1
|
Chen Z, Wu H, Wang Y, Rao Y, Yan J, Ran B, Zeng Q, Yang X, Cao J, Cao H, Zhu X, Zhang X. Enhancing melanoma therapy by modulating the immunosuppressive microenvironment with an MMP-2 sensitive and nHA/GNE co-encapsulated hydrogel. Acta Biomater 2024; 188:79-92. [PMID: 39241819 DOI: 10.1016/j.actbio.2024.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
The immunosuppressive tumor microenvironment, such as lactic acid and matrix metalloproteinases (MMPs) overexpression, has been well confirmed to be adverse for tumor therapy. In current study, a tumor microenvironment modulatory hydrogel was successfully developed to treat melanoma by taking advantage of the synergistic effects of nano-hydroxyapatite (nHA) with well-documented selective anti-tumor action, lactate dehydrogenase A inhibitor (R)-GNE-140 (GNE), and matrix metalloproteinase-2 (MMP-2) sensitive peptide. The hydrogel was acquired by the reaction of 4-arm-polyethylene glycol-maleic anhydride (4-arm-PEG-MAL) and MMP-2 sensitive peptide (CC-14), in which nHA and GNE were co-encapsulated physically. The in vitro degradation tests confirmed the accelerated release of nHA and GNE from the hydrogel under less-acidic (pH 6.8) and MMP-2 containing conditions compared to those neutral or without MMP-2 conditions, demonstrating the pH and MMP-2 responsive properties of as-prepared hydrogel. Findings from in vitro cell experiments revealed that the hydrogel could stop the proliferation of melanoma cells by stacking cell cycle via lactic acid metabolic dysregulation and boosting cell apoptosis via nHA direct killing effect. Moreover, after hydrogel treatment, the rate of migration and aggressiveness of melanoma cells both reduced significantly. An in vivo anti-melanoma study showed that the hydrogel could inhibit tumor growth significantly and result in more CD8+ T cells and antigen-presenting cells but less Treg cells infiltration, ultimately leading to an enhanced therapeutic efficacy. As thus, the fabricated hydrogel demonstrated great promise for treating melanoma and could be a new potent strategy for efficient melanoma therapy. STATEMENT OF SIGNIFICANCE: Nano-hydroxyapatite (nHA) has the capability of selectively killing cancer cells. The study reported a tumor microenvironment (TME) modulatory hydrogel with the goal of enhancing melanoma therapy efficacy by combining nHA administration with immunosuppressive microenvironment modulation. The hydrogel demonstrated pH and MMP-2 sensitivity. Hence, controlled release of nHA and lactate dehydrogenase A inhibitor (GNE) could be observed, and in situ MMP-2 consumption at the tumor site occurred. The hydrogel effectively inhibited the growth of melanoma cells. Furthermore, hydrogel increased the production of CD8+ T cells and antigen-presenting cells while decreasing the infiltration of Treg cells at the tumor site. This could transform the initial "cold" tumor into a "hot" tumor, ultimately resulting in an enhanced therapeutic effect.
Collapse
Affiliation(s)
- Zhu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, Nanchong Hospital Beijing AnZhen Hospital, North Sichuan Medical College, Nanchong 637000, China
| | - Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yifu Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunjia Rao
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, Nanchong Hospital Beijing AnZhen Hospital, North Sichuan Medical College, Nanchong 637000, China
| | - Jin Yan
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, Nanchong Hospital Beijing AnZhen Hospital, North Sichuan Medical College, Nanchong 637000, China
| | - Bin Ran
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, Nanchong Hospital Beijing AnZhen Hospital, North Sichuan Medical College, Nanchong 637000, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials and Institute of Regulatory Science for Medical Devices and NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Huan Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Department of Nuclear Medicine and Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Han J, Mao K, Yang YG, Sun T. Impact of inorganic/organic nanomaterials on the immune system for disease treatment. Biomater Sci 2024; 12:4903-4926. [PMID: 39190428 DOI: 10.1039/d4bm00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The study of nanomaterials' nature, function, and biocompatibility highlights their potential in drug delivery, imaging, diagnostics, and therapeutics. Advancements in nanotechnology have fostered the development and application of diverse nanomaterials. These materials facilitate drug delivery and influence the immune system directly. Yet, understanding of their impact on the immune system is incomplete, underscoring the need to select materials to achieve desired outcomes carefully. In this review, we outline and summarize the distinctive characteristics and effector functions of inorganic nanomaterials and organic materials in inducing immune responses. We highlight the role and advantages of nanomaterial-induced immune responses in the treatment of immune-related diseases. Finally, we briefly discuss the current challenges and future opportunities for disease treatment and clinical translation of these nanomaterials.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Li M, Yao Z, Wang H, Ma Y, Yang W, Guo Y, Yu G, Shi W, Zhang N, Xu M, Li X, Zhao J, Zhang Y, Xue C, Sun B. Silicon or Calcium Doping Coordinates the Immunostimulatory Effects of Aluminum Oxyhydroxide Nanoadjuvants in Prophylactic Vaccines. ACS NANO 2024; 18:16878-16894. [PMID: 38899978 DOI: 10.1021/acsnano.4c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Aluminum salts still remain as the most popular adjuvants in marketed human prophylactic vaccines due to their capability to trigger humoral immune responses with a good safety record. However, insufficient induction of cellular immune responses limits their further applications. In this study, we prepare a library of silicon (Si)- or calcium (Ca)-doped aluminum oxyhydroxide (AlOOH) nanoadjuvants. They exhibit well-controlled physicochemical properties, and the dopants are homogeneously distributed in nanoadjuvants. By using Hepatitis B surface antigen (HBsAg) as the model antigen, doped AlOOH nanoadjuvants mediate higher antigen uptake and promote lysosome escape of HBsAg through lysosomal rupture induced by the dissolution of the dopant in the lysosomes in bone marrow-derived dendritic cells (BMDCs). Additionally, doped nanoadjuvants trigger higher antigen accumulation and immune cell activation in draining lymph nodes. In HBsAg and varicella-zoster virus glycoprotein E (gE) vaccination models, doped nanoadjuvants induce high IgG titer, activations of CD4+ and CD8+ T cells, cytotoxic T lymphocytes, and generations of effector memory T cells. Doping of aluminum salt-based adjuvants with biological safety profiles and immunostimulating capability is a potential strategy to mediate robust humoral and cellular immunity. It potentiates the applications of engineered adjuvants in the development of vaccines with coordinated immune responses.