1
|
Hoshi K, Tu ATT, Shobo M, Kettisen K, Ye L, Bülow L, Hakamata Y, Furuya T, Asano R, Tsugawa W, Ikebukuro K, Sode K, Yamazaki T. Potential of Enzymatically Synthesized Hemozoin Analog as Th1 Cell Adjuvant. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1440. [PMID: 39269102 PMCID: PMC11397214 DOI: 10.3390/nano14171440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Hemozoin (Hz) is a heme crystal produced during malaria infection that stimulates immune cells, leading to the production of cytokines and chemokines. The immunostimulatory action of Hz has previously been applied in the development of alternative adjuvants. Crystallization of hemin is a chemical approach for producing Hz. Here, we focused on an enzymatic production method for Hz using the heme detoxification protein (HDP), which catalyzes heme dimer formation from hemin in Plasmodium. We examined the immunostimulatory effects of an enzymatically synthesized analog of Hz (esHz) produced by recombinant Plasmodium falciparum HDP. Enzymatically synthesized Hz stimulates a macrophage cell line and human peripheral mononuclear cells, leading to the production of interleukin (IL)-6 and IL-12p40. In mice, subcutaneous administration of esHz together with an antigen, ovalbumin (OVA), increased the OVA-specific immunoglobulin (Ig) G2c isotype level in the serum, whereas OVA-specific IgG1 was not induced. Our findings suggest that esHz is a useful Th-1 cell adjuvant.
Collapse
Affiliation(s)
- Kazuaki Hoshi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
| | - Anh Thi Tram Tu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
- Department of Magnetic and Biomedical Materials, Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 70000, Vietnam
- Ho Chi Minh City Campus, Vietnam National University, Ho Chi Minh City 70000, Vietnam
| | - Miwako Shobo
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
| | - Karin Kettisen
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Yoji Hakamata
- School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Musashino 180-8602, Japan
| | - Tetsuya Furuya
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| |
Collapse
|
2
|
Torres-Dias L, Souza RS, Moreira JCA, Paggi DDO, do Amaral JB, Bachi ALL, Augusto L, Shio MT. Synthetic hemozoin as a nanocarrier for cross-presentation. Immunobiology 2024; 229:152837. [PMID: 39089130 DOI: 10.1016/j.imbio.2024.152837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 08/03/2024]
Abstract
It is known that conventional antigen presentation involves phagocytosis of antigens followed by its internalization in endocytic compartments and presentation of epitopes through MHC class II molecules for CD4 T cells. However, since 1976 a cross-presentation pathway has been studied, in which CD8 T cells are activated via MHC class I with antigens acquired through phagocytosis or endocytosis by dendritic cells (DCs). Among some important molecules involved in the cross-presentation, the C-type lectin receptor of the Dectin-1 cluster (CLECs), particularly the CLEC9A receptor, not only is expressed in dendritic cells but also presents a pivotal role in this context. In special, CLEC12A has been highlighted as a malaria pigment hemozoin (HZ) receptor. During Plasmodium infection, hemozoin crystals defend the parasite against heme toxicity within erythrocytes, as well as the released native HZ elicits pro-inflammatory responses and can induce cross-presentation. Particularly, this crystal can be synthesized from hematin anhydride and mimics the native form, and the gaps generated between the nanocrystal domains during its synthesis allow for substance coupling followed by its coating. Therefore, this study aimed to assess whether synthetic hemozoin (sHz) or hematin anhydride could be a nanocarrier and promote cross-presentation in dendritic cells. Firstly, it was verified that sHz can carry coated and coupled antigens, the compounds can associate to LAMP1-positive vesicles and decrease overall intracellular pH, which can potentially enhance the cross-presentation of ovalbumin and Leishmania infantum antigens. Thus, this study adds important data in the molecular intricacies of antigen presentation by showing not only the sHz immunomodulatory properties but also its potential applications as an antigen carrier.
Collapse
Affiliation(s)
- Letícia Torres-Dias
- Post-Graduation Program in Health Science, Santo Amaro University (UNISA), São Paulo, Brazil
| | | | | | | | - Jônatas Bussador do Amaral
- ENT Research Lab. Department of Otorhinolaryngology -Head and Neck Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Leonardo Augusto
- Department of Pathology, Microbiology, and Immunology. University of Nebraska Medical Center Omaha, United States of America
| | - Marina Tiemi Shio
- Post-Graduation Program in Health Science, Santo Amaro University (UNISA), São Paulo, Brazil.
