14.3% in the absence of the adjuvant and 85.7%, 64.3%, and 32.1% in its presence, respectively. The vaccine generated specific IgM and neutralizing antibodies against TiLV at 3 weeks following immunization that were significantly increased after a second booster immunization. The steady state mRNA levels of the genes tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interferon γ (IFN-γ), cluster of differentiation 4 (CD4), major histocompatibility complex (MHC)-Ia, and MHC-II were all increased and indicated successful immune stimulation against TiLV. The vaccine also significantly lowered the viral loads and resulted in significant increases in survival, indicating that the vaccine may also inhibit viral proliferation as well as stimulate a protective antibody response. The β-propiolactone-inactivated TiLV vaccine coupled with the adjuvant Montanide IMS 1312 VG and booster immunizations can provide a high level of protection from virus challenge in tilapia.
Collapse
Affiliation(s)
- Weiwei Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.L.); (J.Y.)
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
- Correspondence: (W.Z.); (Q.W.)
| | - Yingying Wang
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Huzi Hu
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Qing Wang
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
- Correspondence: (W.Z.); (Q.W.)
| | - Sven M. Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany;
| | - Yahui Wang
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Bo Li
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Yuefeng Lv
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.L.); (J.Y.)
| | - Jiyuan Yin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.L.); (J.Y.)
| | - Yingying Li
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| |
Collapse
|
12
|
Krubiner CB, Faden RR, Karron RA, Little MO, Lyerly AD, Abramson JS, Beigi RH, Cravioto AR, Durbin AP, Gellin BG, Gupta SB, Kaslow DC, Kochhar S, Luna F, Saenz C, Sheffield JS, Tindana PO. Pregnant women & vaccines against emerging epidemic threats: Ethics guidance for preparedness, research, and response. Vaccine 2021; 39:85-120. [PMID: 31060949 PMCID: PMC7735377 DOI: 10.1016/j.vaccine.2019.01.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022]
Abstract
Zika virus, influenza, and Ebola have called attention to the ways in which infectious disease outbreaks can severely - and at times uniquely - affect the health interests of pregnant women and their offspring. These examples also highlight the critical need to proactively consider pregnant women and their offspring in vaccine research and response efforts to combat emerging and re-emerging infectious diseases. Historically, pregnant women and their offspring have been largely excluded from research agendas and investment strategies for vaccines against epidemic threats, which in turn can lead to exclusion from future vaccine campaigns amidst outbreaks. This state of affairs is profoundly unjust to pregnant women and their offspring, and deeply problematic from the standpoint of public health. To ensure that the needs of pregnant women and their offspring are fairly addressed, new approaches to public health preparedness, vaccine research and development, and vaccine delivery are required. This Guidance offers 22 concrete recommendations that provide a roadmap for the ethically responsible, socially just, and respectful inclusion of the interests of pregnant women in the development and deployment of vaccines against emerging pathogens. The Guidance was developed by the Pregnancy Research Ethics for Vaccines, Epidemics, and New Technologies (PREVENT) Working Group - a multidisciplinary, international team of 17 experts specializing in bioethics, maternal immunization, maternal-fetal medicine, obstetrics, pediatrics, philosophy, public health, and vaccine research and policy - in consultation with a variety of external experts and stakeholders.
Collapse
Affiliation(s)
- Carleigh B Krubiner
- Johns Hopkins Berman Institute of Bioethics, 1809 Ashland Avenue, Baltimore, MD, USA.
