1
|
Zhang S, Jiang Y, Yu Y, Ouyang X, Zhou D, Song Y, Jiao J. Autophagy: the misty lands of Chlamydia trachomatis infection. Front Cell Infect Microbiol 2024; 14:1442995. [PMID: 39310786 PMCID: PMC11412940 DOI: 10.3389/fcimb.2024.1442995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Chlamydia are Gram-negative, obligate intracellular bacterial pathogens that infect eukaryotic cells and reside within a host-derived vacuole known as the inclusion. To facilitate intracellular replication, these bacteria must engage in host-pathogen interactions to obtain nutrients and membranes required for the growth of the inclusion, thereby sustaining prolonged bacterial colonization. Autophagy is a highly conserved process that delivers cytoplasmic substrates to the lysosome for degradation. Pathogens have developed strategies to manipulate and/or exploit autophagy to promote their replication and persistence. This review delineates recent advances in elucidating the interplay between Chlamydia trachomatis infection and autophagy in recent years, emphasizing the intricate strategies employed by both the Chlamydia pathogens and host cells. Gaining a deeper understanding of these interactions could unveil novel strategies for the prevention and treatment of Chlamydia infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical
Sciences, Beijing, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical
Sciences, Beijing, China
| |
Collapse
|
2
|
Paulet E, Contreras V, Galhaut M, Rosenkrands I, Holland M, Burton M, Dietrich J, Gallouet AS, Bosquet N, Relouzat F, Langlois S, Follmann F, Le Grand R, Labetoulle M, Rousseau A. Multimodal mucosal and systemic immune characterization of a non-human primate trachoma model highlights the critical role of local immunity during acute phase disease. PLoS Negl Trop Dis 2024; 18:e0012388. [PMID: 39093884 PMCID: PMC11333008 DOI: 10.1371/journal.pntd.0012388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/19/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Trachoma is a leading cause of infection-related blindness worldwide. This disease is caused by recurrent Chlamydia trachomatis (Ct) infections of the conjunctiva and develops in two phases: i) active (acute trachoma, characterized by follicular conjunctivitis), then long-term: ii) scarring (chronic trachoma, characterized by conjunctival fibrosis, corneal opacification and eyelid malposition). Scarring trachoma is driven by the number and severity of reinfections. The immune system plays a pivotal role in trachoma including exacerbation of the disease. Hence the immune system may also be key to developing a trachoma vaccine. Therefore, we characterized clinical and local immune response kinetics in a non-human primate model of acute conjunctival Ct infection and disease. METHODOLOGY/PRINCIPAL FINDINGS The conjunctiva of non-human primate (NHP, Cynomolgus monkeys-Macaca fascicularis-) were inoculated with Ct (B/Tunis-864 strain, B serovar). Clinical ocular monitoring was performed using a standardized photographic grading system, and local immune responses were assessed using multi-parameter flow cytometry of conjunctival cells, tear fluid cytokines, immunoglobulins, and Ct quantification. Clinical findings were similar to those observed during acute trachoma in humans, with the development of typical follicular conjunctivitis from the 4th week post-exposure to the 11th week. Immunologic analysis indicated an early phase influx of T cells in the conjunctiva and elevated interleukins 4, 8, and 5, followed by a late phase monocytic influx accompanied with a decrease in other immune cells, and tear fluid cytokines returning to initial levels. CONCLUSION/SIGNIFICANCE Our NHP model accurately reproduces the clinical signs of acute trachoma, allowing for an accurate assessment of the local immune responses in infected eyes. A progressive immune response occurred for weeks after exposure to Ct, which subsided into a persistent innate immune response. An understanding of these local responses is the first step towards using the model to assess new vaccine and therapeutic strategies for disease prevention.
Collapse
Affiliation(s)
- Elodie Paulet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Mathilde Galhaut
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Ida Rosenkrands
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Martin Holland
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Burton
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jes Dietrich
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anne-Sophie Gallouet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nathalie Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Frank Follmann
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Marc Labetoulle
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
- Service d’Ophtalmologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
- Service d’Ophtalmologie, Hôpital National de la Vision des 15-20, IHU Foresight, Paris, France
| | - Antoine Rousseau
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
- Service d’Ophtalmologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
- Service d’Ophtalmologie, Hôpital National de la Vision des 15-20, IHU Foresight, Paris, France
| |
Collapse
|
3
|
Lawrence LA, Vidal P, Varughese RS, Tiger Li ZR, Chen TD, Tuske SC, Jimenez AR, Lowen AC, Shafer WM, Swaims-Kohlmeier A. Murine modeling of menstruation identifies immune correlates of protection during Chlamydia muridarum challenge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595090. [PMID: 38826233 PMCID: PMC11142139 DOI: 10.1101/2024.05.21.595090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The menstrual cycle influences the risk of acquiring sexually transmitted infections (STIs), including Chlamydia trachomatis (C. trachomatis), although the underlying immune contributions are poorly defined. A mouse model simulating the immune-mediated process of menstruation could provide valuable insights into tissue-specific determinants of protection against chlamydial infection within the cervicovaginal and uterine mucosae comprising the female reproductive tract (FRT). Here, we used the pseudopregnancy approach in naïve C57Bl/6 mice and performed vaginal challenge with Chlamydia muridarum (C. muridarum) at decidualization, endometrial tissue remodeling, or uterine repair. This strategy identified that the time frame comprising uterine repair correlated with robust infection and greater bacterial burden as compared with mice on hormonal contraception, while challenges during endometrial remodeling were least likely to result in a productive infection. By comparing the infection site at early time points following chlamydial challenge, we found that a greater abundance of innate effector populations and proinflammatory signaling, including IFNγ correlated with protection. FRT immune profiling in uninfected mice over pseudopregnancy or in pig-tailed macaques over the menstrual cycle identified NK cell infiltration into the cervicovaginal tissues and lumen over the course of endometrial remodeling. Notably, NK cell depletion over this time frame reversed protection, with mice now productively infected with C. muridarum following challenge. This study shows that the pseudopregnancy murine menstruation model recapitulates immune changes in the FRT as a result of endometrial remodeling and identifies NK cell localization at the FRT as essential for immune protection against primary C. muridarum infection.
Collapse
Affiliation(s)
- Laurel A Lawrence
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Paola Vidal
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Richa S Varughese
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Zheng-Rong Tiger Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Thien Duy Chen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Steven C Tuske
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Ariana R Jimenez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Laboratories of Bacterial Pathogenesis, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Alison Swaims-Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Department of GYNOB, Emory University School of Medicine, Atlanta, Georgia
- Division of HIV Prevention Centers for Disease Control and Prevention, Atlanta, Georgia (previous affiliation)
| |
Collapse
|
4
|
Proctor J, Stadler M, Cortes LM, Brodsky D, Poisson L, Gerdts V, Smirnov AI, Smirnova TI, Barua S, Leahy D, Beagley KW, Harris JM, Darville T, Käser T. A TriAdj-Adjuvanted Chlamydia trachomatis CPAF Protein Vaccine Is Highly Immunogenic in Pigs. Vaccines (Basel) 2024; 12:423. [PMID: 38675805 PMCID: PMC11054031 DOI: 10.3390/vaccines12040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Chlamydia trachomatis (Ct) infections are the most common sexually transmitted infection (STI). Despite effective antibiotics for Ct, undetected infections or delayed treatment can lead to infertility, ectopic pregnancies, and chronic pelvic pain. Besides humans, chlamydia poses similar health challenges in animals such as C. suis (Cs) in pigs. Based on the similarities between humans and pigs, as well as their chlamydia species, we use pigs as a large biomedical animal model for chlamydia research. In this study, we used the pig model to develop a vaccine candidate against Ct. The vaccine candidate consists of TriAdj-adjuvanted chlamydial-protease-like activity factor (CPAF) protein. We tested two weekly administration options-twice intranasal (IN) followed by twice intramuscular (IM) and twice IM followed by twice IN. We assessed the humoral immune response in both serum using CPAF-specific IgG (including antibody avidity determination) and also in cervical and rectal swabs using CPAF-specific IgG and IgA ELISAs. The systemic T-cell response was analyzed following in vitro CPAF restimulation via IFN-γ and IL-17 ELISpots, as well as intracellular cytokine staining flow cytometry. Our data demonstrate that while the IN/IM vaccination mainly led to non-significant systemic immune responses, the vaccine candidate is highly immunogenic if administered IM/IN. This vaccination strategy induced high serum anti-CPAF IgG levels with strong avidity, as well as high IgA and IgG levels in vaginal and rectal swabs and in uterine horn flushes. In addition, this vaccination strategy prompted a pronounced cellular immune response. Besides inducing IL-17 production, the vaccine candidate induced a strong IFN-γ response with CD4 T cells. In IM/IN-vaccinated pigs, these cells also significantly downregulated their CCR7 expression, a sign of differentiation into peripheral-tissue-homing effector/memory cells. Conclusively, this study demonstrates the strong immunogenicity of the IM/IN-administered TriAdj-adjuvanted Ct CPAF vaccine candidate. Future studies will test the vaccine efficacy of this promising Ct vaccine candidate. In addition, this project demonstrates the suitability of the Cs pre-exposed outbred pig model for Ct vaccine development. Thereby, we aim to open the bottleneck of large animal models to facilitate the progression of Ct vaccine candidates into clinical trials.
Collapse
Affiliation(s)
- Jessica Proctor
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Maria Stadler
- Department of Biological Sciences and Pathobiology, Center of Pathobiology, Immunology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Lizette M. Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - David Brodsky
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Lydia Poisson
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A3, Canada
| | - Alex I. Smirnov
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | - Tatyana I. Smirnova
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | - Subarna Barua
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| | - Darren Leahy
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4000, Australia
| | - Kenneth W. Beagley
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4000, Australia
| | - Jonathan M. Harris
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4000, Australia
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Department of Biological Sciences and Pathobiology, Center of Pathobiology, Immunology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
5
|
Pang Y, Shui J, Li C, Li Y, Chen H, Tang S. The serodiagnositic value of Chlamydia trachomatis antigens in antibody detection using luciferase immunosorbent assay. Front Public Health 2024; 12:1333559. [PMID: 38476494 PMCID: PMC10927828 DOI: 10.3389/fpubh.2024.1333559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Among the different antigens used in the detection of anti-Chlamydia trachomatis antibodies, significant differences in sensitivity and specificity have been observed. Further evaluation of C. trachomatis antigens in antibody detection is urgently needed for the development and application of C. trachomatis serologic assays. Methods Chlamydia trachomatis antigens Pgp3, TmeA, InaC, and HSP60 were selected and used in luciferase immunosorbent assay (LISA). The detection results obtained from well-defined C. trachomatis positive and negative samples were compared with the commercial C. trachomatis ELISA (Mikrogen) for performance evaluation. Results Pgp3, TmeA, InaC, and HSP60-based LISA showed sensitivity of 92.8, 88.8, 90.4, and 94.4%, and specificity of 99.2, 99.2, 99.2, and 92%, respectively. ROC analysis indicated that Pgp3-based LISA showed similar performance to Mikrogen ELISA (AUC 0.986 vs. 0.993, p = 0.207). Furthermore, four C. trachomatis antigens achieved strong diagnostic efficiency, i.e., positive likelihood ratios [+LR] ≥ 10 in C. trachomatis-infected women and negative likelihood ratios [-LR] ≤ 0.1 in C. trachomatis negative low exposure risk children, but only Pgp3 and TmeA showed strong diagnostic value in general adults. In addition, Pgp3, TmeA, and InaC, but not HSP60, achieved high performance, i.e., both positive predictive value (PPV) and negative predictive value (NPV) ≥ 90.9%, and showed no significant cross-reactivity with anti-Chlamydiapneumoniae. Conclusion Three C. trachomatis species-specific antigens Pgp3, TmeA, and InaC show superior performance in the detection of anti-C. trachomatis antibody, indicating the potential to be used in developing C. trachomatis serologic tests.