| |
Collapse
|
3
|
Towards rainbow portable Cytophone with laser diodes for global disease diagnostics. Sci Rep 2022; 12:8671. [PMID: 35606373 PMCID: PMC9126638 DOI: 10.1038/s41598-022-11452-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
In vivo, Cytophone has demonstrated the capability for the early diagnosis of cancer, infection, and cardiovascular disorders through photoacoustic detection of circulating disease markers directly in the bloodstream with an unprecedented 1,000-fold improvement in sensitivity. Nevertheless, a Cytophone with higher specificity and portability is urgently needed. Here, we introduce a novel Cytophone platform that integrates a miniature multispectral laser diode array, time-color coding, and high-speed time-resolved signal processing. Using two-color (808 nm/915 nm) laser diodes, we demonstrated spectral identification of white and red clots, melanoma cells, and hemozoin in malaria-infected erythrocytes against a blood background and artifacts. Data from a Plasmodium yoelii murine model and cultured human P. falciparum were verified in vitro with confocal photothermal and fluorescent microscopy. With these techniques, we detected infected cells within 4 h after invasion, which makes hemozoin promising as a spectrally selective marker at the earliest stages of malaria progression. Along with the findings from our previous application of Cytophone with conventional lasers for the diagnosis of melanoma, bacteremia, sickle anemia, thrombosis, stroke, and abnormal hemoglobin forms, this current finding suggests the potential for the development of a portable rainbow Cytophone with multispectral laser diodes for the identification of these and other diseases.
Collapse
|
4
|
Coban C. The host targeting effect of chloroquine in malaria. Curr Opin Immunol 2020; 66:98-107. [PMID: 32823144 PMCID: PMC7431399 DOI: 10.1016/j.coi.2020.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 01/07/2023]
Abstract
Due to the rapid onset and spread of the COVID-19 pandemic, the treatment of COVID-19 patients by hydroxychloroquine alone or in combination with other drugs has captured a great deal of attention and triggered considerable debate. Historically, the worldwide use of quinoline based-drugs has led to a spectacular reduction in death from malaria. Unfortunately, scientists have been forced to seek alternative drugs to treat malaria due to the emergence of chloroquine-resistant parasites in the 1960s. The repurposing of hydroxychloroquine against viral infections, various types of cancer and autoimmune diseases has been ongoing for more than 70 years, with no clear understanding of its mechanism of action (MOA). Here, we closely examine the MOA of this old but influential drug in and beyond malaria. Better insights into how chloroquine targets the host's cellular and immune responses may help to develop applications against to new pathogens and diseases, and perhaps even restore the clinical utility of chloroquine against malaria.
Collapse
Affiliation(s)
- Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo, Japan; Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.
| |
Collapse
|
5
|
Lee MSJ, Natsume-Kitatani Y, Temizoz B, Fujita Y, Konishi A, Matsuda K, Igari Y, Tsukui T, Kobiyama K, Kuroda E, Onishi M, Marichal T, Ise W, Inoue T, Kurosaki T, Mizuguchi K, Akira S, Ishii KJ, Coban C. B cell-intrinsic MyD88 signaling controls IFN-γ-mediated early IgG2c class switching in mice in response to a particulate adjuvant. Eur J Immunol 2019; 49:1433-1440. [PMID: 31087643 DOI: 10.1002/eji.201848084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/27/2019] [Accepted: 05/13/2019] [Indexed: 02/01/2023]
Abstract
Adjuvants improve the potency of vaccines, but the modes of action (MOAs) of most adjuvants are largely unknown. TLR-dependent and -independent innate immune signaling through the adaptor molecule MyD88 has been shown to be pivotal to the effects of most adjuvants; however, MyD88's involvement in the TLR-independent MOAs of adjuvants is poorly understood. Here, using the T-dependent antigen NIPOVA and a unique particulate adjuvant called synthetic hemozoin (sHZ), we show that MyD88 is required for early GC formation and enhanced antibody class-switch recombination (CSR) in mice. Using cell-type-specific MyD88 KO mice, we found that IgG2c class switching, but not IgG1 class switching, was controlled by B cell-intrinsic MyD88 signaling. Notably, IFN-γ produced by various cells including T cells, NK cells, and dendritic cells was the primary cytokine for IgG2c CSR and B-cell intrinsic MyD88 is required for IFN-γ production. Moreover, IFN-γ receptor (IFNγR) deficiency abolished sHZ-induced IgG2c production, while recombinant IFN-γ administration successfully rescued IgG2c CSR impairment in mice lacking B-cell intrinsic MyD88. Together, our results show that B cell-intrinsic MyD88 signaling is involved in the MOA of certain particulate adjuvants and this may enhance our specific understanding of how adjuvants and vaccines work.