| | - Ruth R Faden
- Johns Hopkins Berman Institute of Bioethics, 1809 Ashland Avenue, Baltimore, MD, USA; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ruth A Karron
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Margaret O Little
- Kennedy Institute of Ethics, Georgetown University, Washington, D.C., USA
| | - Anne D Lyerly
- University of North Carolina Center for Bioethics, Chapel Hill, NC, USA
| | - Jon S Abramson
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Richard H Beigi
- Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Anna P Durbin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | - Carla Saenz
- Pan American Health Organization, Washington, D.C., USA
| | | | | |
Collapse
|
13
|
Pichkur EB, Samygina VR, Ivanova AL, Fedotov AY, Ivanov AP, Khvatov EV, Ishmukhametov AA, Vorovich MF. Preliminary Structural Study of Inactivated Yellow Fever Virus. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Ivanov AP, Klebleeva TD, Rogova YV, Ivanova OE. [Development of inactivated cultural yellow fever vaccine]. Vopr Virusol 2020; 65:212-217. [PMID: 33533224 DOI: 10.36233/0507-4088-2020-65-4-212-217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The only currently available live vaccine against yellow fever (YF) based on chicken embryos infected with an attenuated 17D strain of the YF virus is one of the most effective vaccine preparations. However, the live vaccine is associated with "viscerotropic syndrome" (approximately 0.4 cases per 100 000 vaccinated). Therefore, the development and introduction of highly purified inactivated vaccine against YF is intended to ensure the maximum safety of vaccination against one of the most common human viral diseases.Goals and objectives. Development and evaluation of immunogenicity of the cultural inactivated vaccine against YF at the laboratory model level. MATERIAL AND METHODS Adaptation of 17D strain of YF virus to Vero cell culture, cultivation, removal of cellular DNA, inactivation with β-propiolactone, concentration, chromatographic purification, determination of protein and antigen of YF virus, assessment of immunogenicity in mice in parallel with commercial live vaccine. RESULTS AND DISCUSSION Immunogenicity: the determination of specific antibodies of class G (IgG) and virus neutralizing antibodies in the sera of immunized mice showed high level of antibodies exceeding that of immunized with commercial live vaccine. The optimal dose of antigen in the vaccine (total protein) was 50 μg/ml (5 μg/0.1 ml -dose and volume per 1 vaccination of mice). Thus, the laboratory version of cultural inactivated vaccine against YF is as effective (and even superior) as the commercial live vaccine. CONCLUSION Laboratory version of cultural inactivated vaccine against YF, which is not inferior in immunogenicity (in animal model) to commercial live vaccine, has been developed.
Collapse
Affiliation(s)
- A P Ivanov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences
| | - T D Klebleeva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences
| | - Y V Rogova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences
| | - O E Ivanova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences; I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
15
|
Vorovitch MF, Grishina KG, Volok VP, Chernokhaeva LL, Grishin KV, Karganova GG, Ishmukhametov AA. Evervac: phase I/II study of immunogenicity and safety of a new adjuvant-free TBE vaccine cultivated in Vero cell culture. Hum Vaccin Immunother 2020; 16:2123-2130. [PMID: 32429733 PMCID: PMC7553679 DOI: 10.1080/21645515.2020.1757990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/24/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Approximately 10,000 cases of tick-borne encephalitis (TBE), a serious disease of the central nervous system caused by tick-borne encephalitis virus (TBEV), are registered worldwide every year. Vaccination against TBE remains the most essential measure of preventing the disease. Unlike available TBE vaccines, a new inactivated lyophilized candidate vaccine Evervac is produced in Vero continuous cell culture and its final formulation does not include aluminum-based adjuvants. To study the safety and immunogenicity of Evervac, healthy adults 18-60 y of age were immunized twice at 30-d intervals. The study was single-blind, randomized, comparative, controlled, and was conducted in TBE-endemic areas. The commercial lyophilized vaccine TBE-Moscow was used as a comparison treatment. The subjects were observed for incidence, severity, and duration of adverse reactions. It was shown that the severity of local and systemic reactions in the Evervac vaccine group was mild to moderate. There were no significant differences in the incidence of adverse reactions between the Evervac and TBE-Moscow vaccine groups. Immunization with Evervac produced a significant increase in geometric mean titer (GMT) of anti-TBEV antibodies in both initially seronegative and seropositive recipients. The seroconversion rate for the initially seronegative recipients was 69% (GMT = 1:214) after the first dose and reached 100% after the second dose. In these parameters, there were no significant differences between the study and control vaccine groups. Thus, the adjuvant-free Vero-based vaccine Evervac was well tolerated, had low reactogenicity, induced a pronounced immune response, and was overall non-inferior to the commercial adjuvanted TBE vaccine used as a control.