Collapse
Affiliation(s)
- Yulian Pang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingwei Shui
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
- Department of Emergency, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Changchang Li
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yongzhi Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | | | - Shixing Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Sahu R, Verma R, Egbo TE, Giambartolomei GH, Singh SR, Dennis VA. Effects of prime-boost strategies on the protective efficacy and immunogenicity of a PLGA (85:15)-encapsulated Chlamydia recombinant MOMP nanovaccine. Pathog Dis 2024; 82:ftae004. [PMID: 38862192 PMCID: PMC11186516 DOI: 10.1093/femspd/ftae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024] Open
Abstract
To begin to optimize the immunization routes for our reported PLGA-rMOMP nanovaccine [PLGA-encapsulated Chlamydia muridarum (Cm) recombinant major outer membrane protein (rMOMP)], we compared two prime-boost immunization strategies [subcutaneous (SC) and intramuscular (IM-p) prime routes followed by two SC-boosts)] to evaluate the nanovaccine-induced protective efficacy and immunogenicity in female BALB/c mice. Our results showed that mice immunized via the SC and IM-p routes were protected against a Cm genital challenge by a reduction in bacterial burden and with fewer bacteria in the SC mice. Protection of mice correlated with rMOMP-specific Th1 (IL-2 and IFN-γ) and not Th2 (IL-4, IL-9, and IL-13) cytokines, and CD4+ memory (CD44highCD62Lhigh) T-cells, especially in the SC mice. We also observed higher levels of IL-1α, IL-6, IL-17, CCL-2, and G-CSF in SC-immunized mice. Notably, an increase of cytokines/chemokines was seen after the challenge in the SC, IM-p, and control mice (rMOMP and PBS), suggesting a Cm stimulation. In parallel, rMOMP-specific Th1 (IgG2a and IgG2b) and Th2 (IgG1) serum, mucosal, serum avidity, and neutralizing antibodies were more elevated in SC than in IM-p mice. Overall, the homologous SC prime-boost immunization of mice induced enhanced cellular and antibody responses with better protection against a genital challenge compared to the heterologous IM-p.
Collapse
Affiliation(s)
- Rajnish Sahu
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Richa Verma
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Timothy E Egbo
- US Army Medical Research Institute of Infectious Diseases, Unit 8900, DPO, AE, Box 330, 09831, United States
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. AV. Cordoba 2351, Universidad de Buenos Aires, Buenos Aires, C1120AAR, Argentina
| | - Shree R Singh
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| |
Collapse
|
7
|
Poston TB. Advances in vaccine development for Chlamydia trachomatis. Pathog Dis 2024; 82:ftae017. [PMID: 39043447 PMCID: PMC11338180 DOI: 10.1093/femspd/ftae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 07/25/2024] Open
Abstract
Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection globally. Antibiotic treatment is highly effective, but infection is often asymptomatic resulting in most individuals going undetected and untreated. This untreated infection can ascend to the upper female genital tract to cause pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. Chlamydia screening and treatment programs have failed to control this epidemic and demonstrate the need for an efficacious vaccine to prevent transmission and disease. Animal models and human epidemiological data reveal that natural immunity can provide partial or short-lived sterilizing immunity. These data further demonstrate the importance of eliciting interferon gamma (IFNγ)-producing cluster of differentiation 4 (CD4) T cells (Th1 and Th1/17 cells) that can likely synergize with antibody-mediated opsonophagocytosis to provide optimal protection. These studies have guided preclinical rational vaccine design for decades and the first Phase 1 clinical trials have recently been completed. Recent advances have led to improvements in vaccine platforms and clinically safe adjuvants that help provide a path forward. This review describes vaccine models, correlates of immunity, antigen and adjuvant selection, and future clinical testing for Chlamydia vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
8
|
Elliott Williams M, Hardnett FP, Sheth AN, Wein AN, Li ZRT, Radzio-Basu J, Dinh C, Haddad LB, Collins EMB, Ofotokun I, Antia R, Scharer CD, Garcia-Lerma JG, Kohlmeier JE, Swaims-Kohlmeier A. The menstrual cycle regulates migratory CD4 T-cell surveillance in the female reproductive tract via CCR5 signaling. Mucosal Immunol 2024; 17:41-53. [PMID: 37866719 PMCID: PMC10990418 DOI: 10.1016/j.mucimm.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Despite their importance for immunity against sexually transmitted infections, the composition of female reproductive tract (FRT) memory T-cell populations in response to changes within the local tissue environment under the regulation of the menstrual cycle remains poorly defined. Here, we show that in humans and pig-tailed macaques, the cycle determines distinct clusters of differentiation 4 T-cell surveillance behaviors by subsets corresponding to migratory memory (TMM) and resident memory T cells. TMM displays tissue-itinerant trafficking characteristics, restricted distribution within the FRT microenvironment, and distinct effector responses to infection. Gene pathway analysis by RNA sequencing identified TMM-specific enrichment of genes involved in hormonal regulation and inflammatory responses. FRT T-cell subset fluctuations were discovered that synchronized to cycle-driven CCR5 signaling. Notably, oral administration of a CCR5 antagonist drug blocked TMM trafficking. Taken together, this study provides novel insights into the dynamic nature of FRT memory CD4 T cells and identifies the menstrual cycle as a key regulator of immune surveillance at the site of STI pathogen exposure.
Collapse
Affiliation(s)
- M Elliott Williams
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Felica P Hardnett
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anandi N Sheth
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine and Grady Health System, Atlanta, GA, USA
| | - Alexander N Wein
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zheng-Rong Tiger Li
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jessica Radzio-Basu
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chuong Dinh
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lisa B Haddad
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Elizabeth M B Collins
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Igho Ofotokun
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine and Grady Health System, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - J Gerardo Garcia-Lerma
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jacob E Kohlmeier
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alison Swaims-Kohlmeier
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA; Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
9
|
Collar AL, Clarke TN, Jamus AN, Frietze KM. Ensuring equity with pre-clinical planning for chlamydia vaccines. NPJ Vaccines 2023; 8:131. [PMID: 37673890 PMCID: PMC10482967 DOI: 10.1038/s41541-023-00726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Chlamydia trachomatis (Ct) remains the most common bacterial sexually transmitted pathogen worldwide, causing significant morbidity particularly among women, including pelvic inflammatory disease, ectopic pregnancy, and infertility. Several vaccines are advancing through pre-clinical and clinical development, and it is likely that one or more vaccines will progress into human efficacy trials soon. In this Perspective, we present a case for considering the challenges of Ct vaccine development through a lens of equity and justice. These challenges include the need to protect against multiple serovars, in both females and males, at multiple anatomic sites, and in resource poor areas of the world. We propose that early consideration of vaccine implementation by conducting community-engaged research will ensure that a scientifically sound chlamydia vaccine promotes equity, justice, and shared-gendered responsibility for STI prevention.
Collapse
Affiliation(s)
- Amanda L Collar
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Tegan N Clarke
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Andzoa N Jamus
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Kathryn M Frietze
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
10
|
Recto M, Gaydos C, Perin J, Yusuf HE, Toppins J, Trent M. The Future of Sexually Transmitted Infection Research: Understanding Adolescent Perspectives for Implementation of a Chlamydia Vaccine. J Adolesc Health 2023; 73:198-200. [PMID: 37019692 PMCID: PMC10330164 DOI: 10.1016/j.jadohealth.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 04/07/2023]
Abstract
PURPOSE Despite advancements in developing a vaccine for Chlamydia trachomatis (CT), vaccine hesitancy has historically limited the adoption of sexually transmitted infection immunization. This report investigates adolescent perspectives toward a potential CT vaccine and vaccine research. METHODS As part of the Technology Enhanced Community Health Nursing (TECH-N) study, conducted from 2012-2017, we surveyed 112 adolescents and young adults aged 13-25 years who presented with pelvic inflammatory disease regarding their perspectives on a CT vaccine and willingness to participate in vaccine research. Descriptive statistical analyses were conducted. RESULTS Most participants were African American (95%), on Medicaid (89%), and sexually experienced (100%). Most respondents would accept a vaccine (95%) and preferred a provider's recommendation (86%) over parents, partners, or friends. A majority (70%) would not be embarrassed to participate in research. DISCUSSION Respondents showed favorable attitudes toward CT vaccination and research in this high-risk study population.
Collapse
Affiliation(s)
- Michelle Recto
- Division of Adolescent and Young Adult Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charlotte Gaydos
- Division of Adolescent and Young Adult Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jamie Perin
- Department of Population Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Hasiya E Yusuf
- Division of Adolescent and Young Adult Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jacquelyn Toppins
- Division of Adolescent and Young Adult Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria Trent
- Division of Adolescent and Young Adult Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Population Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| |
Collapse
|
11
|
Yusuf H, Trent M. Management of Pelvic Inflammatory Disease in Clinical Practice. Ther Clin Risk Manag 2023; 19:183-192. [PMID: 36814428 PMCID: PMC9939802 DOI: 10.2147/tcrm.s350750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/16/2022] [Indexed: 02/17/2023] Open
Abstract
Pelvic inflammatory disease (PID) is a common reproductive health disorder among women of reproductive age. The treatment of PID has slowly evolved, reflecting changing antibiotic susceptibility and advancements in therapeutics and research; however, it has been largely unchanged over the last several decades. The most recent treatment recommendations consider the severity of infection, clinical presentation, and the polymicrobial nature of the disease. In addition, the role of novel organisms like Mycoplasma genitalium in PID is of emerging significance. PID treatment guidance offers oral and parenteral treatment options based on the patient's clinical status; however, deviations from the published guidelines are a general concern. Point of care (POC) testing for precision care, provision of adherence support, optimizing self-management and prevention strategies, and other alternative or synergistic approaches that maximize treatment outcomes will be instrumental for addressing the current challenges in PID diagnosis and management.