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Zhiying Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Huiyang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yubin Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wenqi Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yiyang Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wendi Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ning Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Muzhe Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xin Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jiashu Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yue Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
4
|
Lin YJ, Zimmermann J, Schülke S. Novel adjuvants in allergen-specific immunotherapy: where do we stand? Front Immunol 2024; 15:1348305. [PMID: 38464539 PMCID: PMC10920236 DOI: 10.3389/fimmu.2024.1348305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Type I hypersensitivity, or so-called type I allergy, is caused by Th2-mediated immune responses directed against otherwise harmless environmental antigens. Currently, allergen-specific immunotherapy (AIT) is the only disease-modifying treatment with the potential to re-establish clinical tolerance towards the corresponding allergen(s). However, conventional AIT has certain drawbacks, including long treatment durations, the risk of inducing allergic side effects, and the fact that allergens by themselves have a rather low immunogenicity. To improve AIT, adjuvants can be a powerful tool not only to increase the immunogenicity of co-applied allergens but also to induce the desired immune activation, such as promoting allergen-specific Th1- or regulatory responses. This review summarizes the knowledge on adjuvants currently approved for use in human AIT: aluminum hydroxide, calcium phosphate, microcrystalline tyrosine, and MPLA, as well as novel adjuvants that have been studied in recent years: oil-in-water emulsions, virus-like particles, viral components, carbohydrate-based adjuvants (QS-21, glucans, and mannan) and TLR-ligands (flagellin and CpG-ODN). The investigated adjuvants show distinct properties, such as prolonging allergen release at the injection site, inducing allergen-specific IgG production while also reducing IgE levels, as well as promoting differentiation and activation of different immune cells. In the future, better understanding of the immunological mechanisms underlying the effects of these adjuvants in clinical settings may help us to improve AIT.
Collapse
Affiliation(s)
- Yen-Ju Lin
- Section Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Stefan Schülke
- Section Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
- Section Research Allergology (ALG 5), Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
5
|
Sun Z, Zhao H, Ma L, Shi Y, Ji M, Sun X, Ma D, Zhou W, Huang T, Zhang D. The quest for nanoparticle-powered vaccines in cancer immunotherapy. J Nanobiotechnology 2024; 22:61. [PMID: 38355548 PMCID: PMC10865557 DOI: 10.1186/s12951-024-02311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Despite recent advancements in cancer treatment, this disease still poses a serious threat to public health. Vaccines play an important role in preventing illness by preparing the body's adaptive and innate immune responses to combat diseases. As our understanding of malignancies and their connection to the immune system improves, there has been a growing interest in priming the immune system to fight malignancies more effectively and comprehensively. One promising approach involves utilizing nanoparticle systems for antigen delivery, which has been shown to potentiate immune responses as vaccines and/or adjuvants. In this review, we comprehensively summarized the immunological mechanisms of cancer vaccines while focusing specifically on the recent applications of various types of nanoparticles in the field of cancer immunotherapy. By exploring these recent breakthroughs, we hope to identify significant challenges and obstacles in making nanoparticle-based vaccines and adjuvants feasible for clinical application. This review serves to assess recent breakthroughs in nanoparticle-based cancer vaccinations and shed light on their prospects and potential barriers. By doing so, we aim to inspire future immunotherapies for cancer that harness the potential of nanotechnology to deliver more effective and targeted treatments.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hui Zhao
- Department of Endodontics, East Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Li Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yanli Shi
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Dan Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wei Zhou
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Dongsheng Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
6
|
Feng Y, Wang J, Cao J, Cao F, Chen X. Manipulating calcium homeostasis with nanoplatforms for enhanced cancer therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230019. [PMID: 38854493 PMCID: PMC10867402 DOI: 10.1002/exp.20230019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/28/2023] [Indexed: 06/11/2024]
Abstract
Calcium ions (Ca2+) are indispensable and versatile metal ions that play a pivotal role in regulating cell metabolism, encompassing cell survival, proliferation, migration, and gene expression. Aberrant Ca2+ levels are frequently linked to cell dysfunction and a variety of pathological conditions. Therefore, it is essential to maintain Ca2+ homeostasis to coordinate body function. Disrupting the balance of Ca2+ levels has emerged as a potential therapeutic strategy for various diseases, and there has been extensive research on integrating this approach into nanoplatforms. In this review, the current nanoplatforms that regulate Ca2+ homeostasis for cancer therapy are first discussed, including both direct and indirect approaches to manage Ca2+ overload or inhibit Ca2+ signalling. Then, the applications of these nanoplatforms in targeting different cells to regulate their Ca2+ homeostasis for achieving therapeutic effects in cancer treatment are systematically introduced, including tumour cells and immune cells. Finally, perspectives on the further development of nanoplatforms for regulating Ca2+ homeostasis, identifying scientific limitations and future directions for exploitation are offered.