Collapse
Affiliation(s)
- Mikhail F. Vorovitch
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Karina G. Grishina
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Viktor P. Volok
- Laboratory of Biology of Arboviruses, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Liubov L. Chernokhaeva
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Konstantin V. Grishin
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aidar A. Ishmukhametov
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
16
|
Muley R, Dhere R. Effect of change in cell substrate on the critical quality attributes of L-Zagreb Mumps vaccine manufactured using parallel plate bioreactor. Biologicals 2020; 67:29-37. [PMID: 32855039 DOI: 10.1016/j.biologicals.2020.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/10/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022] Open
Abstract
Leningrad-Zagreb strain of mumps vaccine virus was grown on two different cell substrates viz. MRC-5 cells and Vero cells besides its original cell substrate i.e. Chicken Embryo Cells. Homogeneous virus pools prepared from each set of experiments were then lyophilized as per standard in-house protocol. Critical Quality Attributes (CQAs) such as the titer of the bulk vaccine and potency and stability of the lyophilized vaccine were then estimated using the CCID50 method to understand the lyophilization losses and thermal losses respectively in the vaccine. Another CQA viz. the genetic homogeneity of the vaccine was also tested using the single base extension method for identifying the nucleotides present at the three known locations of single nucleotide polymorphism (SNP). Comparison of CQA results across different cell substrates indicated encouraging results for Vero cell grown L-Zagreb virus compared to the MRC-5 cells grown L-Zagreb mumps virus. Significant improvement in productivity was also observed in the dynamic culture conditions compared to the static culture conditions. Progressive work in this research area can lead to development of a cGMP manufacturing process for mumps vaccine with easy scale up potential in future.
Collapse
Affiliation(s)
- Ravindra Muley
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune, 411 028, India; Symbiosis International (Deemed University), Lavale, Pune, 412 115, India
| | - Rajeev Dhere
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune, 411 028, India; Symbiosis International (Deemed University), Lavale, Pune, 412 115, India.
| |
Collapse
|
17
|
Kiesslich S, Kamen AA. Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Biotechnol Adv 2020; 44:107608. [PMID: 32768520 PMCID: PMC7405825 DOI: 10.1016/j.biotechadv.2020.107608] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
The Vero cell line is considered the most used continuous cell line for the production of viral vectors and vaccines. Historically, it is the first cell line that was approved by the WHO for the production of human vaccines. Comprehensive experimental data on the production of many viruses using the Vero cell line can be found in the literature. However, the vast majority of these processes is relying on the microcarrier technology. While this system is established for the large-scale manufacturing of viral vaccine, it is still quite complex and labor intensive. Moreover, scale-up remains difficult and is limited by the surface area given by the carriers. To overcome these and other drawbacks and to establish more efficient manufacturing processes, it is a priority to further develop the Vero cell platform by applying novel bioprocess technologies. Especially in times like the current COVID-19 pandemic, advanced and scalable platform technologies could provide more efficient and cost-effective solutions to meet the global vaccine demand. Herein, we review the prevailing literature on Vero cell bioprocess development for the production of viral vectors and vaccines with the aim to assess the recent advances in bioprocess development. We critically underline the need for further research activities and describe bottlenecks to improve the Vero cell platform by taking advantage of recent developments in the cell culture engineering field.
Collapse
Affiliation(s)
- Sascha Kiesslich
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
18
|
Sharma S, Schmid MA, Sanchez Felipe L, Grenelle J, Kaptein SJF, Coelmont L, Neyts J, Dallmeier K. Small-molecule inhibitors of TBK1 serve as an adjuvant for a plasmid-launched live-attenuated yellow fever vaccine. Hum Vaccin Immunother 2020; 16:2196-2203. [PMID: 32574095 PMCID: PMC7553677 DOI: 10.1080/21645515.2020.1765621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plasmid-launched live-attenuated vaccines (PLLAV), also called infectious DNA (iDNA) vaccines, combine the assets of genetic immunization with the potency of replication-competent live viral vaccines. However, due to their origin as bacterial plasmid DNA, efficient delivery of PLLAV may be hampered by innate signaling pathways such as the cGAS-STING-mediated sensing of cytosolic DNA, resulting in an unfavorable proinflammatory and antiviral response locally at the site of immunization. Employing several complementary cell-based systems and using the yellow fever vaccine (YF17D) and the respective PLLAV-YF17D, we screened a panel of small molecules known to interfere with antiviral signaling for their proviral activity and identified two potent inhibitors of the TANK-binding kinase 1 (TBK1), BX795 and CYT387, to enhance YF17D replication and hence efficacy of PLLAV-YF17D transfection. In tissue culture, BX795 could fully revert the block that plasmid transfection poses on YF17D infection in a type I interferon dependent manner, as confirmed by (i) a marked change in gene expression signatures, (ii) a rescue of full YF17D replication, and (iii) a massively increased virus yield. Inhibitors of TBK1 may hence be considered an adjuvant to potentiate novel PLLAV vaccines, which might boost PLLAV delivery toward their use in vivo.