Collapse
Affiliation(s)
- Hasiya Yusuf
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maria Trent
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA,Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA,Correspondence: Maria Trent, Bloomberg Professor of American Health and Pediatrics, Departments of Population, Family, and Reproductive Health Sciences and Pediatrics, Johns Hopkins University, 200 N. Wolfe Street #2056, Baltimore, MD, 21287, USA, Tel +1 443-287-8945, Fax +1 410-502-5440, Email
| |
Collapse
|
12
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
13
|
Shu M, Zhao L, Shi K, Lei W, Yang Y, Li Z. Chitosan particle stabilized Pickering emulsion/interleukin-12 adjuvant system for Pgp3 subunit vaccine elicits immune protection against genital chlamydial infection in mice. Front Immunol 2022; 13:989620. [PMID: 36505424 PMCID: PMC9727174 DOI: 10.3389/fimmu.2022.989620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
Considering the shortcomings in current chlamydia infection control strategies, a major challenge in curtailing infection is the implementation of an effective vaccine. The immune response induced by C. trachomatis plasmid encoded Pgp3 was insufficient against C. trachomatis infection, which requires adjuvant applications to achieve the robust immune response induced by Pgp3. There is increasing promising in developing adjuvant systems relying on the delivery potential of Pickering emulsions and the immunomodulatory effects of interleukin (IL)-12. Here, owing to the polycationic nature, chitosan particles tended to absorb on the oil/water interphase to prepare the optimized chitosan particle-stabilized Pickering emulsion (CSPE), which was designed as a delivery system for Pgp3 protein and IL-12. Our results showed that the average droplets size of CSPE was 789.47 ± 44.26 nm after a series of optimizations and about 90% antigens may be absorbed by CSPE owing to the positively charged surface (33.2 ± 3mV), and CSPE promoted FITC-BSA proteins uptake by macrophages. Furthermore, as demonstrated by Pgp3-specific antibody production and cytokine secretion, CSPE/IL-12 system enhanced significantly higher levels of Pgp3-specific IgG, IgG1, IgG2a, sIgA and significant cytokines secretion of IFN-γ, IL-2, TNF-α, IL-4. Similarly, vaginal chlamydial shedding and hydrosalpinx pathologies were markedly reduced in mice immunized with Pgp3/CSPE/IL-12. Collectively, vaccination with Pgp3/CSPE/IL-12 regimen elicited robust cellular and humoral immune response in mice resulting in an obvious reduction of live chlamydia load in the vaginal and inflammatory pathologies in the oviduct, which further propells the development of vaccines against C. trachomatis infection.
Collapse
|
14
|
Rodrigues R, Marques L, Vieira-Baptista P, Sousa C, Vale N. Therapeutic Options for Chlamydia trachomatis Infection: Present and Future. Antibiotics (Basel) 2022; 11:1634. [PMID: 36421278 PMCID: PMC9686482 DOI: 10.3390/antibiotics11111634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
Sexually transmitted infections (STIs), such as Chlamydia trachomatis (Ct) infection, have serious consequences for sexual and reproductive health worldwide. Ct is one of the most common sexually transmitted bacterial infections in the world, with approximately 129 million new cases per year. C. trachomatis is an obligate intracellular Gram-negative bacterium. The infection is usually asymptomatic, notwithstanding, it could also be associated with severe sequels and complications, such as chronic pain, infertility, and gynecologic cancers, and thus there is an urgent need to adequately treat these cases in a timely manner. Consequently, beyond its individual effects, the infection also impacts the economy of the countries where it is prevalent, generating a need to consider the hypothesis of implementing Chlamydia Screening Programs, a decision that, although it is expensive to execute, is a necessary investment that unequivocally will bring financial and social long-term advantages worldwide. To detect Ct infection, there are different methodologies available. Nucleic acid amplification tests, with their high sensitivity and specificity, are currently the first-line tests for the detection of Ct. When replaced by other detection methods, there are more false negative tests, leading to underreported cases and a subsequent underestimation of Ct infection's prevalence. Ct treatment is based on antibiotic prescription, which is highly associated with drug resistance. Therefore, currently, there have been efforts in line with the development of alternative strategies to effectively treat this infection, using a drug repurposing method, as well as a natural treatment approach. In addition, researchers have also made some progress in the Ct vaccine development over the years, despite the fact that it also necessitates more studies in order to finally establish a vaccination plan. In this review, we have focused on the therapeutic options for treating Ct infection, expert recommendations, and major difficulties, while also exploring the possible avenues through which to face this issue, with novel approaches beyond those proposed by the guidelines of Health Organizations.
Collapse
Affiliation(s)
- Rafaela Rodrigues
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 446 C24, 4465-671 Leça do Balio, Portugal
| | - Lara Marques
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Pedro Vieira-Baptista
- Hospital Lusíadas Porto, Avenida da Boavista, 171, 4050-115 Porto, Portugal
- Lower Genital Tract Unit, Centro Hospitalar de São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carlos Sousa
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 446 C24, 4465-671 Leça do Balio, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
15
|
Chen X, Yuan W, Zhou Q, Tan Y, Wang R, Dong S. Sensitive and visual identification of Chlamydia trachomatis using multiple cross displacement amplification integrated with a gold nanoparticle-based lateral flow biosensor for point-of-care use. Front Cell Infect Microbiol 2022; 12:949514. [PMID: 35937700 PMCID: PMC9355032 DOI: 10.3389/fcimb.2022.949514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infection (STI) and remains a major public health challenge, especially in less-developed regions. Establishing a rapid, inexpensive, and easy-to-interpret point-of-care (POC) testing system for C. trachomatis could be critical for its treatment and limiting further transmission. Here, we devised a novel approach termed a multiple cross displacement amplification integrated with gold nanoparticle-based lateral flow biosensor (MCDA-AuNPs-LFB) for the highly specific, sensitive, user-friendly, and rapid identification of C. trachomatis in clinical samples. A suite of MCDA primers based on the C. trachomatis ompA gene from 14 serological variants (serovar A-K, L1, L2, and L3) were successfully designed and used to establish the assay. Optimal assay conditions were identified at 67°C, and the detection procedure, including nucleic acid preparation (approximately 5 min), MCDA amplification (30 min), and AuNPs-LFB visual readout (within 2 min), was completed within 40 min. The all-in cost for each test was approximately $5.5 USD. The limit of detection (LoD) was 10 copies/reaction, and no cross-reaction was observed with non-C. trachomatis microbes. A total of 135 suspected C. trachomatis-infection genital secretion samples were collected and simultaneously detected using real-time quantitative PCR (qPCR) in our assay. Compared with the qPCR technology, the MCDA-AuNPs-LFB sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 96.20%, 94.92%, and 100%, respectively. Hence, our MCDA-AuNP-LFB assay exhibited considerable potential for POC testing and could be used to identify C. trachomatis in clinical settings, particularly in low-income regions.
Collapse
Affiliation(s)
- Xu Chen
- The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Clinical Medical Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wei Yuan
- Quality Control Department, Guizhou Provincial Center for Clinical Laboratory, Guiyang, China
| | - Qingxue Zhou
- Clinical Laboratory, Hangzhou Women’s Hospital, Hangzhou, China
| | - Yan Tan
- Quality Control Department, Guizhou Provincial Center for Clinical Laboratory, Guiyang, China
| | - Ronghua Wang
- Department of Clinical Laboratory, Longli people’s Hospital, Qianlan, China
| | - Shilei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
16
|
Overexpression of the Bam Complex Improves the Production of Chlamydia trachomatis MOMP in the E. coli Outer Membrane. Int J Mol Sci 2022; 23:ijms23137393. [PMID: 35806397 PMCID: PMC9266984 DOI: 10.3390/ijms23137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
A licensed Chlamydia trachomatis (Ct) vaccine is not yet available. Recombinant Chlamydia trachomatis major outer membrane protein (Ct-MOMP), the most abundant constituent of the chlamydial outer membrane complex, is considered the most attractive candidate for subunit-based vaccine formulations. Unfortunately, Ct-MOMP is difficult to express in its native structure in the E. coli outer membrane (OM). Here, by co-expression of the Bam complex, we improved the expression and localization of recombinant Ct-MOMP in the E. coli OM. Under these conditions, recombinant Ct-MOMP appeared to assemble into a β-barrel conformation and express domains at the cell surface indicative of correct folding. The data indicate that limited availability of the Bam complex can be a bottleneck for the production of heterologous OM vaccine antigens, information that is also relevant for strategies aimed at producing recombinant OMV-based vaccines.
Collapse
|
17
|
Abstract
Trachoma is a neglected tropical disease caused by infection with conjunctival strains of Chlamydia trachomatis. It can result in blindness. Pathophysiologically, trachoma is a disease complex composed of two linked chronic processes: a recurrent, generally subclinical infectious-inflammatory disease that mostly affects children, and a non-communicable, cicatricial and, owing to trichiasis, eventually blinding disease that supervenes in some individuals later in life. At least 150 infection episodes over an individual's lifetime are needed to precipitate trichiasis; thus, opportunity exists for a just global health system to intervene to prevent trachomatous blindness. Trachoma is found at highest prevalence in the poorest communities of low-income countries, particularly in sub-Saharan Africa; in June 2021, 1.8 million people worldwide were going blind from the disease. Blindness attributable to trachoma can appear in communities many years after conjunctival C. trachomatis transmission has waned or ceased; therefore, the two linked disease processes require distinct clinical and public health responses. Surgery is offered to individuals with trichiasis and antibiotic mass drug administration and interventions to stimulate facial cleanliness and environmental improvement are designed to reduce infection prevalence and transmission. Together, these interventions comprise the SAFE strategy, which is achieving considerable success. Although much work remains, a continuing public health problem from trachoma in the year 2030 will be difficult for the world to excuse.