Collapse
Affiliation(s)
- Michelle Sue Jann Lee
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Yayoi Natsume-Kitatani
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Burcu Temizoz
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Yukiko Fujita
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Aki Konishi
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Kyoko Matsuda
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Yoshikatsu Igari
- ZENOAQ, Nippon Zenyaku Kogyo Co. Ltd., Koriyama, Fukushima, Japan
| | - Toshihiro Tsukui
- ZENOAQ, Nippon Zenyaku Kogyo Co. Ltd., Koriyama, Fukushima, Japan
| | - Kouji Kobiyama
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Motoyasu Onishi
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, and Faculty of Veterinary Medicine, Liege University, Liège, Belgium
| | - Wataru Ise
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Cevayir Coban
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Hussein KE, Bahey-El-Din M, Sheweita SA. Immunization with the outer membrane proteins OmpK17 and OmpK36 elicits protection against Klebsiella pneumoniae in the murine infection model. Microb Pathog 2018; 119:12-18. [PMID: 29626658 DOI: 10.1016/j.micpath.2018.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/11/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that is increasingly reported as a serious nosocomial and community-acquired pathogen. In the current study, two K. pneumoniae antigens, OmpK17 and OmpK36, as well as their fusion protein cognate F36/17 were investigated as potential vaccine candidates in a murine infection model. Three immunoadjuvants, namely the Gram-positive Enhancer Matrix (GEM) adjuvant, synthetic hemozoin (Hz) adjuvant and incomplete Freund's adjuvant (IFA) were evaluated. Genes of OmpK17 and OmpK36 antigens as well as their fusion protein were cloned in Escherichia coli for recombinant expression. Mice were immunized thrice with the individual recombinant purified antigens adjuvanted with one of the three adjuvants. Two weeks after the last booster, animals were challenged with a lethal dose of K. pneumoniae and immune protection parameters were assessed. Animals immunized with GEM- or Hz-adjuvanted K. pneumoniae antigens did not show significant protection upon bacterial challenge. Animals immunized with subcutaneous IFA-adjuvanted antigens showed the best results with survival percentages of 50, 60 and 50% for groups immunized with OmpK17, OmpK36 and F36/17, respectively. Serum IgG1, rather than IgG2a, antibodies were the most prevalent following vaccination indicating bias towards T helper type 2 (Th2) immune response. Opsonophagocytic assays demonstrated significant percentage killing in case of animals immunized with IFA-adjuvanted antigens. Overall, OmpK17 and OmpK36 are promising vaccine antigens which are worthy of further optimization of the immunization conditions, particularly the used immunoadjuvants, in order to achieve full protection against K. pneumoniae.
Collapse
Affiliation(s)
- Kawther E Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Mohammed Bahey-El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Salah A Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Lee MSJ, Maruyama K, Fujita Y, Konishi A, Lelliott PM, Itagaki S, Horii T, Lin JW, Khan SM, Kuroda E, Akira S, Ishii KJ, Coban C. Plasmodium products persist in the bone marrow and promote chronic bone loss. Sci Immunol 2017; 2:2/12/eaam8093. [PMID: 28783657 DOI: 10.1126/sciimmunol.aam8093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/28/2017] [Indexed: 12/18/2022]
Abstract
Although malaria is a life-threatening disease with severe complications, most people develop partial immunity and suffer from mild symptoms. However, incomplete recovery from infection causes chronic illness, and little is known of the potential outcomes of this chronicity. We found that malaria causes bone loss and growth retardation as a result of chronic bone inflammation induced by Plasmodium products. Acute malaria infection severely suppresses bone homeostasis, but sustained accumulation of Plasmodium products in the bone marrow niche induces MyD88-dependent inflammatory responses in osteoclast and osteoblast precursors, leading to increased RANKL expression and overstimulation of osteoclastogenesis, favoring bone resorption. Infection with a mutant parasite with impaired hemoglobin digestion that produces little hemozoin, a major Plasmodium by-product, did not cause bone loss. Supplementation of alfacalcidol, a vitamin D3 analog, could prevent the bone loss. These results highlight the risk of bone loss in malaria-infected patients and the potential benefits of coupling bone therapy with antimalarial treatment.
Collapse
Affiliation(s)
- Michelle S J Lee
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenta Maruyama
- Laboratory of Host Defense, IFReC, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukiko Fujita
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aki Konishi
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Patrick M Lelliott
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sawako Itagaki
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jing-Wen Lin
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, 2333 ZA Leiden, Netherlands.,Division of Pediatric Infectious Diseases, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaboration Innovation Centre, Chengdu 610041, China
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, 2333 ZA Leiden, Netherlands
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, IFReC, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, IFReC, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, IFReC, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Cevayir Coban
- Laboratory of Malaria Immunology, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Wang J, Su C, Liu R, Liu B, Khan IU, Xie J, Zhu N. A Pre-Clinical Safety Evaluation of SBP (HBsAg-Binding Protein) Adjuvant for Hepatitis B Vaccine. PLoS One 2017; 12:e0170313. [PMID: 28103328 PMCID: PMC5245819 DOI: 10.1371/journal.pone.0170313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/02/2017] [Indexed: 12/23/2022] Open
Abstract
Although adjuvants are a common component of many vaccines, there are few adjuvants licensed for use in humans due to concerns about their toxic effects. There is a need to develop new and safe adjuvants, because some existing vaccines have low immunogenicity among certain patient groups. In this study, SBP, a hepatitis B surface antigen binding protein that was discovered through screening a human liver cDNA expression library, was introduced into hepatitis B vaccine. A good laboratory practice, non-clinical safety evaluation was performed to identify the side effects of both SBP and SBP-adjuvanted hepatitis B vaccine. The results indicate that SBP could enhance the HBsAg-specific immune response, thus increasing the protection provided by the hepatitis B vaccine. The safety data obtained here warrant further investigation of SBP as a vaccine adjuvant.
Collapse
Affiliation(s)
- Jingbo Wang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Caixia Su
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Rui Liu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Baoxiu Liu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Inam Ullah Khan
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Jun Xie
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (NZ); (JX)
| | - Naishuo Zhu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (NZ); (JX)
| |
Collapse
|