Collapse
Affiliation(s)
- Sapna Sharma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Group , Leuven, Belgium
| | - Michael A Schmid
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Group , Leuven, Belgium.,Humabs BioMed Vir Biotechnology , Bellinzona, Switzerland
| | - Lorena Sanchez Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Group , Leuven, Belgium
| | - Jana Grenelle
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Group , Leuven, Belgium
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Group , Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Group , Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Group , Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Group , Leuven, Belgium
| |
Collapse
|
19
|
Souza YRMD, Manso PPDA, Oliveira BCDD, Terra MABL, Paschoal T, Caminha G, Ribeiro IP, Raphael LMS, Bonaldo MC, Pelajo-Machado M. Generation of Yellow Fever virus vaccine in skeletal muscle cells of chicken embryos. Mem Inst Oswaldo Cruz 2019; 114:e190187. [PMID: 31826129 PMCID: PMC6903807 DOI: 10.1590/0074-02760190187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/05/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The Yellow Fever (YF) vaccine is produced by the inoculation of embryonated chicken eggs with YF17DD virus on the ninth day of development. Full embryos are collected on the twelfth day of development for vaccine formulation. Skeletal muscle tissue is the main site where biosynthesis of viral particles occurs. OBJECTIVES This study aimed to analyse the experimental infection of skeletal muscle cells of chicken embryos by the 17DD Yellow Fever virus (YFV) in vivo and in vitro. METHODS Chicken embryos infected with YF17DD virus were analysed by immunofluorescence using confocal and super-resolution microscopes. Primary cultures of skeletal muscle cells of non-infected chicken embryos were evaluated for susceptibility and permissiveness to YF17DD virus using different protocols. This evaluation was performed based on morphological, viral titration, molecular biology, and colorimetric techniques. FINDINGS The present work phenotypically characterises embryonic chicken skeletal muscle cells as myogenic precursors expressing the Pax7 transcription factor in some cases. We demonstrated that these cells are susceptible to in vitro infection at different multiplicities of infection (MOIs), reproducing the same infection pattern observed in vivo. Furthermore, myogenic precursors and myoblasts are preferred infection targets, but establishment of infection does not depend on the presence of these cells. The peak of viral production occurred at 48 hpi, with decay occurring 72 hpi, when the cytopathic effect can be observed. MAIN CONCLUSIONS In conclusion, the primary culture of chicken skeletal muscle cells is a good model for studying muscle cells infected with YF17DD virus. This culture system displays satisfactory emulation of the in vitro phenomenon observed, contributing to our understanding of virus infection dynamics and leading to the development of alternative methods of vaccine production.
Collapse
Affiliation(s)
| | - Pedro Paulo de Abreu Manso
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Patologia, Rio de Janeiro, RJ, Brasil
| | | | | | - Thalita Paschoal
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Patologia, Rio de Janeiro, RJ, Brasil
| | - Giulia Caminha
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Patologia, Rio de Janeiro, RJ, Brasil
| | - Ieda Pereira Ribeiro
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Flavivirus, Rio de Janeiro, RJ, Brasil
| | - Lidiane Menezes Souza Raphael
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Flavivirus, Rio de Janeiro, RJ, Brasil
| | - Myrna Cristina Bonaldo
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Flavivirus, Rio de Janeiro, RJ, Brasil
| | - Marcelo Pelajo-Machado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Patologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
20
|
Kieffer A, Hoestlandt C, Gil-Rojas Y, Broban A, Castañeda-Cardona C, Rosselli D. The Public Health Benefits and Economic Value of Routine Yellow Fever Vaccination in Colombia. Value Health Reg Issues 2019; 20:60-65. [DOI: 10.1016/j.vhri.2019.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/29/2018] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
21
|
Disease Resurgence, Production Capability Issues and Safety Concerns in the Context of an Aging Population: Is There a Need for a New Yellow Fever Vaccine? Vaccines (Basel) 2019; 7:vaccines7040179. [PMID: 31717289 PMCID: PMC6963298 DOI: 10.3390/vaccines7040179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Yellow fever is a potentially fatal, mosquito-borne viral disease that appears to be experiencing a resurgence in endemic areas in Africa and South America and spreading to non-endemic areas despite an effective vaccine. This trend has increased the level of concern about the disease and the potential for importation to areas in Asia with ecological conditions that can sustain yellow fever virus transmission. In this article, we provide a broad overview of yellow fever burden of disease, natural history, treatment, vaccine, prevention and control initiatives, and vaccine and therapeutic agent development efforts.