Collapse
|
18
|
Chavda VP, Pandya A, Kypreos E, Patravale V, Apostolopoulos V. Chlamydia trachomatis: quest for an eye-opening vaccine breakthrough. Expert Rev Vaccines 2022; 21:771-781. [PMID: 35470769 DOI: 10.1080/14760584.2022.2061461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Chlamydia trachomatis, commonly referred to as chlamydia (a bacterium), is a common sexually transmitted infection, and if attended to early, it can be treatable. However, if left untreated it can lead to serious consequences. C. trachomatis infects both females and males although its occurrence in females is more common, and it can spread to the eyes causing disease and in some case blindness. AREA COVERED With ongoing attempts in the most impoverished regions of the country, trachoma will be eradicated as a blinding disease by the year 2022. A prophylactic vaccine candidate with established safety and efficacy is a cogent tool to achieve this goal. This manuscript covers the vaccine development programs for chlamydial infection. EXPERT OPINION Currently, the Surgery Antibiotics Facial Environmental (SAFE) program is being implemented in endemic countries in order to reduce transmission and control of the disease. Vaccines have been shown over the years to protect against infectious diseases. Charge variant-based adjuvant can also be used for the successful delivery of chlamydial specific antigen for efficient vaccine delivery through nano delivery platform. Thus, a vaccine against C. trachomatis would be of great public health benefit.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad India
| | - Anjali Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai India
| | - Erica Kypreos
- Department of Immunology, Institute for Health and Sport, Victoria University, Melbourne VIC Australia
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai India
| | - Vasso Apostolopoulos
- Department of Immunology, Institute for Health and Sport, Victoria University, Melbourne VIC Australia
| |
Collapse
|
19
|
Naveed M, Makhdoom SI, Abbas G, Safdari M, Farhadi A, Habtemariam S, Shabbir MA, Jabeen K, Asif MF, Tehreem S. The Virulent Hypothetical Proteins: The Potential Drug Target Involved in Bacterial Pathogenesis. Mini Rev Med Chem 2022; 22:2608-2623. [DOI: 10.2174/1389557522666220413102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Hypothetical proteins (HPs) are non-predicted sequences that are identified only by open reading frames in sequenced genomes but their protein products remain uncharacterized by any experimental means. The genome of every species consists of HPs that are involved in various cellular processes and signaling pathways. Annotation of HPs is important as they play a key role in disease mechanisms, drug designing, vaccine production, antibiotic production, and host adaptation. In the case of bacteria, 25-50% of the genome comprises of HPs, which are involved in metabolic pathways and pathogenesis. The characterization of bacterial HPs helps to identify virulent proteins that are involved in pathogenesis. This can be done using in-silico studies, which provide sequence analogs, physiochemical properties, cellular or subcellular localization, structure and function validation, and protein-protein interactions. The most diverse types of virulent proteins are exotoxins, endotoxins, and adherent virulent factors that are encoded by virulent genes present on the chromosomal DNA of the bacteria. This review evaluates virulent HPs of pathogenic bacteria, such as Staphylococcus aureus, Chlamydia trachomatis, Fusobacterium nucleatum, and Yersinia pestis. The potential of these HPs as a drug target in bacteria-caused infectious diseases along with the mode of action and treatment approaches have been discussed.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Syeda Izma Makhdoom
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Ghulam Abbas
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amin Farhadi
- Kavian Institute of Higher Education, Mashhad, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Medway Campus-Science, Grenville Building (G102/G107), Central Avenue, Chatham-Maritime, Kent, ME4 4TB, UK
| | - Muhammad Aqib Shabbir
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Khizra Jabeen
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Muhammad Farrukh Asif
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Pakistan
| | - Sana Tehreem
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| |
Collapse
|
20
|
Mosenia A, Chin SA, Alemayehu W, Melese M, Lakew T, Zhou Z, Doan T, Cevallos V, Lietman TM, Keenan JD. Concordance of ompA types in children re-infected with ocular Chlamydia trachomatis following mass azithromycin treatment for trachoma. PLoS Negl Trop Dis 2022; 16:e0010237. [PMID: 35344559 PMCID: PMC8959170 DOI: 10.1371/journal.pntd.0010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background
The chlamydial major outer membrane protein, encoded by the ompA gene, is a primary target for chlamydial vaccine research. However, human studies of ompA-specific immunity are limited, and prior studies have been limited in differentiating re-infection from persistent infection. The purpose of this study was to assess whether children living in trachoma-endemic communities with re-infections of ocular chlamydia were more likely to be infected with a different or similar genovar.
Methodology and findings
The study included 21 communities from a trachoma-hyperendemic area of Ethiopia that had been treated with a mass azithromycin distribution for trachoma. Conjunctival swabbing was offered to all children younger than 5 years of age at baseline (i.e., pre-treatment), and then at follow-up visits 2 and 6 months later. Swabs were subjected to polymerase chain reaction (PCR) to detect C. trachomatis. A random sample of 359 PCR-positive swabs, stratified by study visit and study community, was chosen for ompA sequencing. In addition, ompA sequencing was performed on all swabs of 24 children who experienced chlamydial re-infection (i.e., positive chlamydial test before treatment, negative test 2 months following mass distribution of azithromycin, and again a positive test 6 months post-treatment). ompA sequencing was successful for 351 of 359 swabs of the random sample and 44 of 48 swabs of the re-infection sample. In the random sample, ompA types clustered within households more than would be expected by chance. Among the 21 re-infected children with complete ompA data, 14 had the same ompA type before and after treatment.
Conclusion
The high frequency of ompA concordance suggests incomplete genovar-specific protective immunity and the need for multiple antigens as vaccine targets.
Collapse
Affiliation(s)
- Arman Mosenia
- Francis I. Proctor Foundation, University of California, San Francisco, California, United States of America
- School of Medicine, University of California, San Francisco, California, United States of America
| | - Stephanie A. Chin
- Francis I. Proctor Foundation, University of California, San Francisco, California, United States of America
| | - Wondu Alemayehu
- Orbis International, New York, New York, United States of America
| | - Muluken Melese
- Orbis International, New York, New York, United States of America
| | - Takele Lakew
- Orbis International, New York, New York, United States of America
| | - Zhaoxia Zhou
- Francis I. Proctor Foundation, University of California, San Francisco, California, United States of America
| | - Thuy Doan
- Francis I. Proctor Foundation, University of California, San Francisco, California, United States of America
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
| | - Vicky Cevallos
- Francis I. Proctor Foundation, University of California, San Francisco, California, United States of America
| | - Thomas M. Lietman
- Francis I. Proctor Foundation, University of California, San Francisco, California, United States of America
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
- Department of Epidemiology & Biostatistics, University of California, San Francisco, California, United States of America
| | - Jeremy D. Keenan
- Francis I. Proctor Foundation, University of California, San Francisco, California, United States of America
- Department of Ophthalmology, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Aslam M, Shehroz M, Ali F, Zia A, Pervaiz S, Shah M, Hussain Z, Nishan U, Zaman A, Afridi SG, Khan A. Chlamydia trachomatis core genome data mining for promising novel drug targets and chimeric vaccine candidates identification. Comput Biol Med 2021; 136:104701. [PMID: 34364258 DOI: 10.1016/j.compbiomed.2021.104701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022]
Abstract
Chlamydia trachomatis is involved in most sexually transmitted diseases. The species has emerged as a major public health threat due to its multidrug-resistant capabilities, and new therapeutic target inferences have become indispensable to combat its pathogenesis. However, no commercial vaccine is yet available to treat the C. trachomatis infection. In this study, we used the publicly available complete genome sequences of C. trachomatis and performed comparative proteomics and reverse vaccinology analyses to explore novel drug and vaccine targets against this devastating pathogen. We identified 713 core proteins from 71 C. trachomatis complete genome sequences and prioritized them based on their cellular essentiality, virulence, and available antibiotic resistance. The analyses led to the identification of 16 pathogen-specific proteins with no resolved 3D structures, though holding significant druggable potential. The sequences of the three shortlisted candidates' membrane proteins were used for designing vaccine constructs. The antigenicity, toxicity, and solubility profile-based lead epitopes were prioritized for multi-epitope-based vaccine constructs in combination with specific linkers, PADRE sequences, and molecular adjuvants for immunogenicity enhancement. The molecular-level interactions of the prioritized vaccine construct with human immune cells HLA and TLR4/MD were validated by molecular docking and molecular dynamic simulation analyses. Furthermore, the cloning and expression potential of the lead vaccine construct was predicted in the E. coli cloning vector system. Additional testing and experimental validation of these multi-epitope constructs appear promising against C. trachomatis-mediated infection.
Collapse
Affiliation(s)
- Muneeba Aslam
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Shehroz
- Department of Biotechnology, Virtual University of Pakistan, Peshawar, Pakistan
| | - Fawad Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Asad Zia
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Sadia Pervaiz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Zahid Hussain
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Aqal Zaman
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
22
|
Prophylactic Multi-Subunit Vaccine against Chlamydia trachomatis: In Vivo Evaluation in Mice. Vaccines (Basel) 2021; 9:vaccines9060609. [PMID: 34204170 PMCID: PMC8226540 DOI: 10.3390/vaccines9060609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
Chlamydia trachomatis is the most frequent sexually-transmitted disease-causing bacterium. Urogenital serovars of this intracellular pathogen lead to urethritis and cervicitis. Ascending infections result in pelvic inflammatory disease, salpingitis, and oophoritis. One of 200 urogenital infections leads to tubal infertility. Serovars A–C cause trachoma with visual impairment. There is an urgent need for a vaccine. We characterized a new five-component subunit vaccine in a mouse vaccination-lung challenge infection model. Four recombinant Pmp family-members and Ctad1 from C. trachomatis serovar E, all of which participate in adhesion and binding of chlamydial elementary bodies to host cells, were combined with the mucosal adjuvant cyclic-di-adenosine monophosphate. Intranasal application led to a high degree of cross-serovar protection against urogenital and ocular strains of C. trachomatis, which lasted at least five months. Critical evaluated parameters were body weight, clinical score, chlamydial load, a granulocyte marker and the cytokines IFN-γ/TNF-α in lung homogenate. Vaccine antigen-specific antibodies and a mixed Th1/Th2/Th17 T cell response with multi-functional CD4+ and CD8+ T cells correlate with protection. However, serum-transfer did not protect the recipients suggesting that circulating antibodies play only a minor role. In the long run, our new vaccine might help to prevent the feared consequences of human C. trachomatis infections.
Collapse
|
23
|
de la Maza LM, Darville TL, Pal S. Chlamydia trachomatis vaccines for genital infections: where are we and how far is there to go? Expert Rev Vaccines 2021; 20:421-435. [PMID: 33682583 DOI: 10.1080/14760584.2021.1899817] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the world. Antibiotic treatment does not prevent against reinfection and a vaccine is not yet available. AREAS COVERED We focus the review on the progress made of our understanding of the immunological responses required for a vaccine to elicit protection, and on the antigens, adjuvants, routes of immunization and delivery systems that have been tested in animal models. PubMed and Google Scholar were used to search publication on these topics for the last 5 years and recent Reviews were examined. EXPERT OPINION The first Phase 1 clinical trial of a C. trachomatis vaccine to protect against genital infections was successfully completed. We expect that, in the next five years, additional vaccine clinical trials will be implemented.