Collapse
Affiliation(s)
- Yanlin Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Jianlin Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Agency for Science, Technology, and Research (A*STAR)Institute of Molecular and Cell BiologySingaporeSingapore
| |
Collapse
|
7
|
Sun B, Li M, Yao Z, Yu G, Ma Y. Advances in Vaccine Adjuvants: Nanomaterials and Small Molecules. Handb Exp Pharmacol 2024; 284:113-132. [PMID: 37059911 DOI: 10.1007/164_2023_652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Adjuvants have been extensively and essentially formulated in subunits and certain inactivated vaccines for enhancing and prolonging protective immunity against infections and diseases. According to the types of infectious diseases and the required immunity, adjuvants with various acting mechanisms have been designed and applied in human vaccines. In this chapter, we introduce the advances in vaccine adjuvants based on nanomaterials and small molecules. By reviewing the immune mechanisms induced by adjuvants with different characteristics, we aim to establish structure-activity relationships between the physicochemical properties of adjuvants and their immunostimulating capability for the development of adjuvants for more effective preventative and therapeutic vaccines.
Collapse
Affiliation(s)
- Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - Min Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Zhiying Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yubin Ma
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
8
|
Activation of Cellular Players in Adaptive Immunity via Exogenous Delivery of Tumor Cell Lysates. Pharmaceutics 2022; 14:pharmaceutics14071358. [PMID: 35890254 PMCID: PMC9316852 DOI: 10.3390/pharmaceutics14071358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor cell lysates (TCLs) are a good immunogenic source of tumor-associated antigens. Since whole necrotic TCLs can enhance the maturation and antigen-presenting ability of dendritic cells (DCs), multiple strategies for the exogenous delivery of TCLs have been investigated as novel cancer immunotherapeutic solutions. The TCL-mediated induction of DC maturation and the subsequent immunological response could be improved by utilizing various material-based carriers. Enhanced antitumor immunity and cancer vaccination efficacy could be eventually achieved through the in vivo administration of TCLs. Therefore, (1) important engineering methodologies to prepare antigen-containing TCLs, (2) current therapeutic approaches using TCL-mediated DC activation, and (3) the significant sequential mechanism of DC-based signaling and stimulation in adaptive immunity are summarized in this review. More importantly, the recently reported developments in biomaterial-based exogenous TCL delivery platforms and co-delivery strategies with adjuvants for effective cancer vaccination and antitumor effects are emphasized.
Collapse
|
9
|
Hioki K, Hayashi T, Natsume-Kitatani Y, Kobiyama K, Temizoz B, Negishi H, Kawakami H, Fuchino H, Kuroda E, Coban C, Kawahara N, Ishii KJ. Machine Learning-Assisted Screening of Herbal Medicine Extracts as Vaccine Adjuvants. Front Immunol 2022; 13:847616. [PMID: 35663999 PMCID: PMC9160479 DOI: 10.3389/fimmu.2022.847616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/30/2022] [Indexed: 12/05/2022] Open
Abstract
Adjuvants are important vaccine components, composed of a variety of chemical and biological materials that enhance the vaccine antigen-specific immune responses by stimulating the innate immune cells in both direct and indirect manners to produce a variety cytokines, chemokines, and growth factors. It has been developed by empirical methods for decades and considered difficult to choose a single screening method for an ideal vaccine adjuvant, due to their diverse biochemical characteristics, complex mechanisms of, and species specificity for their adjuvanticity. We therefore established a robust adjuvant screening strategy by combining multiparametric analysis of adjuvanticity in vivo and immunological profiles in vitro (such as cytokines, chemokines, and growth factor secretion) of various library compounds derived from hot-water extracts of herbal medicines, together with their diverse distribution of nano-sized physical particle properties with a machine learning algorithm. By combining multiparametric analysis with a machine learning algorithm such as rCCA, sparse-PLS, and DIABLO, we identified that human G-CSF and mouse RANTES, produced upon adjuvant stimulation in vitro, are the most robust biological parameters that can predict the adjuvanticity of various library compounds. Notably, we revealed a certain nano-sized particle population that functioned as an independent negative parameter to adjuvanticity. Finally, we proved that the two-step strategy pairing the negative and positive parameters significantly improved the efficacy of screening and a screening strategy applying principal component analysis using the identified parameters. These novel parameters we identified for adjuvant screening by machine learning with multiple biological and physical parameters may provide new insights into the future development of effective and safe adjuvants for human use.