Collapse
|
22
|
Hernandez N, Bucciol G, Moens L, Le Pen J, Shahrooei M, Goudouris E, Shirkani A, Changi-Ashtiani M, Rokni-Zadeh H, Sayar EH, Reisli I, Lefevre-Utile A, Zijlmans D, Jurado A, Pholien R, Drutman S, Belkaya S, Cobat A, Boudewijns R, Jochmans D, Neyts J, Seeleuthner Y, Lorenzo-Diaz L, Enemchukwu C, Tietjen I, Hoffmann HH, Momenilandi M, Pöyhönen L, Siqueira MM, de Lima SMB, de Souza Matos DC, Homma A, Maia MDLS, da Costa Barros TA, de Oliveira PMN, Mesquita EC, Gijsbers R, Zhang SY, Seligman SJ, Abel L, Hertzog P, Marr N, Martins RDM, Meyts I, Zhang Q, MacDonald MR, Rice CM, Casanova JL, Jouanguy E, Bossuyt X. Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. J Exp Med 2019; 216:2057-2070. [PMID: 31270247 PMCID: PMC6719432 DOI: 10.1084/jem.20182295] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/18/2019] [Accepted: 06/11/2019] [Indexed: 01/31/2023] Open
Abstract
We describe two unrelated patients with inherited IFNAR1 deficiency who suffered from life-threatening infections following measles or yellow fever virus vaccination and were otherwise healthy. Vaccination against measles, mumps, and rubella (MMR) and yellow fever (YF) with live attenuated viruses can rarely cause life-threatening disease. Severe illness by MMR vaccines can be caused by inborn errors of type I and/or III interferon (IFN) immunity (mutations in IFNAR2, STAT1, or STAT2). Adverse reactions to the YF vaccine have remained unexplained. We report two otherwise healthy patients, a 9-yr-old boy in Iran with severe measles vaccine disease at 1 yr and a 14-yr-old girl in Brazil with viscerotropic disease caused by the YF vaccine at 12 yr. The Iranian patient is homozygous and the Brazilian patient compound heterozygous for loss-of-function IFNAR1 variations. Patient-derived fibroblasts are susceptible to viruses, including the YF and measles virus vaccine strains, in the absence or presence of exogenous type I IFN. The patients’ fibroblast phenotypes are rescued with WT IFNAR1. Autosomal recessive, complete IFNAR1 deficiency can result in life-threatening complications of vaccination with live attenuated measles and YF viruses in previously healthy individuals.
Collapse
Affiliation(s)
- Nicholas Hernandez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Giorgia Bucciol
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
| | - Leen Moens
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran.,Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | | | - Afshin Shirkani
- Allergy and Clinical Immunology Department, Bushehr University of Medical Science, School of Medicine, Bushehr, Iran
| | | | - Hassan Rokni-Zadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Esra Hazar Sayar
- Department of Pediatrics, Division of Pediatric Immunology and Allergy, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Ismail Reisli
- Department of Pediatrics, Division of Pediatric Immunology and Allergy, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Alain Lefevre-Utile
- Pediatrics Department, Jean Verdier Hospital, Assistance Publique des Hôpitaux de Paris, Paris 13 University, Bondy, France
| | - Dick Zijlmans
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Andrea Jurado
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Ruben Pholien
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Scott Drutman
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Serkan Belkaya
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Aurelie Cobat
- Pediatric Immunology-Hematology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Robbert Boudewijns
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Yoann Seeleuthner
- Paris Descartes University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Lazaro Lorenzo-Diaz
- Paris Descartes University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Chibuzo Enemchukwu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Ian Tietjen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | | | - Mana Momenilandi
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran
| | - Laura Pöyhönen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Marilda M Siqueira
- National Reference Laboratory for Respiratory Viruses, Institute Oswaldo Cruz, Fiocruz, Ministry of Health, Rio de Janeiro, Brazil
| | - Sheila M Barbosa de Lima
- Laboratory of Virological Techniques, Bio-Manguinhos, Fiocruz, Ministry of Health, Rio de Janeiro, Brazil
| | - Denise C de Souza Matos
- Laboratory of Immunological Techniques, Bio-Manguinhos, Fiocruz, Ministry of Health, Rio de Janeiro, Brazil
| | - Akira Homma
- Bio-Manguinhos, Fiocruz, Ministry of Health, Rio de Janeiro, Brazil
| | | | | | | | | | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, Leuven, Belgium
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Paris Descartes University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Stephen J Seligman
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Department of Microbiology and Immunology, New York Medical College, Valhalla, NY
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Paris Descartes University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Paul Hertzog
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Nico Marr
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Precision Immunology Institute and Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai, New York, NY
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY .,Pediatric Immunology-Hematology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Paris Descartes University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Xavier Bossuyt