Collapse
Affiliation(s)
- Luis M de la Maza
- Department of Pathology and Laboratory Medicine Medical Sciences, I, Room D440 University of California, Irvine, California, USA
| | - Toni L Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine Medical Sciences, I, Room D440 University of California, Irvine, California, USA
| |
Collapse
|
24
|
Murray SM, McKay PF. Chlamydia trachomatis: Cell biology, immunology and vaccination. Vaccine 2021; 39:2965-2975. [PMID: 33771390 DOI: 10.1016/j.vaccine.2021.03.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Chlamydia trachomatis is the causative agent of a highly prevalent sexually transmitted bacterial disease and is associated with a number of severe disease complications. Current therapy options are successful at treating disease, but patients are left without protective immunity and do not benefit the majority asymptomatic patients who do not seek treatment. As such, there is a clear need for a broad acting, protective vaccine that can prevent transmission and protect against symptomatic disease presentation. There are three key elements that underlie successful vaccine development: 1) Chlamydia biology and immune-evasion adaptations, 2) the correlates of protection that prevent disease in natural and experimental infection, 3) reflection upon the evidence provided by previous vaccine attempts. In this review, we give an overview of the unique intra-cellular biology of C. trachomatis and give insight into the dynamic combination of adaptations that allow Chlamydia to subvert host immunity and survive within the cell. We explore the current understanding of chlamydial immunity in animal models and in humans and characterise the key immune correlates of protection against infection. We discuss in detail the specific immune interactions involved in protection, with relevance placed on the CD4+ T lymphocyte and B lymphocyte responses that are key to pathogen clearance. Finally, we provide a timeline of C. trachomatis vaccine research to date and evaluate the successes and failures in development so far. With insight from these three key elements of research, we suggest potential solutions for chlamydial vaccine development and promising avenues for further exploration.
Collapse
Affiliation(s)
- Sam M Murray
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK.
| | - Paul F McKay
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
25
|
Innate IFN-γ Is Essential for Systemic Chlamydia muridarum Control in Mice, While CD4 T Cell-Dependent IFN-γ Production Is Highly Redundant in the Female Reproductive Tract. Infect Immun 2021; 89:IAI.00541-20. [PMID: 33257535 PMCID: PMC8097277 DOI: 10.1128/iai.00541-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Protective immunity against the obligate intracellular bacterium Chlamydia has long been thought to rely on CD4 T cell-dependent gamma interferon (IFN-γ) production. Nevertheless, whether IFN-γ is produced by other cellular sources during Chlamydia infection and how CD4 T cell-dependent and -independent IFN-γ contribute differently to host resistance have not been carefully evaluated. In this study, we dissected the requirements of IFN-γ produced by innate immune cells and CD4 T cells for resolution of Chlamydia muridarum female reproductive tract (FRT) infection. After C. muridarum intravaginal infection, IFN-γ-deficient and T cell-deficient mice exhibited opposite phenotypes for survival and bacterial shedding at the FRT mucosa, demonstrating the distinct requirements for IFN-γ and CD4 T cells in host defense against Chlamydia In Rag1-deficient mice, IFN-γ produced by innate lymphocytes (ILCs) accounted for early bacterial control and prolonged survival in the absence of adaptive immunity. Although type I ILCs are potent IFN-γ producers, we found that mature NK cells and ILC1s were not the sole sources of innate IFN-γ in response to Chlamydia By conducting T cell adoptive transfer, we showed definitively that IFN-γ-deficient CD4 T cells were sufficient for effective bacterial killing in the FRT during the first 21 days of infection and reduced bacterial burden more than 1,000-fold, although mice receiving IFN-γ-deficient CD4 T cells failed to completely eradicate the bacteria from the FRT like their counterparts receiving wild-type (WT) CD4 T cells. Together, our results revealed that innate IFN-γ is essential for preventing systemic Chlamydia dissemination, whereas IFN-γ produced by CD4 T cells is largely redundant at the FRT mucosa.
Collapse
|
26
|
Debonnet C, Robin G, Prasivoravong J, Vuotto F, Catteau-Jonard S, Faure K, Dessein R, Robin C. [Update of Chlamydia trachomatis infection]. ACTA ACUST UNITED AC 2021; 49:608-616. [PMID: 33434747 DOI: 10.1016/j.gofs.2021.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Indexed: 12/25/2022]
Abstract
Chlamydia trachomatis (CT) is the most common sexually transmitted bacterial infection worldwide. It is asymptomatic in most cases and mainly affects young women, with potential long term sequelae (pelvic inflammatory disease, tubal infertility, obstetric complications). The impact on male fertility is controversial. Screening methods as well as antibiotics use have recently been reassessed due to resistance phenomena and the negative effect on the urogenital microbiota. Positive CT serology may be indicative of tuboperitoneal pathology, which may not be noticed on hysterosalpingography. New research on single-nucleotide polymorphisms (SNPs) aims to establish a patient profile at higher risk of infectious tubal damage due to CT. CT seropositivity is also associated with decreased spontaneous pregnancy rates and is a predictive factor for obstetrical complications.
Collapse
Affiliation(s)
- C Debonnet
- Service de médecine de la reproduction, université de Lille, CHU Lille, 59000 Lille, France.
| | - G Robin
- Service de médecine de la reproduction, université de Lille, CHU Lille, 59000 Lille, France; Service d'andrologie, université de Lille, CHU Lille, 59000 Lille, France
| | - J Prasivoravong
- Service d'andrologie, université de Lille, CHU Lille, 59000 Lille, France
| | - F Vuotto
- Service de maladies infectieuses, université de Lille, CHU Lille, 59000 Lille, France
| | - S Catteau-Jonard
- Service de médecine de la reproduction, université de Lille, CHU Lille, 59000 Lille, France
| | - K Faure
- Service de maladies infectieuses, université de Lille, CHU Lille, 59000 Lille, France
| | - R Dessein
- Institut de microbiologie et service de bactériologie, université de Lille, CHU Lille, 59000 Lille, France
| | - C Robin
- Service de médecine de la reproduction, université de Lille, CHU Lille, 59000 Lille, France
| |
Collapse
|
27
|
Discovery of Spilanthol Endoperoxide as a Redox Natural Compound Active against Mammalian Prx3 and Chlamydia trachomatis Infection. Antioxidants (Basel) 2020; 9:antiox9121220. [PMID: 33287170 PMCID: PMC7761737 DOI: 10.3390/antiox9121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022] Open
Abstract
Chlamydia trachomatis (Ct) is a bacterial intracellular pathogen responsible for a plethora of diseases ranging from blindness to pelvic inflammatory diseases and cervical cancer. Although this disease is effectively treated with antibiotics, concerns for development of resistance prompt the need for new low-cost treatments. Here we report the activity of spilanthol (SPL), a natural compound with demonstrated anti-inflammatory properties, against Ct infections. Using chemical probes selective for imaging mitochondrial protein sulfenylation and complementary assays, we identify an increase in mitochondrial oxidative state by SPL as the underlying mechanism leading to disruption of host cell F-actin cytoskeletal organization and inhibition of chlamydial infection. The peroxidation product of SPL (SPL endoperoxide, SPLE), envisioned to be the active compound in the cellular milieu, was chemically synthesized and showed more potent anti-chlamydial activity. Comparison of SPL and SPLE reactivity with mammalian peroxiredoxins, demonstrated preferred reactivity of SPLE with Prx3, and virtual lack of SPL reaction with any of the reduced Prx isoforms investigated. Cumulatively, these findings support the function of SPL as a pro-drug, which is converted to SPLE in the cellular milieu leading to inhibition of Prx3, increased mitochondrial oxidation and disruption of F-actin network, and inhibition of Ct infection.
Collapse
|
28
|
Sahu R, Dixit S, Verma R, Duncan SA, Coats MT, Giambartolomei GH, Singh SR, Dennis VA. A nanovaccine formulation of Chlamydia recombinant MOMP encapsulated in PLGA 85:15 nanoparticles augments CD4+ effector (CD44high CD62Llow) and memory (CD44high CD62Lhigh) T-cells in immunized mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102257. [PMID: 32610072 DOI: 10.1016/j.nano.2020.102257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/08/2020] [Accepted: 06/18/2020] [Indexed: 02/05/2023]
Abstract
Vaccine developmental strategies are utilizing antigens encapsulated in biodegradable polymeric nanoparticles. Here, we developed a Chlamydia nanovaccine (PLGA-rMOMP) by encapsulating its recombinant major outer membrane protein (rMOMP) in the extended-releasing and self-adjuvanting PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. PLGA-rMOMP was small (nanometer size), round and smooth, thermally stable, and exhibited a sustained release of rMOMP. Stimulation of mouse primary dendritic cells (DCs) with PLGA-rMOMP augmented endosome processing, induced Th1 cytokines (IL-6 and IL-12p40), and expression of MHC-II and co-stimulatory (CD40, CD80, and CD86) molecules. BALB/c mice immunized with PLGA-rMOMP produced enhanced CD4+ T-cells-derived memory (CD44high CD62Lhigh), and effector (CD44high CD62Llow) phenotypes and functional antigen-specific serum IgG antibodies. In vivo biodistribution of PLGA-rMOMP revealed its localization within lymph nodes, suggesting migration from the injection site via DCs. Our data provide evidence that the PLGA (85:15) nanovaccine activates DCs and augments Chlamydia-specific rMOMP adaptive immune responses that are worthy of efficacy testing.
Collapse
|
29
|
McIntosh EDG. Development of vaccines against the sexually transmitted infections gonorrhoea, syphilis, Chlamydia, herpes simplex virus, human immunodeficiency virus and Zika virus. Ther Adv Vaccines Immunother 2020; 8:2515135520923887. [PMID: 32647779 PMCID: PMC7325543 DOI: 10.1177/2515135520923887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/07/2020] [Indexed: 01/13/2023] Open
Abstract
The success in preventing hepatitis B virus and human papillomavirus infections by means of vaccination paves the way for the development of other vaccines to prevent sexually transmitted infections (STIs) such as gonorrhoea, syphilis, chlamydia, herpes simplex virus, human immunodeficiency virus and Zika virus. The current status of vaccine development for these infections will be explored in this review. The general principles for success include the need for prevention of latency, persistence and repeat infections. A reduction in transmission of STIs would reduce the global burden of disease. Therapeutic activity of vaccines against STIs would be advantageous over preventative activity alone, and prevention of congenital and neonatal infections would be an added benefit. There would be an added value in the prevention of long-term consequences of STIs. It may be possible to re-purpose ‘old’ vaccines for new indications. One of the major challenges is the determination of the target populations for STI vaccination.
