1
|
Pushko P, Lukashevich IS, Johnson DM, Tretyakova I. Single-Dose Immunogenic DNA Vaccines Coding for Live-Attenuated Alpha- and Flaviviruses. Viruses 2024; 16:428. [PMID: 38543793 PMCID: PMC10974764 DOI: 10.3390/v16030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Single-dose, immunogenic DNA (iDNA) vaccines coding for whole live-attenuated viruses are reviewed. This platform, sometimes called immunization DNA, has been used for vaccine development for flavi- and alphaviruses. An iDNA vaccine uses plasmid DNA to launch live-attenuated virus vaccines in vitro or in vivo. When iDNA is injected into mammalian cells in vitro or in vivo, the RNA genome of an attenuated virus is transcribed, which starts replication of a defined, live-attenuated vaccine virus in cell culture or the cells of a vaccine recipient. In the latter case, an immune response to the live virus vaccine is elicited, which protects against the pathogenic virus. Unlike other nucleic acid vaccines, such as mRNA and standard DNA vaccines, iDNA vaccines elicit protection with a single dose, thus providing major improvement to epidemic preparedness. Still, iDNA vaccines retain the advantages of other nucleic acid vaccines. In summary, the iDNA platform combines the advantages of reverse genetics and DNA immunization with the high immunogenicity of live-attenuated vaccines, resulting in enhanced safety and immunogenicity. This vaccine platform has expanded the field of genetic DNA and RNA vaccines with a novel type of immunogenic DNA vaccines that encode entire live-attenuated viruses.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc., 8420 Gas House Pike Suite S, Frederick, MD 21701, USA;
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, 505 S Hancock St., Louisville, KY 40202, USA;
| | - Dylan M. Johnson
- Department of Biotechnology & Bioengineering, Sandia National Laboratories, Livermore, CA 945501, USA;
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike Suite S, Frederick, MD 21701, USA;
| |
Collapse
|
2
|
Hansen CA, Barrett ADT. The Present and Future of Yellow Fever Vaccines. Pharmaceuticals (Basel) 2021; 14:ph14090891. [PMID: 34577591 PMCID: PMC8468696 DOI: 10.3390/ph14090891] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/05/2022] Open
Abstract
The disease yellow fever (YF) is prevented by a live-attenuated vaccine, termed 17D, which has been in use since the 1930s. One dose of the vaccine is thought to give lifelong (35+ years) protective immunity, and neutralizing antibodies are the correlate of protection. Despite being a vaccine-preventable disease, YF remains a major public health burden, causing an estimated 109,000 severe infections and 51,000 deaths annually. There are issues of supply and demand for the vaccine, and outbreaks in 2016 and 2018 resulted in fractional dosing of the vaccine to meet demand. The World Health Organization (WHO) has established the “Eliminate Yellow Fever Epidemics” (EYE) initiative to reduce the burden of YF over the next 10 years. As with most vaccines, the WHO has recommendations to assure the quality, safety, and efficacy of the YF vaccine. These require the use of live 17D vaccine only produced in embryonated chicken eggs, and safety evaluated in non-human primates only. Thus, any second-generation vaccines would require modification of WHO recommendations if they were to be used in endemic countries. There are multiple second-generation YF vaccine candidates in various stages of development that must be shown to be non-inferior to the current 17D vaccine in terms of safety and immunogenicity to progress through clinical trials to potential licensing. The historic 17D vaccine continues to shape the global vaccine landscape in its use in the generation of multiple licensed recombinant chimeric live vaccines and vaccine candidates, in which its structural protein genes are replaced with those of other viruses, such as dengue and Japanese encephalitis. There is no doubt that the YF 17D live-attenuated vaccine will continue to play a role in the development of new vaccines for YF, as well as potentially for many other pathogens.