- Department of Microbiology, Immunology and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium.,Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Pato TP, Souza MC, Mattos DA, Caride E, Ferreira DF, Gaspar LP, Freire MS, Castilho LR. Purification of yellow fever virus produced in Vero cells for inactivated vaccine manufacture. Vaccine 2019; 37:3214-3220. [DOI: 10.1016/j.vaccine.2019.04.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022]
|
24
|
Queiroz SRDA, Silva Júnior JVJ, Silva ANMRD, Carvalho AGDO, Santos JJDS, Gil LHVG. Development and characterization of a packaging cell line for pseudo-infectious yellow fever virus particle generation. Rev Soc Bras Med Trop 2018. [PMID: 29513845 DOI: 10.1590/0037-8682-0220-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Pseudo-infectious yellow fever viral particles (YFV-PIVs) have been used to study vaccines and viral packaging. Here, we report the development of a packaging cell line, which expresses the YFV prM/E proteins. METHODS HEK293 cells were transfected with YFV prM/E and C (84 nt) genes to generate HEK293-YFV-PrM/E-opt. The cells were evaluated for their ability to express the heterologous proteins and to package the replicon repYFV-17D-LucIRES, generating YFV-PIVs. RESULTS The expression of prM/E proteins was confirmed, and the cell line trans-packaged the replicon for recovery of a reporter for the YFV-PIVs. CONCLUSIONS HEK293-YFV-prM/E-opt trans-packaging capacity demonstrates its possible biotechnology application.
Collapse
|
25
|
Yang H, Yang H, Li Z, Liu L, Wang W, He T, Fan F, Sun Y, Liu J, Li Y, Zeng X. Japanese encephalitis virus/yellow fever virus chimera is safe and confers full protection against yellow fever virus in intracerebrally challenged mice. Vaccine 2018; 36:2450-2455. [PMID: 29580643 DOI: 10.1016/j.vaccine.2018.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/10/2018] [Accepted: 03/14/2018] [Indexed: 11/24/2022]
Abstract
Yellow fever (YF) is an acute viral haemorrhagic disease caused by the yellow fever virus (YFV), which remains a potential threat to public health. The live-attenuated YF vaccine (17D strain) is a safe and highly effective measure against YF. However, increasing adverse events have been associated with YF vaccinations in recent years; thus, safer, alternative vaccines are needed. In this study, using the Japanese encephalitis live vaccine strain SA14-14-2 as a backbone, a novel chimeric virus was constructed by replacing the pre-membrane (prM) and envelope (E) genes with their YFV 17D counterparts.The chimeric virus exhibited a reduced growth rate and a much smaller plaque morphology than did either parental virus. Furthermore, the chimera was much less neurovirulent than was YF17D and protected mice that were challenged with a lethal dose of the YF virus. These results suggest that this chimera has potential as a novel attenuated YF vaccine.
Collapse
Affiliation(s)
- Huiqiang Yang
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Huan Yang
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Zhushi Li
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Lina Liu
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Wei Wang
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Ting He
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Fengming Fan
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Yan Sun
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Jie Liu
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Yuhua Li
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, PR China.
| | - Xianwu Zeng
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China.
| |
Collapse
|
26
|
Valega-Mackenzie W, Ríos-Soto KR. Can Vaccination Save a Zika Virus Epidemic? Bull Math Biol 2018; 80:598-625. [PMID: 29359251 DOI: 10.1007/s11538-018-0393-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022]
Abstract
Zika virus (ZIKV) is a vector-borne disease that has rapidly spread during the year 2016 in more than 50 countries around the world. If a woman is infected during pregnancy, the virus can cause severe birth defects and brain damage in their babies. The virus can be transmitted through the bites of infected mosquitoes as well as through direct contact from human to human (e.g., sexual contact and blood transfusions). As an intervention for controlling the spread of the disease, we study a vaccination model for preventing Zika infections. Although there is no formal vaccine for ZIKV, The National Institute of Allergy and Infectious Diseases (part of the National Institutes of Health) has launched a vaccine trial at the beginning of August 2016 to control ZIKV transmission, patients who received the vaccine are expected to return within 44 weeks to determine if the vaccine is safe. Since it is important to understand ZIKV dynamics under vaccination, we formulate a vaccination model for ZIKV spread that includes mosquito as well as sexual transmission. We calculate the basic reproduction number of the model to analyze the impact of relatively, perfect and imperfect vaccination rates. We illustrate several numerical examples of the vaccination model proposed as well as the impact of the basic reproduction numbers of vector and sexual transmission and the effect of vaccination effort on ZIKV spread. Results show that high levels of sexual transmission create larger cases of infection associated with the peak of infected humans arising in a shorter period of time, even when a vaccine is available in the population. However, a high level of transmission of Zika from vectors to humans compared with sexual transmission represents that ZIKV will take longer to invade the population providing a window of opportunities to control its spread, for instance, through vaccination.