Collapse
Affiliation(s)
- Edwin David G McIntosh
- FEO - Faculty Education Office (Medicine), Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
30
|
Wang C, Li Y, Wang S, Yan X, Xiao J, Chen Y, Zheng K, Tan Y, Yu J, Lu C, Wu Y. Evaluation of a tandem Chlamydia psittaci Pgp3 multiepitope peptide vaccine against a pulmonary chlamydial challenge in mice. Microb Pathog 2020; 147:104256. [PMID: 32416138 DOI: 10.1016/j.micpath.2020.104256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
Abstract
Chlamydia psittaci is the pathogen of psittacosis, and it has emerged as a significant public health threat. Because most infections are easily overlooked, a vaccine is recognized as the best solution to control the spread of C. psittaci. Our previous study showed that Pgp3 protein is efficacious as a subunit vaccine while not the best candidate due to the negative effects. Thus, in this study, we tested the ability of a tandem epitope vaccine candidate designated SP based on Pgp3-dominant epitopes to induce protective immunity against pulmonary chlamydial infection. BALB/c mice were intraperitoneally inoculated with multiepitope peptide antigens followed by intranasal infection with C. psittaci. We found that the multiepitope peptide antigens induced strong humoral and cellular immune responses with high Th1-related (IFN-γ and IL-2) and proinflammatory (IL-6) cytokine levels. Meanwhile, the pathogen burden and inflammatory infiltration were significantly reduced in lungs of SP-immunized mice after chlamydial challenge. In addition, the IFN-γ and IL-6 secretion levels in the infected lungs were substantially reduced. Overall, our findings demonstrate that the peptide vaccine SP plays a significant role with good immunogenicity and protective efficacy against C. psittaci lung infection in BALB/c mice, providing important insights towards understanding the potential of peptide vaccines as new vaccine antigens for inducing protective immunity against chlamydial infection.
Collapse
Affiliation(s)
- Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yumeng Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Shuzhi Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Xiaoliang Yan
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Jian Xiao
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yuqing Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Kang Zheng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yuan Tan
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Jian Yu
- Department of Experimental Zoology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.
| |
Collapse
|
31
|
Rajeeve K, Sivadasan R. Transcervical Mouse Infections with Chlamydia trachomatis and Determination of Bacterial Burden. Bio Protoc 2020; 10:e3506. [PMID: 33654733 DOI: 10.21769/bioprotoc.3506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 11/02/2022] Open
Abstract
Chlamydia trachomatis is an obligate human pathogen. It infects the genital tract of humans ascending into the fallopian tube, exacerbated by chronic pelvic pain, pelvic inflammatory disease, and fallopian tube scaring resulting in infertility and other malignancies. The major hurdle in controlling chlamydial spread is that the infection remains asymptomatic, thus leading to chronic, recurrent and persistent infections, with no vaccines developed so far. Being a human pathogen, we do not have an in vivo model of C. trachomatis infection. C. trachomatis do not cause ascending infections and fallopian tube pathology in the mouse urogenital tract when infected vaginally. To overcome this hurdle trans cervical method of infection must be adapted. In this protocol the method of establishing trans-cervical Chlamydial infection with the procedure to determine the bacterial load is detailed. This method will facilitate to deliver the bacteria past the cervix establishing an ascending infection into the uterine horns reciprocating human fallopian tube infections.
Collapse
Affiliation(s)
- Karthika Rajeeve
- Department of Biomedicine, The Skou building, Hoegh-Guldbergs Gade 10, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Rajeeve Sivadasan
- RNA Biology and Cancer German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| |
Collapse
|
32
|
Marchese V, Dal Zoppo S, Quaresima V, Rossi B, Matteelli A. Vaccines for STIs: Present and Future Directions. Sex Transm Infect 2020. [DOI: 10.1007/978-3-030-02200-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
33
|
Blakney AK, McKay PF, Christensen D, Yus BI, Aldon Y, Follmann F, Shattock RJ. Effects of cationic adjuvant formulation particle type, fluidity and immunomodulators on delivery and immunogenicity of saRNA. J Control Release 2019; 304:65-74. [PMID: 31071377 DOI: 10.1016/j.jconrel.2019.04.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/07/2019] [Accepted: 04/29/2019] [Indexed: 01/07/2023]
Abstract
Self-amplifying RNA (saRNA) is well suited as a vaccine platform against chlamydia, as it is relatively affordable and scalable, has been shown to induce immunity against multivalent antigens, and can result in protein expression for up to 60 days. Cationic adjuvant formulations (CAFs) have been previously investigated as an adjuvant for protein subunit vaccines; here we optimize the CAFs for delivery of saRNA in vivo and observe the immunogenicity profile in the context of both cellular and humoral immunity against the major outer membrane protein (MOMP) of Chlamydia trachomatis. We tested both liposomal and emulsion based CAFs with solid and fluid phase lipids, with or without the TLR agonists R848 and 3M-052, for in vitro transfection efficiency and cytotoxicity. We then optimized the RNA/delivery system ratio for in vivo delivery using saRNA coding for firefly luciferase (fLuc) as a reporter protein in vivo. We observed that while the fluid phase liposome formulations showed the highest in vitro transfection efficiency, the fluid and solid phase liposomes had equivalent luciferase expression in vivo. Incorporation of R848 or 3M-052 into the formulation was not observed to affect the delivery efficiency of saRNA either in vitro or in vivo. MOMP-encoding saRNA complexed with CAFs resulted in both MOMP-specific cellular and humoral immunity, and while there was a slight enhancement of IFN-γ+ T-cell responses when R848 was incorporated into the formulation, the self-adjuvanting effects of RNA appeared to dominate the immune response. These studies establish that CAFs are efficient delivery vehicles for saRNA both for in vitro transfections and in vivo immunogenicity and generate cellular and humoral responses that are proportionate to protein expression.
Collapse
Affiliation(s)
- Anna K Blakney
- Department of Medicine, Imperial College London, London, UK
| | - Paul F McKay
- Department of Medicine, Imperial College London, London, UK
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | - Yoann Aldon
- Department of Medicine, Imperial College London, London, UK
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | |
Collapse
|
34
|
Correia M, Brunner D, Sharma M, Andrade V, Magno J, Müller A, Pereira BM, Thumann G, Verma N, Bangert M, Kreis AJ, Solomon AW. A search for trachoma in Timor-Leste: no evidence to justify undertaking population-based prevalence surveys. Ophthalmic Epidemiol 2019; 25:131-137. [PMID: 30806540 PMCID: PMC6858277 DOI: 10.1080/09286586.2018.1545037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose We sought evidence to justify undertaking population-based trachoma surveys in Timor-Leste, believing that in the absence of such evidence, the country could be categorized as not needing interventions to eliminate trachoma. Methods We undertook a systematic review of published literature on trachoma in Timor-Leste, with results updated to 28 April 2018. We also undertook a series of clinic- and field-based screening exercises, consisting of: (1) in October 2015, conjunctival examination of all children attending a school in Vila, Atauro Island; (2) from 1 November 2016 to 30 April 2017, examination for trichiasis, by specifically-trained frontline eye workers, of all individuals presenting to the ophthalmic clinics of six referral hospitals and five district eye clinics; and (3) house-to-house case searches in a total of 110 households, drawn from three communities that were reported by investigators from the 2016 Rapid Assessment of Avoidable Blindness (RAAB) to include residents with trachoma. Results Three RAABs (2005, 2009–2010, 2016) and two relevant published papers were identified. The 2016 RAAB reported one female subject to have been diagnosed with trachomatous corneal opacity. Re-examination of that individual revealed that she had ankyloblepharon, without evidence of trichiasis or entropion. No children on Atauro Island, no clinic attendees, and no individuals examined in the targeted house-to-house searches had any sign of trachoma. Conclusion Trachoma is very unlikely to be a public health problem in Timor-Leste. It would not be appropriate to incur the costs of conducting formal population-based trachoma prevalence surveys here.
Collapse
Affiliation(s)
- Marcelino Correia
- a National Eye Center , Guido Valadares National Hospital , Dili , Timor-Leste
| | - David Brunner
- b Oxford Eye Hospital , Oxford University Hospitals , Oxford , UK
| | - Manoj Sharma
- a National Eye Center , Guido Valadares National Hospital , Dili , Timor-Leste.,c East Timor Eye Program , Royal Australasian College of Surgeons , Dili , Timor-Leste.,d Faculty of Medicine , National University of East Timor , Dili , Timor-Leste
| | - Valerio Andrade
- a National Eye Center , Guido Valadares National Hospital , Dili , Timor-Leste
| | - Julia Magno
- e Lumbini Eye Institute , Siddharthanagar , Nepal
| | - Andreas Müller
- f Centre for Eye Research Australia , University of Melbourne , Melbourne , Australia
| | | | - Gabriele Thumann
- g Ophthalmology Department , Hôpital Universitaire de Genève , Geneva , Switzerland
| | - Nitin Verma
- b Oxford Eye Hospital , Oxford University Hospitals , Oxford , UK.,h Faculty of Medicine , University of Tasmania , Hobart , Australia.,i Department of Ophthalmology , Royal Hobart Hospital , Hobart , Australia
| | - Mathieu Bangert
- j Department of Control of Neglected Tropical Diseases , World Health Organization , Geneva , Switzerland
| | - Andréas J Kreis
- b Oxford Eye Hospital , Oxford University Hospitals , Oxford , UK.,g Ophthalmology Department , Hôpital Universitaire de Genève , Geneva , Switzerland
| | - Anthony W Solomon
- j Department of Control of Neglected Tropical Diseases , World Health Organization , Geneva , Switzerland
| |
Collapse
|
35
|
Shaw JH, Key CE, Snider TA, Sah P, Shaw EI, Fisher DJ, Lutter EI. Genetic Inactivation of Chlamydia trachomatis Inclusion Membrane Protein CT228 Alters MYPT1 Recruitment, Extrusion Production, and Longevity of Infection. Front Cell Infect Microbiol 2018; 8:415. [PMID: 30555802 PMCID: PMC6284022 DOI: 10.3389/fcimb.2018.00415] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/08/2018] [Indexed: 02/01/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen with global health and economic impact. Upon infection, C. trachomatis resides within a protective niche, the inclusion, wherein it replicates and usurps host cell machinery and resources. The inclusion membrane is the key host-pathogen interface that governs specific protein-protein interactions to manipulate host signaling pathways. At the conclusion of the infection cycle, C. trachomatis exits the host cell via lysis or extrusion. Extrusion depends on the phosphorylation state of myosin light chain 2 (MLC2); the extent of phosphorylation is determined by the ongoing opposing activities of myosin phosphatase (MYPT1) and myosin kinase (MLCK). Previously, it was shown that MYPT1 is recruited to the inclusion and interacts with CT228 for regulation of host cell egress. In this study, we generated a targeted chromosomal mutation of CT228 (L2-ΔCT228) using the TargeTron system and demonstrate a loss of MYPT1 recruitment and increase in extrusion production in vitro. Mutation of CT228 did not affect chlamydial growth in cell culture or recruitment of MLC2. Moreover, we document a delay in clearance of L2-ΔCT228 during murine intravaginal infection as well as a reduction in systemic humoral response, relative to L2-wild type. Taken together, the data suggest that loss of MYPT1 recruitment (as a result of CT228 disruption) regulates the degree of host cell exit via extrusion and affects the longevity of infection in vivo.