Collapse
Affiliation(s)
- Clairissa A. Hansen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-4036, USA;
| | - Alan D. T. Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-4036, USA;
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555-4036, USA
- Correspondence:
| |
Collapse
|
3
|
Serrão de Andrade AA, Soares AER, Paula de Almeida LG, Ciapina LP, Pestana CP, Aquino CL, Medeiros MA, Ribeiro de Vasconcelos AT. Testing the genomic stability of the Brazilian yellow fever vaccine strain using next-generation sequencing data. Interface Focus 2021; 11:20200063. [PMID: 34123353 PMCID: PMC8193464 DOI: 10.1098/rsfs.2020.0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 01/06/2023] Open
Abstract
The live attenuated yellow fever (YF) vaccine was developed in the 1930s. Currently, the 17D and 17DD attenuated substrains are used for vaccine production. The 17D strain is used for vaccine production by several countries, while the 17DD strain is used exclusively in Brazil. The cell passages carried out through the seed-lot system of vaccine production influence the presence of quasispecies causing changes in the stability and immunogenicity of attenuated genotypes by increasing attenuation or virulence. Using next-generation sequencing, we carried out genomic characterization and genetic diversity analysis between vaccine lots of the Brazilian YF vaccine, produced by BioManguinhos–Fiocruz, and used during 11 years of vaccination in Brazil. We present 20 assembled and annotated genomes from the Brazilian 17DD vaccine strain, eight single nucleotide polymorphisms and the quasispecies spectrum reconstruction for the 17DD vaccine, through a pipeline here introduced. The V2IDA pipeline provided a relationship between low genetic diversity, maintained through the seed lot system, and the confirmation of genetic stability of lots of the Brazilian vaccine against YF. Our study sets precedents for use of V2IDA in genetic diversity analysis and in silico stability investigation of attenuated viral vaccines, facilitating genetic surveillance during the vaccine production process.
Collapse
Affiliation(s)
- Amanda Araújo Serrão de Andrade
- National Laboratory for Scientific Computing, Bioinformatics Laboratory (LABINFO), Avenida Getúlio Vargas, 333, Quitandinha 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - André E R Soares
- National Laboratory for Scientific Computing, Bioinformatics Laboratory (LABINFO), Avenida Getúlio Vargas, 333, Quitandinha 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Luiz Gonzaga Paula de Almeida
- National Laboratory for Scientific Computing, Bioinformatics Laboratory (LABINFO), Avenida Getúlio Vargas, 333, Quitandinha 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Luciane Prioli Ciapina
- National Laboratory for Scientific Computing, Bioinformatics Laboratory (LABINFO), Avenida Getúlio Vargas, 333, Quitandinha 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Cristiane Pinheiro Pestana
- Fiocruz, Bio-Manguinhos, Recombinant Technology Laboratory (LATER), Brazilian Ministry of Health, Rio de Janeiro, Brazil
| | - Carolina Lessa Aquino
- Fiocruz, Bio-Manguinhos, Recombinant Technology Laboratory (LATER), Brazilian Ministry of Health, Rio de Janeiro, Brazil
| | - Marco Alberto Medeiros
- Fiocruz, Bio-Manguinhos, Recombinant Technology Laboratory (LATER), Brazilian Ministry of Health, Rio de Janeiro, Brazil
| | - Ana Tereza Ribeiro de Vasconcelos
- National Laboratory for Scientific Computing, Bioinformatics Laboratory (LABINFO), Avenida Getúlio Vargas, 333, Quitandinha 25651-075, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Raoufi E, Bahramimeimandi B, Salehi-Shadkami M, Chaosri P, Mozafari MR. Methodical Design of Viral Vaccines Based on Avant-Garde Nanocarriers: A Multi-Domain Narrative Review. Biomedicines 2021; 9:520. [PMID: 34066608 PMCID: PMC8148582 DOI: 10.3390/biomedicines9050520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
The current health crisis caused by coronavirus 2019 (COVID-19) and associated pathogens emphasize the urgent need for vaccine systems that can generate protective and long-lasting immune responses. Vaccination, employing peptides, nucleic acids, and other molecules, or using pathogen-based strategies, in fact, is one of the most potent approaches in the management of viral diseases. However, the vaccine candidate requires protection from degradation and precise delivery to the target cells. This can be achieved by employing different types of drug and vaccine delivery strategies, among which, nanotechnology-based systems seem to be more promising. This entry aims to provide insight into major aspects of vaccine design and formulation to address different diseases, including the recent outbreak of SARS-CoV-2. Special emphasis of this review is on the technical and practical aspects of vaccine construction and theranostic approaches to precisely target and localize the active compounds.