Collapse
Affiliation(s)
- Kou Hioki
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yayoi Natsume-Kitatani
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Kouji Kobiyama
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Hideo Negishi
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Hitomi Kawakami
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Hyogo, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Ken J. Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Singh Y, Saxena A, Singh SP, Verma MK, Kumar A, Kumar A, Mrigesh M, Saxena MK. Calcium phosphate adjuvanted nanoparticles of outer membrane proteins of Salmonella Typhi as a candidate for vaccine development against Typhoid fever. J Med Microbiol 2022; 71. [PMID: 35476604 DOI: 10.1099/jmm.0.001529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The conventional adjuvants used in vaccines have limitations like induction of an imbalanced Th1 and Th2 immune response. To overcome this limitation, novel adjuvants and newer forms of existing adjuvants like calcium phosphate nanoparticles are being tested.Hypothesis/Gap Statement. Calcium phosphate adjuvanted outer membrane proteins vaccine may work as an efficient, safe and cost effective vaccine against Salmonella Typhi.Aim. Our goals were to evaluate the potential of calcium phosphate nanoparticles as an adjuvant using outer membrane proteins (Omps) of Salmonella Typhi as antigens for immune response, with montanide (commercially available adjuvant) as control, and its toxicity in rats.Methodology. Calcium phosphate adjuvanted outer membrane proteins nanoparticles were synthesized and characterized. The efficacy of vaccine formulation in mice and toxicity assay were carried out in rats.Results. The calcium phosphate nanoparticles varying in size between 20-50 nm had entrapment efficiency of 41.5% and loading capacity of 54%. The calcium phosphate nanoparticle-Omps vaccine formulation (nanoparticle-Omps) induced a strong humoral immune response, which was significantly higher than the control group for the entire period of study. In the montanide-Omps group the initial very high immune response declined steeply and then remained steady. The immune response induced by nanoparticle-Omps did not change appreciably. The cell mediated immune response as measured by lymphocyte proliferation assay and delayed type hypersensitivity test showed a higher response (P<0.01) for the nanoparticles-Omps group as compared to montanide-Omps group. The bacterial clearance assay also showed higher clearance in the nanoparticles-Omps group as compared to montanide-Omps group (approx 1.4%). The toxicity analysis in rats showed no difference in the values of toxicity biomarkers and blood chemistry parameters, revealing vaccine formulation was non-toxic in rats.Conclusion. Calcium phosphate nanoparticles as adjuvant in vaccines is safe, have good encapsulation and loading capacity and induce a strong cell mediated, humoral and protective immune response.
Collapse
Affiliation(s)
- Yashpal Singh
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, Pantnagar, Uttarakhand, India
| | - Anjani Saxena
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - S P Singh
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Manish Kumar Verma
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Arun Kumar
- Department of Veterinary Surgery and Radiology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Avadhesh Kumar
- Department of Veterinary & Animal Husbandry Extension Education, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Meena Mrigesh
- Department of Veterinary Anatomy, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Mumtesh Kumar Saxena
- Department of Animal Genetics & Breeding, College of Veterinary & Animal Sciences G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
11
|
|
12
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
13
|
Zhang L, Liang Z, Chen C, Yang X, Fu D, Bao H, Li M, Shi S, Yu G, Zhang Y, Zhang C, Zhang W, Xue C, Sun B. Engineered Hydroxyapatite Nanoadjuvants with Controlled Shape and Aspect Ratios Reveal Their Immunomodulatory Potentials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59662-59672. [PMID: 34894655 DOI: 10.1021/acsami.1c17804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydroxyapatite (HAP) has been formulated as adjuvants in vaccines for human use. However, the optimal properties required for HAP nanoparticles to elicit adjuvanticity and the underlying immunopotentiation mechanisms have not been fully elucidated. Herein, a library of HAP nanorods and nanospheres was synthesized to explore the effect of the particle shape and aspect ratio on the immune responses in vitro and adjuvanticity in vivo. It was demonstrated that long aspect ratio HAP nanorods induced a higher degree of cell membrane depolarization and subsequent uptake, and the internalized particles elicited cathepsin B release and mitochondrial reactive oxygen species generation, which further led to pro-inflammatory responses. Furthermore, the physicochemical property-dependent immunostimulation capacities were correlated with their humoral responses in a murine hepatitis B surface antigen immunization model, with long aspect ratio HAP nanorods inducing higher antigen-specific antibody productions. Importantly, HAP nanorods significantly up-regulated the IFN-γ secretion and CD107α expression on CD8+ T cells in immunized mice. Further mechanistic studies demonstrated that HAP nanorods with defined properties exerted immunomodulatory effects by enhanced antigen persistence and immune cell recruitments. Our study provides a rational design strategy for engineered nanomaterial-based vaccine adjuvants.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xuecheng Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Duo Fu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Hang Bao
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Shuting Shi