Collapse
Affiliation(s)
- Wencel Valega-Mackenzie
- Department of Mathematical Sciences, University of Puerto Rico Mayagüez, Mayagüez, 00681-9018, Puerto Rico
| | - Karen R Ríos-Soto
- Department of Mathematical Sciences, University of Puerto Rico Mayagüez, Mayagüez, 00681-9018, Puerto Rico.
| |
Collapse
|
27
|
Ferreira CDC, Campi-Azevedo AC, Peruhype-Magalhāes V, Costa-Pereira C, Albuquerque CPD, Muniz LF, Yokoy de Souza T, Oliveira ACV, Martins-Filho OA, da Mota LMH. The 17D-204 and 17DD yellow fever vaccines: an overview of major similarities and subtle differences. Expert Rev Vaccines 2017; 17:79-90. [PMID: 29172832 DOI: 10.1080/14760584.2018.1406800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The yellow fever vaccine is a live attenuated virus vaccine that is considered one of the most efficient vaccines produced to date. The original 17D strain generated the substrains 17D-204 and 17DD, which are used for the current production of vaccines against yellow fever. The 17D-204 and 17DD substrains present subtle differences in their nucleotide compositions, which can potentially lead to variations in immunogenicity and reactogenicity. We will address the main changes in the immune responses induced by the 17D-204 and 17DD yellow fever vaccines and report similarities and differences between these vaccines in cellular and humoral immunity . This is a relevant issue in view of the re-emergence of yellow fever in Uganda in 2016 and in Brazil in the beginning of 2017. AREAS COVERED This article will be divided into 8 sections that will analyze the innate immune response, adaptive immune response, humoral response, production of cytokines, immunity in children, immunity in the elderly, gene expression and adverse reactions. EXPERT COMMENTARY The 17D-204 and 17DD yellow fever vaccines present similar immunogenicity, with strong activation of the cellular and humoral immune responses. Additionally, both vaccines have similar adverse effects, which are mostly mild and thus are considered safe.
Collapse
Affiliation(s)
| | | | | | | | | | - Luciana Feitosa Muniz
- a Department of Rheumatology , University Hospital of Brasilia, University of Brasilia , Brasilia , Brazil
| | - Talita Yokoy de Souza
- a Department of Rheumatology , University Hospital of Brasilia, University of Brasilia , Brasilia , Brazil
| | | | | | | |
Collapse
|
28
|
Abstract
Recognition that the live yellow fever vaccine may rarely be associated with viscerotropic disease (YEL-AVD) has diminished its safety status. However, the vaccine remains the principal tool for limiting the occurrence of yellow fever, making large portions of Africa and South America more habitable. The subject has previously been exhaustively reviewed. Novel concepts in the current report include the description of a systematic method for deciding whom to vaccinate, recommendations for obtaining data helpful in making that decision, and suggestions for additional study. The vaccine is indeed a worthy friend, but its adverse reactions need to be recognized.
Collapse
Affiliation(s)
- Stephen J Seligman
- a Department of Microbiology and Immunology , New York Medical College , Valhalla , NY , USA.,b St. Giles Laboratory of Human Genetics of Infectious Diseases , The Rockefeller University , New York , NY , USA
| | - Jean-Laurent Casanova
- b St. Giles Laboratory of Human Genetics of Infectious Diseases , The Rockefeller University , New York , NY , USA.,c Howard Hughes Medical Institute , The Rockefeller University , New York , NY , USA
| |
Collapse
|
29
|
Holbrook MR. Historical Perspectives on Flavivirus Research. Viruses 2017; 9:E97. [PMID: 28468299 PMCID: PMC5454410 DOI: 10.3390/v9050097] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The flaviviruses are small single-stranded RNA viruses that are typically transmitted by mosquito or tick vectors. These "arboviruses" are found around the world and account for a significant number of cases of human disease. The flaviviruses cause diseases ranging from mild or sub-clinical infections to lethal hemorrhagic fever or encephalitis. In many cases, survivors of neurologic flavivirus infections suffer long-term debilitating sequelae. Much like the emergence of West Nile virus in the United States in 1999, the recent emergence of Zika virus in the Americas has significantly increased the awareness of mosquito-borne viruses. The diseases caused by several flaviviruses have been recognized for decades, if not centuries. However, there is still a lot that is unknown about the flaviviruses as the recent experience with Zika virus has taught us. The objective of this review is to provide a general overview and some historical perspective on several flaviviruses that cause significant human disease. In addition, available medical countermeasures and significant gaps in our understanding of flavivirus biology are also discussed.