Collapse
Affiliation(s)
- Ehsan Raoufi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (E.R.); (B.B.)
| | - Bahar Bahramimeimandi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (E.R.); (B.B.)
| | - M. Salehi-Shadkami
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Patcharida Chaosri
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand;
| | - M. R. Mozafari
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand;
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
5
|
Weiss CM, Liu H, Riemersma KK, Ball EE, Coffey LL. Engineering a fidelity-variant live-attenuated vaccine for chikungunya virus. NPJ Vaccines 2020; 5:97. [PMID: 33083032 PMCID: PMC7560698 DOI: 10.1038/s41541-020-00241-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/15/2020] [Indexed: 12/27/2022] Open
Abstract
Chikungunya virus (CHIKV), which causes a febrile illness characterized by severe and prolonged polyarthralgia/polyarthritis, is responsible for a global disease burden of millions of cases each year with autochthonous transmission in over 100 countries and territories worldwide. There is currently no approved treatment or vaccine for CHIKV. One live-attenuated vaccine (LAV) developed by the United States Army progressed to Phase II human clinical trials but was withdrawn when 8% of volunteers developed joint pain associated with vaccination. Attenuation of the Army’s CHIKV LAV strain 181 clone 25 (CHIKV-181/25) relies on two mutations in the envelope 2 (E2) glycoprotein responsible for cell binding and entry, making it particularly prone to reversion, a common concern for replication-competent vaccines. High error rates associated with RNA virus replication have posed a challenge for LAV development where stable incorporation of attenuating elements is necessary for establishing safety in pre-clinical models. Herein, we incorporate two replicase mutations into CHIKV-181/25 which modulate CHIKV replication fidelity combined with additional attenuating features that cannot be eliminated by point mutation. The mutations were stably incorporated in the LAV and did not increase virulence in mice. Two fidelity-variant CHIKV LAVs generated neutralizing antibodies and were protective from CHIKV disease in adult mice. Unexpectedly, our fidelity-variant candidates were more mutable than CHIKV-181/25 and exhibited restricted replication in mice and Aedes mosquitoes, a possible consequence of hypermutation. Our data demonstrate safety and efficacy but highlight a further need to evaluate fidelity-altering phenotypes before use as a LAV given the potential for virulent reversion.
Collapse
Affiliation(s)
- Christopher M Weiss
- Department of Pathology Microbiology and Immunology, University of California, Davis, CA USA
| | - Hongwei Liu
- Department of Pathology Microbiology and Immunology, University of California, Davis, CA USA
| | - Kasen K Riemersma
- Department of Pathology Microbiology and Immunology, University of California, Davis, CA USA.,Present Address: University of Wisconsin, Madison, WI USA
| | - Erin E Ball
- Department of Pathology Microbiology and Immunology, University of California, Davis, CA USA
| | - Lark L Coffey
- Department of Pathology Microbiology and Immunology, University of California, Davis, CA USA
| |
Collapse
|
6
|
Kum DB, Mishra N, Vrancken B, Thibaut HJ, Wilder-Smith A, Lemey P, Neyts J, Dallmeier K. Limited evolution of the yellow fever virus 17d in a mouse infection model. Emerg Microbes Infect 2020; 8:1734-1746. [PMID: 31797751 PMCID: PMC6896426 DOI: 10.1080/22221751.2019.1694394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
By infecting mice with the yellow fever virus vaccine strain 17D (YFV-17D; Stamaril®), the dose dependence and evolutionary consequences of neurotropic yellow fever infection was assessed. Highly susceptible AG129 mice were used to allow for a maximal/unlimited expansion of the viral populations. Infected mice uniformly developed neurotropic disease; the virus was isolated from their brains, plaque purified and sequenced. Viral RNA populations were overall rather homogenous [Shannon entropies 0−0.15]. The remaining, yet limited intra-host population diversity (0−11 nucleotide exchanges per genome) appeared to be a consequence of pre-existing clonal heterogeneities (quasispecies) of Stamaril®. In parallel, mice were infected with a molecular clone of YFV-17D which was in vivo launched from a plasmid. Such plasmid-launched YFV-17D had a further reduced and almost clonal evolution. The limited intra-host evolution during unrestricted expansion in a highly susceptible host is relevant for vaccine and drug development against flaviviruses in general. Firstly, a propensity for limited evolution even upon infection with a (very) low inoculum suggests that fractional dosing as implemented in current YF-outbreak control may pose only a limited risk of reversion to pathogenic vaccine-derived virus variants. Secondly, it also largely lowers the chance of antigenic drift and development of resistance to antivirals.