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yixuan Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Caiqiao Zhang
- NCPC Genetech Biotechnology Co., Ltd., Shijiazhuang 050035, P. R. China
| | - Weiting Zhang
- NCPC Genetech Biotechnology Co., Ltd., Shijiazhuang 050035, P. R. China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
14
|
Maruyama K, Cheng JY, Ishii H, Takahashi Y, Zangiacomi V, Satoh T, Hosono T, Yamaguchi K. Activation of NLRP3 Inflammasome Complexes by Beta-Tricalcium Phosphate Particles and Stimulation of Immune Cell Migration in vivo. J Innate Immun 2021; 14:207-217. [PMID: 34619679 DOI: 10.1159/000518953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Beta-tricalcium phosphate (β-TCP) serves as a bone substitute in clinical practice because it is resorbable, biocompatible, osteointegrative, and osteoconductive. Particles of β-TCP are also inflammatory mediators although the mechanism of this function has not been fully elucidated. Regardless, the ability of β-TCP to stimulate the immune system might be useful for immunomodulation. The present study aimed to determine the effects of β-TCP particles on NLR family pyrin domain containing 3 (NLRP3) inflammasome complexes. We found that β-TCP activates NLRP3 inflammasomes, and increases interleukin (IL)-1β production in primary cultured mouse dendritic cells (DCs) and macrophages, and human THP-1 cells in caspase-1 dependent manner. In THP-1 cells, β-TCP increased also IL-18 production, and NLRP3 inflammasome activation by β-TCP depended on phagocytosis, potassium efflux, and reactive oxygen species (ROS) generation. We also investigated the effects of β-TCP in wild-type and NLRP3-deficient mice in vivo. Immune cell migration around subcutaneously injected β-TCP particles was reduced in NLRP3-deficient mice. These findings suggest that the effects of β-TCP particles in vivo are at least partly mediated by NLRP3 inflammasome complexes.
Collapse
Affiliation(s)
- Kouji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Jin-Yan Cheng
- Advanced Analysis Technology Department, Corporate R&D Center, Olympus Corporation, Tokyo, Japan
| | - Hidee Ishii
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yu Takahashi
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Vincent Zangiacomi
- Regional Resource Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takatomo Satoh
- Advanced Analysis Technology Department, Corporate R&D Center, Olympus Corporation, Tokyo, Japan
| | - Tetsuji Hosono
- Laboratory of Medicinal Microbiology, Yokohama College of Pharmacy, Yokohama, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| |
Collapse
|
15
|
Tsai SJ, Black SK, Jewell CM. Leveraging the modularity of biomaterial carriers to tune immune responses. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2004119. [PMID: 33692662 PMCID: PMC7939076 DOI: 10.1002/adfm.202004119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 05/11/2023]
Abstract
Biomaterial carriers offer modular features to control the delivery and presentation of vaccines and immunotherapies. This tunability is a distinct capability of biomaterials. Understanding how tunable material features impact immune responses is important to improve vaccine and immunotherapy design, as well as clinical translation. Here we discuss the modularity of biomaterial properties as a means of controlling encounters with immune signals across scales - tissue, cell, molecular, and time - and ultimately, to direct stimulation or regulation of immune function. We highlight these advances using illustrations from recent literature across infectious disease, cancer, and autoimmunity. As the immune engineering field matures, informed design criteria could support more rational biomaterial carriers for vaccination and immunotherapy.
Collapse
Affiliation(s)
- Shannon J Tsai
- Fischell Department of Bioengineering, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Sheneil K Black
- Fischell Department of Bioengineering, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, 8278 Paint Branch Drive, College Park, MD 20742, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; United States Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA; United States Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Pullulan-Coated Iron Oxide Nanoparticles for Blood-Stage Malaria Vaccine Delivery. Vaccines (Basel) 2020; 8:vaccines8040651. [PMID: 33153189 PMCID: PMC7711541 DOI: 10.3390/vaccines8040651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Vaccines against blood-stage malaria often aim to induce antibodies to neutralize parasite entry into red blood cells, interferon gamma (IFNγ) produced by T helper 1 (Th1) CD4+ T cells or interleukin 4 (IL-4) produced by T helper 2 (Th2) cells to provide B cell help. One vaccine delivery method for suitable putative malaria protein antigens is the use of nanoparticles as vaccine carriers. It has been previously shown that antigen conjugated to inorganic nanoparticles in the viral-particle size range (~40–60 nm) can induce protective antibodies and T cells against malaria antigens in a rodent malaria challenge model. Herein, it is shown that biodegradable pullulan-coated iron oxide nanoparticles (pIONPs) can be synthesized in this same size range. The pIONPs are non-toxic and do not induce conventional pro-inflammatory cytokines in vitro and in vivo. We show that murine blood-stage antigen MSP4/5 from Plasmodium yoelii could be chemically conjugated to pIONPs and the use of these conjugates as immunogens led to the induction of both specific antibodies and IFNγ CD4+ T cells reactive to MSP4/5 in mice, comparable to responses to MSP4/5 mixed with classical adjuvants (e.g., CpG or Alum) that preferentially induce Th1 or Th2 cells individually. These results suggest that biodegradable pIONPs warrant further exploration as carriers for developing blood-stage malaria vaccines.