Collapse
Affiliation(s)
- Jennifer H. Shaw
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States,*Correspondence: Jennifer H. Shaw
| | - Charlotte E. Key
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| | - Timothy A. Snider
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, United States
| | - Prakash Sah
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Edward I. Shaw
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Derek J. Fisher
- Department of Microbiology, Southern Illinois University, Carbondale, IL, United States
| | - Erika I. Lutter
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States,Erika I. Lutter
| |
Collapse
|
36
|
Frietze KM, Lijek R, Chackerian B. Applying lessons from human papillomavirus vaccines to the development of vaccines against Chlamydia trachomatis. Expert Rev Vaccines 2018; 17:959-966. [PMID: 30300019 PMCID: PMC6246778 DOI: 10.1080/14760584.2018.1534587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Chlamydia trachomatis (Ct), the most common bacterial sexually transmitted infection (STI), leads to pelvic inflammatory disease, infertility, and ectopic pregnancy in women. In this Perspective, we discuss the successful human papillomavirus (HPV) vaccine as a case study to inform Ct vaccine efforts. Areas covered: The immunological basis of HPV vaccine-elicited protection is high-titer, long-lasting antibody responses in the genital tract which provides sterilizing immunity. These antibodies are elicited through parenteral administration of a subunit vaccine based on virus-like particles (VLPs) of HPV. We present three lessons learned from the successful HPV vaccine efforts: (1) antibodies alone can be sufficient to provide protection from STIs in the genital tract, (2) the successful generation of high antibody levels is due to the multivalent structure of HPV VLPs, (3) major challenges exist in designing vaccines that elicit appropriate effector T cells in the genital tract. We then discuss the possibility of antibody-based immunity for Ct. Expert commentary: In this Perspective, we present a case for developing antibody-eliciting vaccines, similar to the HPV vaccine, for Ct. Basic research into the mechanisms of Ct entry into host cells will reveal new vaccine targets, which may be antigens against which antibodies are not normally elicited during natural infection.
Collapse
Affiliation(s)
- Kathryn M Frietze
- a Department of Molecular Genetics and Microbiology , School of Medicine, University of New Mexico , Albuquerque , NM , USA
| | - Rebeccah Lijek
- b Department of Biological Sciences , Mount Holyoke College , South Hadley , MA , USA
| | - Bryce Chackerian
- a Department of Molecular Genetics and Microbiology , School of Medicine, University of New Mexico , Albuquerque , NM , USA
| |
Collapse
|
37
|
Verma R, Sahu R, Dixit S, Duncan SA, Giambartolomei GH, Singh SR, Dennis VA. The Chlamydia M278 Major Outer Membrane Peptide Encapsulated in the Poly(lactic acid)-Poly(ethylene glycol) Nanoparticulate Self-Adjuvanting Delivery System Protects Mice Against a Chlamydia muridarum Genital Tract Challenge by Stimulating Robust Systemic and Local Mucosal Immune Responses. Front Immunol 2018; 9:2369. [PMID: 30374357 PMCID: PMC6196261 DOI: 10.3389/fimmu.2018.02369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022] Open
Abstract
Recently, we reported that our PPM chlamydial nanovaccine [a biodegradable co-polymeric PLA-PEG (poly(lactic acid)-poly(ethylene glycol))-encapsulated M278 peptide (derived from the major outer membrane protein (MOMP) of Chlamydia)] exploits the caveolin-mediated endocytosis pathway for endosomal processing and MHC class II presentation to immune-potentiate Chlamydia-specific CD4+ T-cell immune effector responses. In the present study, we employed the Chlamydia muridarum mouse infection model to evaluate the protective efficacy of PPM against a genital tract challenge. Our results show that mice immunized with PPM were significantly protected against a homologous genital tract challenge evidently by reduced vaginal bacterial loads. Protection of mice correlated with enhanced Chlamydia-specific adaptive immune responses predominated by IFN-γ along with CD4+ T-cells proliferation and their differentiation to CD4+ memory (CD44high CD62Lhigh) and effector (CD44high CD62Llow) T-cell phenotypes. We observed the elevation of M278- and MOMP-specific serum antibodies with high avidity in the ascending order IgG1 > IgG2b > IgG2a. A key finding was the elevated mucosal IgG1 and IgA antibody titers followed by an increase in MOMP-specific IgA after the challenge. The Th1/Th2 antibody titer ratios (IgG2a/IgG1 and IgG2b/IgG1) revealed that PPM evoked a Th2-directed response, which skewed to a Th1-dominated antibody response after the bacterial challenge of mice. In addition, PPM immune sera neutralized the infectivity of C. muridarum in McCoy cells, suggesting the triggering of functional neutralizing antibodies. Herein, we reveal for the first time that subcutaneous immunization with the self-adjuvanting biodegradable co-polymeric PPM nanovaccine immune-potentiated robust CD4+ T cell-mediated immune effector responses; a mixed Th1 and Th2 antibody response and local mucosal IgA to protect mice against a chlamydial genital tract challenge.
Collapse
Affiliation(s)
- Richa Verma
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Saurabh Dixit
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Skyla A Duncan
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shree R Singh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
38
|
Zheng X, O'Connell CM, Zhong W, Poston TB, Wiesenfeld HC, Hillier SL, Trent M, Gaydos C, Tseng G, Taylor BD, Darville T. Gene Expression Signatures Can Aid Diagnosis of Sexually Transmitted Infection-Induced Endometritis in Women. Front Cell Infect Microbiol 2018; 8:307. [PMID: 30294592 PMCID: PMC6158555 DOI: 10.3389/fcimb.2018.00307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Sexually transmitted infection (STI) of the upper reproductive tract can result in inflammation and infertility. A biomarker of STI-induced upper tract inflammation would be significant as many women are asymptomatic and delayed treatment increases risk of sequelae. Blood mRNA from 111 women from three cohorts was profiled using microarray. Unsupervised analysis revealed a transcriptional profile that distinguished 9 cases of STI-induced endometritis from 18 with cervical STI or uninfected controls. Using a hybrid feature selection algorithm we identified 21 genes that yielded maximal classification accuracy within our training dataset. Predictive accuracy was evaluated using an independent testing dataset of 5 cases and 10 controls. Sensitivity was evaluated in a separate test set of 12 women with asymptomatic STI-induced endometritis in whom cervical burden was determined by PCR; and specificity in an additional test set of 15 uninfected women with pelvic pain due to unknown cause. Disease module preservation was assessed in 42 women with a clinical diagnosis of pelvic inflammatory disease (PID). We also tested the ability of the biomarker to discriminate STI-induced endometritis from other diseases. The biomarker was 86.7% (13/15) accurate in correctly distinguishing cases from controls in the testing dataset. Sensitivity was 83.3% (5/6) in women with high cervical Chlamydia trachomatis burden and asymptomatic endometritis, but 0% (0/6) in women with low burden. Specificity in patients with non-STI-induced pelvic pain was 86.7% (13/15). Disease modules were preserved in all 8 biomarker predicted cases. The 21-gene biomarker was highly discriminatory for systemic infections, lupus, and appendicitis, but wrongly predicted tuberculosis as STI-induced endometritis in 52.4%. A 21-gene biomarker can identify asymptomatic women with STI-induced endometritis that places them at risk for chronic disease development and discriminate STI-induced endometritis from non-STI pelvic pain and other diseases.
Collapse
Affiliation(s)
- Xiaojing Zheng
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wujuan Zhong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Harold C Wiesenfeld
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, PA, United States.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sharon L Hillier
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, PA, United States.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Maria Trent
- Section on Adolescent Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Charlotte Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX, United States
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
39
|
Labuda JC, McSorley SJ. Diversity in the T cell response to Chlamydia-sum are better than one. Immunol Lett 2018; 202:59-64. [PMID: 30179654 DOI: 10.1016/j.imlet.2018.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Abstract
Chlamydia trachomatis is responsible for an increasing number of sexually transmitted infections in the United States and is a common cause of serious pathology in the female reproductive tract (FRT). Given the impact and incidence of these infections, the production of an effective Chlamydia vaccine is a public health priority. Mouse models of Chlamydia infection have been utilized to develop a detailed and mechanistic understanding of protective immunity in the FRT. These studies reveal that MHC class-II restricted Chlamydia-specific CD4 T cells are critical for primary bacterial clearance and provide effective protection against secondary infection in the FRT. Despite the clear importance of IFN- γ produced by CD4 Th1 cells, there are also suggestions of wider functional heterogeneity in the CD4 T cell response to Chlamydia infection. Understanding the role of this diversity in the CD4 T helper cell response in the FRT should allow a more nuanced view of CD4 T cell biology in the context of Chlamydia infection and may be critical for vaccine development. Here, we summarize our current understanding of CD4 T helper subsets in the clearance of Chlamydia and discuss some areas where knowledge needs to be further extended by additional experimentation.