Collapse
Affiliation(s)
- Dieudonné Buh Kum
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.,Aligos Belgium, Leuven, Belgium
| | - Niraj Mishra
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Bram Vrancken
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Annelies Wilder-Smith
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Philippe Lemey
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
7
|
Abstract
With the advent of advanced sequencing technology, studies of RNA viruses have shown that genetic diversity can contribute to both attenuation and virulence and the paradigm is that this is controlled by the error-prone RNA-dependent RNA polymerase (RdRp). Since wild-type yellow fever virus (YFV) strain Asibi has genetic diversity typical of a wild-type RNA virus, while 17D virus vaccine has limited diversity, it provides a unique opportunity to investigate RNA population theory in the context of a well-characterized live attenuated vaccine. Utilizing infectious clone-derived viruses, we show that genetic diversity of RNA viruses is complex and that multiple genes, including structural genes and NS2B and NS4B genes also contribute to genetic diversity. We suggest that the replication complex as a whole, rather than only RdRp, drives genetic diversity, at least for YFV. One paradigm to explain the complexity of viral RNA populations is that the low fidelity of the RNA-dependent RNA polymerase (RdRp) drives high mutation rates and consequently genetic diversity. Like most RNA viruses, wild-type yellow fever virus (YFV) replication is error-prone due to the lack of proofreading by the virus-encoded RdRp. However, there is evidence that replication of the live attenuated YF vaccine virus 17D, derived from wild-type strain Asibi, is less error-prone than wild-type RNA viruses. Recent studies comparing the genetic diversity of wild-type Asibi and 17D vaccine virus found that wild-type Asibi has the typical heterogeneous population of an RNA virus, while there is limited intra- and interpopulation variability of 17D vaccine virus. Utilizing chimeric and mutant infectious clone-derived viruses, we show that high and low genetic diversity profiles of wild-type Asibi virus and vaccine virus 17D, respectively, are multigenic. Introduction of either structural (pre-membrane and envelope) genes or NS2B or NS4B substitutions into the Asibi and 17D backbone resulted in altered variant population, nucleotide diversity, and mutation frequency compared to the parental viruses. Additionally, changes in genetic diversity of the chimeric and mutant viruses correlated with the phenotype of multiplication kinetics in human alveolar A549 cells. Overall, the paradigm that only the error-prone RdRp controls genetic diversity needs to be expanded to address the role of other genes in genetic diversity, and we hypothesize that it is the replication complex as a whole and not the RdRp alone that controls genetic diversity.
Collapse
|
8
|
Abstract
OBJECTIVES The objective of this study is to investigate immunogenicity and safety of the yellow fever vaccine (YFV) in HIV-infected (HIV+) patients with high CD4 T-cell counts. DESIGN In this prospective, comparative study of YFV-naive adults: 40 HIV+ under antiretroviral therapy (ART) with CD4 T-cell count above 350 cells/μl and plasma HIV-RNA less than 50 copies/ml for at least 6 months and 31 HIV-negative (HIV-) received one injection of the YF-17D strain vaccine. METHODS Serologic response was assessed by using a plaque reduction neutralizing test and YFV-specific T cells by using an INFγ-Elispot assay. RESULTS YFV was well tolerated in both groups. Most participants had asymptomatic YFV viremia at day (D) 7 after vaccination (77% of HIV- and 82% of HIV+, P = 0.58), with higher plasma level of YFV RNA in HIV+ than in HIV- (median 2.46 log10 copies/ml (range: 1.15-4.16) and 1.91 log10 copies/ml (1.15-3.19), respectively, P = 0.011). A significant but transient decrease in CD4 cell counts was seen at D7 in both groups, more pronounced in HIV- than in HIV+ patients (-261.5 versus -111.5 cells/μl, respectively, P = 0.0003), but no HIV breakthrough was observed in plasma. All participants developed protective neutralizing antibody levels from D28 and up to 1 year after injection. At D91, fewer HIV+ than HIV- participants exhibited YFV T-cell response (20 versus 54%, respectively, P = 0.037). CONCLUSION At 1 year, YFV was immunogenic and well tolerated in HIV-infected adults under ART with CD4 T-cell counts above 350 cells/μl. However, a lower immunity of YFV T cells in HIV-infected patients was observed as compared with HIV- participants. CLINICAL TRIALS REGISTRATION NCT01426243.