Collapse
|
17
|
Inflammasome-Mediated Immunogenicity of Clinical and Experimental Vaccine Adjuvants. Vaccines (Basel) 2020; 8:vaccines8030554. [PMID: 32971761 PMCID: PMC7565252 DOI: 10.3390/vaccines8030554] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
In modern vaccines, adjuvants can be sophisticated immunological tools to promote robust and long-lasting protection against prevalent diseases. However, there is an urgent need to improve immunogenicity of vaccines in order to protect mankind from life-threatening diseases such as AIDS, malaria or, most recently, COVID-19. Therefore, it is important to understand the cellular and molecular mechanisms of action of vaccine adjuvants, which generally trigger the innate immune system to enhance signal transition to adaptive immunity, resulting in pathogen-specific protection. Thus, improved understanding of vaccine adjuvant mechanisms may aid in the design of “intelligent” vaccines to provide robust protection from pathogens. Various commonly used clinical adjuvants, such as aluminium salts, saponins or emulsions, have been identified as activators of inflammasomes - multiprotein signalling platforms that drive activation of inflammatory caspases, resulting in secretion of pro-inflammatory cytokines of the IL-1 family. Importantly, these cytokines affect the cellular and humoral arms of adaptive immunity, which indicates that inflammasomes represent a valuable target of vaccine adjuvants. In this review, we highlight the impact of different inflammasomes on vaccine adjuvant-induced immune responses regarding their mechanisms and immunogenicity. In this context, we focus on clinically relevant adjuvants that have been shown to activate the NLRP3 inflammasome and also present various experimental adjuvants that activate the NLRP3-, NLRC4-, AIM2-, pyrin-, or non-canonical inflammasomes and could have the potential to improve future vaccines. Together, we provide a comprehensive overview on vaccine adjuvants that are known, or suggested, to promote immunogenicity through inflammasome-mediated signalling.
Collapse
|
18
|
Li M, Qin M, Song G, Deng H, Wang D, Wang X, Dai W, He B, Zhang H, Zhang Q. A biomimetic antitumor nanovaccine based on biocompatible calcium pyrophosphate and tumor cell membrane antigens. Asian J Pharm Sci 2020; 16:97-109. [PMID: 33613733 PMCID: PMC7878462 DOI: 10.1016/j.ajps.2020.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, the cancer immunotherapy has made great progress while antitumor vaccine attracts substantial attention. Still, the selection of adjuvants as well as antigens are always the most crucial issues for better vaccination. In this study, we proposed a biomimetic antitumor nanovaccine based on biocompatible nanocarriers and tumor cell membrane antigens. Briefly, endogenous calcium pyrophosphate nanogranules with possible immune potentiating effect are designed and engineered, both as delivery vehicles and adjuvants. Then, these nanocarriers are coated with lipids and B16-OVA tumor cell membranes, so the biomembrane proteins can serve as tumor-specific antigens. It was found that calcium pyrophosphate nanogranules themselves were compatible and possessed adjuvant effect, while membrane proteins including tumor associated antigen were transferred onto the nanocarriers. It was demonstrated that such a biomimetic nanovaccine could be well endocytosed by dendritic cells, promote their maturation and antigen-presentation, facilitate lymph retention, and trigger obvious immune response. It was confirmed that the biomimetic vaccine could induce strong T-cell response, exhibit excellent tumor therapy and prophylactic effects, and simultaneously possess nice biocompatibility. In general, the present investigation might provide insights for the further design and application of antitumor vaccines.