Collapse
Affiliation(s)
- Jasmine C Labuda
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States.
| | - Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| |
Collapse
|
40
|
Woodhall SC, Gorwitz RJ, Migchelsen SJ, Gottlieb SL, Horner PJ, Geisler WM, Winstanley C, Hufnagel K, Waterboer T, Martin DL, Huston WM, Gaydos CA, Deal C, Unemo M, Dunbar JK, Bernstein K. Advancing the public health applications of Chlamydia trachomatis serology. THE LANCET. INFECTIOUS DISEASES 2018; 18:e399-e407. [PMID: 29983342 DOI: 10.1016/s1473-3099(18)30159-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 12/22/2022]
Abstract
Genital Chlamydia trachomatis infection is the most commonly diagnosed sexually transmitted infection. Trachoma is caused by ocular infection with C trachomatis and is the leading infectious cause of blindness worldwide. New serological assays for C trachomatis could facilitate improved understanding of C trachomatis epidemiology and prevention. C trachomatis serology offers a means of investigating the incidence of chlamydia infection and might be developed as a biomarker of scarring sequelae, such as pelvic inflammatory disease. Therefore, serological assays have potential as epidemiological tools to quantify unmet need, inform service planning, evaluate interventions including screening and treatment, and to assess new vaccine candidates. However, questions about the performance characteristics and interpretation of C trachomatis serological assays remain, which must be addressed to advance development within this field. In this Personal View, we explore the available information about C trachomatis serology and propose several priority actions. These actions involve development of target product profiles to guide assay selection and assessment across multiple applications and populations, establishment of a serum bank to facilitate assay development and evaluation, and development of technical and statistical methods for assay evaluation and analysis of serological findings. The field of C trachomatis serology will benefit from collaboration across the public health community to align technological developments with their potential applications.
Collapse
Affiliation(s)
- Sarah C Woodhall
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Service, Public Health England, London, UK; National Institute for Health Research Health Protection Research Unit in Evaluation of Interventions, University of Bristol, Bristol, UK; National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, University College London, London, UK.
| | - Rachel J Gorwitz
- Division of STD Prevention, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie J Migchelsen
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Service, Public Health England, London, UK; Clinical Research Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Sami L Gottlieb
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Patrick J Horner
- National Institute for Health Research Health Protection Research Unit in Evaluation of Interventions, University of Bristol, Bristol, UK; Population Health Sciences, University of Bristol, Bristol, UK
| | - William M Geisler
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Katrin Hufnagel
- Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Waterboer
- Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Diana L Martin
- Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
| | - Carolyn Deal
- Division of Microbiology and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Örebro University, Örebro, Sweden
| | - J Kevin Dunbar
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Service, Public Health England, London, UK; National Institute for Health Research Health Protection Research Unit in Evaluation of Interventions, University of Bristol, Bristol, UK; National Institute for Health Research Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections, University College London, London, UK
| | - Kyle Bernstein
- Division of STD Prevention, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
41
|
Poston TB, O'Connell CM, Girardi J, Sullivan JE, Nagarajan UM, Marinov A, Scurlock AM, Darville T. T Cell-Independent Gamma Interferon and B Cells Cooperate To Prevent Mortality Associated with Disseminated Chlamydia muridarum Genital Tract Infection. Infect Immun 2018; 86:e00143-18. [PMID: 29661927 PMCID: PMC6013674 DOI: 10.1128/iai.00143-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
CD4 T cells and antibody are required for optimal acquired immunity to Chlamydia muridarum genital tract infection, and T cell-mediated gamma interferon (IFN-γ) production is necessary to clear infection in the absence of humoral immunity. However, the role of T cell-independent immune responses during primary infection remains unclear. We investigated this question by inoculating wild-type and immune-deficient mice with C. muridarum CM001, a clonal isolate capable of enhanced extragenital replication. Genital inoculation of wild-type mice resulted in transient dissemination to the lungs and spleen that then was rapidly cleared from these organs. However, CM001 genital infection proved lethal for STAT1-/- and IFNG-/- mice, in which IFN-γ signaling was absent, and for Rag1-/- mice, which lacked T and B cells and in which innate IFN-γ signaling was retained. In contrast, B cell-deficient muMT mice, which can generate a Th1 response, and T cell-deficient mice with intact B cell and innate IFN-γ signaling survived. These data collectively indicate that IFN-γ prevents lethal CM001 dissemination in the absence of T cells and suggests a B cell corequirement. Adoptive transfer of convalescent-phase immune serum but not naive IgM to Rag1-/- mice infected with CM001 significantly increased the survival time, while transfer of naive B cells completely rescued Rag1-/- mice from CM001 lethality. Protection was associated with a significant reduction in the lung chlamydial burden of genitally infected mice. These data reveal an important cooperation between T cell-independent B cell responses and innate IFN-γ in chlamydial host defense and suggest that interactions between T cell-independent antibody and IFN-γ are essential for limiting extragenital dissemination.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jenna Girardi
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeanne E Sullivan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Uma M Nagarajan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anthony Marinov
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy M Scurlock
- Department of Pediatrics, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
42
|
Sahu R, Verma R, Dixit S, Igietseme JU, Black CM, Duncan S, Singh SR, Dennis VA. Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles. Expert Rev Vaccines 2018; 17:217-227. [PMID: 29382248 PMCID: PMC6330895 DOI: 10.1080/14760584.2018.1435279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/29/2018] [Indexed: 01/12/2023]
Abstract
INTRODUCTION There is a persisting global burden and considerable public health challenge by the plethora of ocular, genital and respiratory diseases caused by members of the Gram-negative bacteria of the genus Chlamydia. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility, and interstitial pneumonia. The failures in screening and other prevention programs led to the current medical opinion that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, there is no human Chlamydia vaccine despite successful veterinary vaccines. A major challenge has been the effective delivery of vaccine antigens to induce safe and effective immune effectors to confer long-term protective immunity. The dawn of the era of biodegradable polymeric nanoparticles and the adjuvanted derivatives may accelerate the realization of the dream of human vaccine in the foreseeable future. AREAS COVERED This review focuses on the current status of human chlamydial vaccine research, specifically the potential of biodegradable polymeric nanovaccines to provide efficacious Chlamydia vaccines in the near future. EXPERT COMMENTARY The safety of biodegradable polymeric nanoparticles-based experimental vaccines with or without adjuvants and the array of available chlamydial vaccine candidates would suggest that clinical trials in humans may be imminent. Also, the promising results from vaccine testing in animal models could lead to human vaccines against trachoma and reproductive diseases simultaneously.
Collapse
Affiliation(s)
- Rajnish Sahu
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Richa Verma
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Saurabh Dixit
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Joseph U. Igietseme
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control & Prevention (CDC), Atlanta, GA, USA
| | - Carolyn M Black
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control & Prevention (CDC), Atlanta, GA, USA
| | - Skyla Duncan
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Shree R Singh
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Vida A Dennis
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
43
|
Fan H, Zhong G. 2017: beginning of a new era for Chlamydia research in China and the rest of the world. Microbes Infect 2018; 20:5-8. [PMID: 28988996 PMCID: PMC5819738 DOI: 10.1016/j.micinf.2017.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 11/17/2022]
Abstract
The First Chinese Chlamydia Research Meeting was held in Lanzhou, China in May 2017, 60 years after the disclosure of reproducible isolation of Chlamydia trachomatis by (Fei-fan Tang). We report current state of the Chlamydia research community in China, and briefly review recent progress in Chlamydia vaccinology. The meeting represents a new milestone for Chlamydia research in the country. The Chinese Chlamydia Research Society (CCRS) was formed during the meeting. Future meetings will be held biennially and should facilitate collaboration of Chinese researchers with their domestic and international colleagues.
Collapse
Affiliation(s)
- Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
44
|
Hafner LM, Timms P. Development of a Chlamydia trachomatis vaccine for urogenital infections: novel tools and new strategies point to bright future prospects. Expert Rev Vaccines 2017; 17:57-69. [PMID: 29264970 DOI: 10.1080/14760584.2018.1417044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The "cloaked" bacterial pathogen that is Chlamydia trachomatis continues to cause sexually transmitted infections (STIs) that adversely affect the health and well-being of children, adolescents and adults globally. The reproductive disease sequelae follow unresolved or untreated chronic or recurrent asymptomatic C.trachomatis infections of the lower female genital tract (FGT) and can include pelvic pain, pelvic inflammatory disease (PID) and ectopic pregnancy. Tubal Factor Infertility (TFI) can also occur since protective and long-term natural immunity to chlamydial infection is incomplete, allowing for ascension of the organism to the upper FGT. Developing countries including the WHO African (8.3 million cases) and South-East Asian regions (7.2 million cases) bear the highest burden of chlamydial STIs. AREAS COVERED Genetic advances for Chlamydia have provided tools for transformation (including dendrimer-enabled transformation), lateral gene transfer and chemical mutagenesis. Recent progress in these areas is reviewed with a focus on vaccine development for Chlamydia infections of the female genital tract. EXPERT COMMENTARY A vaccine that can elicit immuno-protective responses whilst avoiding adverse immuno-pathologic host responses is required. The current technological advances in chlamydial genetics and proteomics, as well as novel and improved adjuvants and delivery systems, provide new hope that the elusive chlamydial vaccine is an imminent and realistic goal.
Collapse
Affiliation(s)
- Louise M Hafner
- a School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Peter Timms
- b Faculty of Science, Health, Education and Engineering , University of the Sunshine Coast , Maroochydore DC , Australia
| |
Collapse
|
45
|
Transcervical Inoculation with Chlamydia trachomatis Induces Infertility in HLA-DR4 Transgenic and Wild-Type Mice. Infect Immun 2017; 86:IAI.00722-17. [PMID: 29038126 DOI: 10.1128/iai.00722-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/27/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of infection-induced infertility in women. Attempts to control this epidemic with screening programs and antibiotic therapy have failed. Currently, a vaccine to prevent C. trachomatis infections is not available. In order to develop an animal model for evaluating vaccine antigens that can be applied to humans, we used C. trachomatis serovar D (strain UW-3/Cx) to induce infertility in mice whose major histocompatibility complex class II antigen was replaced with the human leukocyte antigen DR4 (HLA-DR4). Transcervical inoculation of medroxyprogesterone-treated HLA-DR4 transgenic mice with 5 × 105C. trachomatis D inclusion forming units (IFU) induced a significant reduction in fertility, with a mean number of embryos/mouse of 4.4 ± 1.3 compared to 7.8 ± 0.5 for the uninfected control mice (P < 0.05). A similar fertility reduction was elicited in the wild-type (WT) C57BL/6 mice (4.3 ± 1.4 embryos/mouse) compared to the levels of the WT controls (9.1 ± 0.4 embryos/mouse) (P < 0.05). Following infection, WT mice mounted more robust humoral and cellular immune responses than HLA-DR4 mice. As determined by vaginal shedding, HLA-DR4 mice were more susceptible to a transcervical C. trachomatis D infection than WT mice. To assess if HLA-DR4 transgenic and WT mice could be protected by vaccination, 104 IFU of C. trachomatis D was delivered intranasally, and mice were challenged transcervically 6 weeks later with 5 × 105 IFU of C. trachomatis D. As determined by severity and length of vaginal shedding, WT C57BL/6 and HLA-DR4 mice were significantly protected by vaccination. The advantages and limitations of the HLA-DR4 transgenic mouse model for evaluating human C. trachomatis vaccine antigens are discussed.
Collapse
|
46
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|