Collapse
Affiliation(s)
- Michael R Holbrook
- NIAID Integrated Research Facility, 8200 Research Plaza, Ft. Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
30
|
Reina J, Reina N. [Is the re-emergence of yellow fever a new global public health threat?]. Med Clin (Barc) 2016; 147:492-494. [PMID: 28126144 DOI: 10.1016/j.medcli.2016.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Jordi Reina
- Unidad de Virología, Servicio de Microbiología, Hospital Universitario Son Espases, Palma de Mallorca, España.
| | - Núria Reina
- Facultad de Medicina, Universitat de Girona, Girona, España
| |
Collapse
|
31
|
Zeng W, Wang Q, Wang Y, Zhao C, Li Y, Shi C, Wu S, Song X, Huang Q, Li S. Immunogenicity of a cell culture-derived inactivated vaccine against a common virulent isolate of grass carp reovirus. FISH & SHELLFISH IMMUNOLOGY 2016; 54:473-480. [PMID: 27142935 DOI: 10.1016/j.fsi.2016.04.133] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
Grass carp (Ctenopharyngodon idella) hemorrhagic disease, caused by grass carp reovirus (GCRV), is emerging as a serious problem in grass carp aquaculture. There is no available antiviral therapy and vaccination is the primary method of disease control. In the present study, the immunological effects and protective efficacy of an inactivated HuNan1307 vaccine in grass carp were evaluated. The GCRV isolate HuNan1307 was produced by replication onto the grass carp PSF cell line, and inactivated with 1% β-propiolactone for 60 h at 4 °C. Grass carp were injected with inactivated GCRV vaccine, followed by challenge with the isolate HuNan1307. The results showed that the minimum dosage of the inactivated vaccine was 10(5.5) TCID50/0.2 mL to induce immune protection. All grass carp immunized with the inactivated vaccine produced a high titer of serum antibodies and GCRV-specific neutralizing antibody. Moreover, the inactivated vaccine injection increased the expression of 6 immune-related genes in the spleen and head kidney, which indicated that a immune response was induced by the HuNan1307 vaccine. In addition, grass carp immunized with the inactivated vaccine showed a survival rate above 80% after the viral challenge, equal to that of grass carp immunized with a commercial attenuated vaccine, and the protection lasted at least for one year. The data in this study suggested that the inactivated HuNan1307 vaccine may represent an efficient method to induce immunity against GCRV infection and the induced disease in grass carp.
Collapse
Affiliation(s)
- Weiwei Zeng
- College of Veterinary Medicine, South China Agricultural University, Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou 510642, Guangdong, China; Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, Guangdong, China
| | - Qing Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, Guangdong, China.
| | - Yingying Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, Guangdong, China
| | - Changchen Zhao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, Guangdong, China
| | - Yingying Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, Guangdong, China
| | - Chunbin Shi
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, Guangdong, China
| | - Shuqin Wu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, Guangdong, China
| | - Xinjian Song
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, Guangdong, China
| | - Qiwen Huang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, Guangdong, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
32
|
Abstract
Yellow fever 17D vaccine is one of the oldest live-attenuated vaccines in current use that is recognized historically for its immunogenic and safe properties. These unique properties of 17D are presently exploited in rationally designed recombinant vaccines targeting not only flaviviral antigens but also other pathogens of public health concern. Several candidate vaccines based on 17D have advanced to human trials, and a chimeric recombinant Japanese encephalitis vaccine utilizing the 17D backbone has been licensed. The mechanism(s) of attenuation for 17D are poorly understood; however, recent insights from large in silico studies have indicated particular host genetic determinants contributing to the immune response to the vaccine, which presumably influences the considerable durability of protection, now in many cases considered to be lifelong. The very rare occurrence of severe adverse events for 17D is discussed, including a recent fatal case of vaccine-associated viscerotropic disease.
Collapse
Affiliation(s)
- Andrew S Beck
- a 1 Department of Pathology, University of Texas Medical Branch, Galveston TX 77555-0609, USA
| | | |
Collapse
|