Collapse
Affiliation(s)
- Minghui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mengmeng Qin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ge Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dakuan Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
19
|
Qiu Y, Xu X, Guo W, Zhao Y, Su J, Chen J. Mesoporous Hydroxyapatite Nanoparticles Mediate the Release and Bioactivity of BMP-2 for Enhanced Bone Regeneration. ACS Biomater Sci Eng 2020; 6:2323-2335. [PMID: 33455303 DOI: 10.1021/acsbiomaterials.9b01954] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Efficient delivery of bone morphogenetic protein-2 (BMP-2) with desirable bioactivity is still a great challenge in the field of bone regeneration. In this study, a silk fibroin/chitosan scaffold incorporated with BMP-2-loaded mesoporous hydroxyapatite nanoparticles (mHANPs) was prepared (SCH-L). BMP-2 was preloaded onto mHANPs with a high surface area before mixing with a silk fibroin/chitosan composite. Bare (without BMP-2) silk fibroin/chitosan/mHANP (SCH) scaffolds and SCH scaffolds with directly absorbed BMP-2 (SCH-D) were investigated in parallel for comparison. In vitro release kinetics indicated that BMP-2 released from the SCH-L scaffold showed a significantly lower initial burst release, followed by a more sustained release over time than the SCH-D scaffold. In vitro cell viability, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), and the in vivo osteogenic effect of scaffolds in a rat calvarial defect were evaluated. The results showed that compared with bare SCH and SCH-D scaffolds, the SCH-L scaffold significantly promoted the osteogenic differentiation of BMSCs in vitro and induced more pronounced bone formation in vivo. Further studies demonstrated that the mHANP-mediated satisfactory conformational change and sustained release benefited the protection of the released BMP-2 bioactivity, as confirmed by alkaline phosphatase (ALP) activity and a mineralization deposition assay. More importantly, the interaction of BMP-2/mHANPs enhanced the binding ability of BMP-2 to cellular receptors, thereby maintaining its biological activity in osteogenic differentiation and osteoinductivity well, which contributed to the markedly promoted in vitro and in vivo osteogenic efficacy of the SCH-L scaffold. Taken together, these results provide strong evidence that mHANPs represent an attractive carrier for binding BMP-2 to scaffolds. The SCH-L scaffold shows promising potential for bone tissue regeneration applications.
Collapse
Affiliation(s)
- Yubei Qiu
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| | - Xiaodong Xu
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Weizhong Guo
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| | - Yong Zhao
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350004, China
| | - Jiehua Su
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| |
Collapse
|
20
|
Li X, Wang X, Ito A. Tailoring inorganic nanoadjuvants towards next-generation vaccines. Chem Soc Rev 2018; 47:4954-4980. [PMID: 29911725 DOI: 10.1039/c8cs00028j] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccines, one of the most effective and powerful public health measures, have saved countless lives over the past century and still have a tremendous global impact. As an indispensable component of modern vaccines, adjuvants play a critical role in strengthening and/or shaping a specific immune response against infectious diseases as well as malignancies. The application of nanotechnology provides the possibility of precisely tailoring the building blocks of nanoadjuvants towards modern vaccines with the desired immune response. The last decade has witnessed great academic progress in inorganic nanomaterials for vaccine adjuvants in terms of nanometer-scale synthesis, structure control, and functionalization design. Inorganic adjuvants generally facilitate the delivery of antigens, allowing them to be released in a sustained manner, enhance immunogenicity, deliver antigens efficiently to specific targets, and induce a specific immune response. In particular, the recent discovery of the intrinsic immunomodulatory function of inorganic nanomaterials further allows us to shape the immune response towards the desired type and increase the efficacy of vaccines. In this article, we comprehensively review state-of-the-art research on the use of inorganic nanomaterials as vaccine adjuvants. Attention is focused on the physicochemical properties of versatile inorganic nanoadjuvants, such as composition, size, morphology, shape, hydrophobicity, and surface charge, to effectively stimulate cellular immunity, considering that the clinically used alum adjuvants can only induce strong humoral immunity. In addition, the efforts made to date to expand the application of inorganic nanoadjuvants in cancer vaccines are summarized. Finally, we discuss the future prospects and our outlook on tailoring inorganic nanoadjuvants towards next-generation vaccines.
Collapse
Affiliation(s)
- Xia Li
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
21
|
Lin Y, Wang X, Huang X, Zhang J, Xia N, Zhao Q. Calcium phosphate nanoparticles as a new generation vaccine adjuvant. Expert Rev Vaccines 2017; 16:895-906. [DOI: 10.1080/14760584.2017.1355733] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yahua Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
- School of Life Science, Xiamen University, Xiamen, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
- School of Life Science, Xiamen University, Xiamen, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| |
Collapse
|
22
|
Hayashi M, Aoshi T, Haseda Y, Kobiyama K, Wijaya E, Nakatsu N, Igarashi Y, Standley DM, Yamada H, Honda-Okubo Y, Hara H, Saito T, Takai T, Coban C, Petrovsky N, Ishii KJ. Advax, a Delta Inulin Microparticle, Potentiates In-built Adjuvant Property of Co-administered Vaccines. EBioMedicine 2016; 15:127-136. [PMID: 27919753 PMCID: PMC5233800 DOI: 10.1016/j.ebiom.2016.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/29/2016] [Accepted: 11/09/2016] [Indexed: 11/19/2022] Open
Abstract
Advax, a delta inulin-derived microparticle, has been developed as an adjuvant for several vaccines. However, its immunological characteristics and potential mechanism of action are yet to be elucidated. Here, we show that Advax behaves as a type-2 adjuvant when combined with influenza split vaccine, a T helper (Th)2-type antigen, but behaves as a type-1 adjuvant when combined with influenza inactivated whole virion (WV), a Th1-type antigen. In addition, an adjuvant effect was not observed when Advax-adjuvanted WV vaccine was used to immunize toll-like receptor (TLR) 7 knockout mice which are unable to respond to RNA contained in WV antigen. Similarly, no adjuvant effect was seen when Advax was combined with endotoxin-free ovalbumin, a neutral Th0-type antigen. An adjuvant effect was also not seen in tumor necrosis factor (TNF)-α knockout mice, and the adjuvant effect required the presences of dendritic cells (DCs) and phagocytic macrophages. Therefore, unlike other adjuvants, Advax potentiates the intrinsic or in-built adjuvant property of co-administered antigens. Hence, Advax is a unique class of adjuvant which can potentiate the intrinsic adjuvant feature of the vaccine antigens through a yet to be determined mechanism. Advax potentiates built-in adjuvant property of vaccine antigens. Advax does not change the T helper immune bias induced by the vaccine antigen. Dendritic cells, phagocytic macrophages, and tumor necrosis factor-α play a role in Advax adjuvant activity.