Collapse
|
9
|
Mercier-Delarue S, Durier C, Colin de Verdière N, Poveda JD, Meiffrédy V, Fernandez Garcia MD, Lastère S, Césaire R, Manuggera JC, Molina JM, Amara A, Simon F. Screening test for neutralizing antibodies against yellow fever virus, based on a flavivirus pseudotype. PLoS One 2017; 12:e0177882. [PMID: 28562615 PMCID: PMC5451040 DOI: 10.1371/journal.pone.0177882] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/04/2017] [Indexed: 11/26/2022] Open
Abstract
Given the possibility of yellow fever virus reintroduction in epidemiologically receptive geographic areas, the risk of vaccine supply disruption is a serious issue. New strategies to reduce the doses of injected vaccines should be evaluated very carefully in terms of immunogenicity. The plaque reduction test for the determination of neutralizing antibodies (PRNT) is particularly time-consuming and requires the use of a confinement laboratory. We have developed a new test based on the use of a non-infectious pseudovirus (WN/YF17D). The presence of a reporter gene allows sensitive determination of neutralizing antibodies by flow cytometry. This WN/YF17D test was as sensitive as PRNT for the follow-up of yellow fever vaccinees. Both tests lacked specificity with sera from patients hospitalized for acute Dengue virus infection. Conversely, both assays were strictly negative in adults never exposed to flavivirus infection or vaccination, and in patients sampled some time after acute Dengue infection. This WN/YF17D test will be particularly useful for large epidemiological studies and for screening for neutralizing antibodies against yellow fever virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stéphane Lastère
- Department of Medical Biology, Centre Hospitalier de Polynésie Française, Papeete–Tahiti, French Polynesia
| | - Raymond Césaire
- Department of Viro-Immunology, University Hospital of Fort de France, Fort de France- Martinique, French West Indies
| | - Jean-Claude Manuggera
- Institut Pasteur, Environment and Infectious Risks Research and Expertise Unit, Laboratory for Urgent Response to Biological Threats, Paris, France
| | - Jean-Michel Molina
- Department of Infectious Diseases, Saint Louis University Hospital, Paris, France
| | - Ali Amara
- INSERM U944 -UMR 7212, Saint Louis University Hospital, Paris, France
| | - François Simon
- Department of Microbiology, Saint Louis University Hospital, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Collins ND, Barrett ADT. Live Attenuated Yellow Fever 17D Vaccine: A Legacy Vaccine Still Controlling Outbreaks In Modern Day. Curr Infect Dis Rep 2017; 19:14. [PMID: 28275932 DOI: 10.1007/s11908-017-0566-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Live attenuated 17D vaccine is considered one of the safest and efficacious vaccines developed to date. This review highlights what is known and the gaps in knowledge of vaccine-induced protective immunity. RECENT FINDINGS Recently, the World Health Organization modifying its guidance from 10-year booster doses to one dose gives lifelong protection in most populations. Nonetheless, there are some data suggesting immunity, though protective, may wane over time in certain populations and more research is needed to address this question. Despite having an effective vaccine to control yellow fever, vaccine shortages were identified during outbreaks in 2016, eventuating the use of a fractional-dosing campaign in the Democratic Republic of the Congo. Limited studies hinder identification of the underlying mechanism(s) of vaccine longevity; however, concurrent outbreaks during 2016 provide an opportunity to evaluate vaccine immunity following fractional dosing and insights into vaccine longevity in populations where there is limited information.
Collapse
Affiliation(s)
- Natalie D Collins
- Departments of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555-0436, USA
| | - Alan D T Barrett
- Department of Microbiology & Immunology, Department of Pathology Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555-0436, USA.
| |
Collapse
|
11
|
Rezza G. Vaccines against chikungunya, Zika and other emerging Aedes mosquito-borne viruses: unblocking existing bottlenecks. Future Virol 2016. [DOI: 10.2217/fvl-2016-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of Aedes mosquito-borne viral diseases is a global public health challenge. Since mosquito control programs are not highly efficient for outbreak containment, vaccines are essential to limit disease burden. Besides yellow fever vaccines, a vaccine against dengue is now available, while research on vaccines against Zika has just started. Several vaccine candidates against chikungunya are undergoing preclinical studies, and few of them have been tested in Phase II trials. To overcome hurdles and speed-up the development of vaccines against these viral diseases, several actions should be planned: first, the ‘animal rule’ could be considered for regulatory purposes; second, public–private partnership should be stimulated; third, countries, international organizations and donors commitment should be strengthened, and potential markets identified.
Collapse
Affiliation(s)
- Giovanni Rezza
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00142 Roma, Italy
| |
Collapse
|