Adjuvants are indispensable agent to maximize the efficacy of vaccines. Most adjuvants consistently impart either T helper (Th)1, Th2 or Th17 bias to the vaccine response regardless of the properties of antigen. For example alum adjuvants consistently impart a Th2 bias regardless of the vaccine antigen. Here we show that a delta inulin-derived microparticle adjuvant, Advax, is an additional class of adjuvant that functions as an amplifier of in-built adjuvant activity within the antigens themselves. Advax enhances different types of adaptive immune response dependent on the antigen's own in-built adjuvant properties, confirming Advax's utility as a general purpose vaccine adjuvant.
Collapse
Affiliation(s)
- Masayuki Hayashi
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Vaccine Research Development Office, Advanced Drug Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama 227-0033, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Taiki Aoshi
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Yasunari Haseda
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Kouji Kobiyama
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Edward Wijaya
- Systems Immunology Laboratory, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Noriyuki Nakatsu
- Toxicogenomics-informatics Project, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Yoshinobu Igarashi
- Toxicogenomics-informatics Project, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Daron M Standley
- Systems Immunology Laboratory, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Yamada
- Toxicogenomics-informatics Project, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | | | - Hiromitsu Hara
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan; Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; jWPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Cevayir Coban
- Laboratory of Malaria Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide, Australia; Department of Diabetes and Endocrinology, Flinders Medical Centre, Flinders University, Adelaide 5042, Australia
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
23
|
Masson JD, Thibaudon M, Bélec L, Crépeaux G. Calcium phosphate: a substitute for aluminum adjuvants? Expert Rev Vaccines 2016; 16:289-299. [DOI: 10.1080/14760584.2017.1244484] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jean-Daniel Masson
- Association E3M (Entraide aux Malades de Myofasciite à Macrophages), Monprimblanc, France
| | - Michel Thibaudon
- Pharmacien « Service des Allergènes », de l’Institut Pasteur, Paris, France
| | - Laurent Bélec
- Laboratoire de Microbiologie, hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, & Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Guillemette Crépeaux
- École nationale vétérinaire d’Alfort, Maisons-Alfort, France
- Inserm U955 E10, Université Paris Est Créteil, Créteil, France
| |
Collapse
|
24
|
RNA is an Adjuvanticity Mediator for the Lipid-Based Mucosal Adjuvant, Endocine. Sci Rep 2016; 6:29165. [PMID: 27374884 PMCID: PMC4931589 DOI: 10.1038/srep29165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/21/2016] [Indexed: 01/10/2023] Open
Abstract
Nasal vaccination has the potential to elicit systemic and mucosal immunity against pathogens. However, split and subunit vaccines lack potency at stimulating mucosal immunity, and an adjuvant is indispensable for eliciting potent mucosal immune response to nasal vaccines. Endocine, a lipid-based mucosal adjuvant, potentiates both systemic and mucosal immune responses. Although Endocine has shown efficacy and tolerability in animal and clinical studies, its mechanism of action remains unknown. It has been reported recently that endogenous danger signals are essential for the effects of some adjuvants such as alum or MF59. However, the contribution of danger signals to the adjuvanticity of Endocine has not been explored. Here, we show that RNA is likely to be an important mediator for the adjuvanticity of Endocine. Administration of Endocine generated nucleic acids release, and activated dendritic cells (DCs) in draining lymph nodes in vivo. These results suggest the possibility that Endocine indirectly activates DCs via damage-associated molecular patterns. Moreover, the adjuvanticity of Endocine disappeared in mice lacking TANK-binding kinase 1 (Tbk1), which is a downstream molecule of nucleic acid sensing signal pathway. Furthermore, co-administration of RNase A reduced the adjuvanticity of Endocine. These data suggest that RNA is important for the adjuvanticity of Endocine.
Collapse
|