1
|
Bikorimana J, Abusarah J, Gonçalves M, Farah R, Saad W, Talbot S, Stanga D, Beaudoin S, Plouffe S, Rafei M. An engineered Accum-E7 protein-based vaccine with dual anti-cervical cancer activity. Cancer Sci 2024; 115:1102-1113. [PMID: 38287511 PMCID: PMC11007051 DOI: 10.1111/cas.16096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Worldwide prevalence of cervical cancer decreased significantly with the use of human papilloma virus (HPV)-targeted prophylactic vaccines. However, these multivalent antiviral vaccines are inert against established tumors, which leave patients with surgical ablative options possibly resulting in long-term reproductive complications and morbidity. In an attempt to bypass this unmet medical need, we designed a new E7 protein-based vaccine formulation using Accum™, a technology platform designed to promote endosome-to-cytosol escape as a means to enhance protein accumulation in target cells. Prophylactic vaccination of immunocompetent mice using the Accum-E7 vaccine (aE7) leads to complete protection from cervical cancer despite multiple challenges conducted with ascending C3.43 cellular doses (0.5-, 1.0-, and 2.0 × 106 cells). Moreover, the humoral response induced by aE7 was higher in magnitude compared with naked E7 protein vaccination and displayed potent inhibitory effects on C3.43 proliferation in vitro. When administered therapeutically to animals with pre-established C3.43 or Tal3 tumors, the vaccine-induced response synergized with multiple immune checkpoint blockers (anti-PD-1, anti-CTLA4, and anti-CD47) to effectively control tumor growth. Mechanistically, the observed therapeutic effect requires cross-presenting dendritic cells as well as CD8 T cells predominantly, with a non-negligible role played by both CD4+ and CD19+ lymphocytes. good laboratory practice (GLP) studies revealed that aE7 is immunogenic and well tolerated by immunocompetent mice with no observed adverse effects despite the use of a fourfold exceeding dose. In a nutshell, aE7 represents an ideal vaccine candidate for further clinical development as it uses a single engineered protein capable of exhibiting both prophylactic and therapeutic activity.
Collapse
Affiliation(s)
- Jean‐Pierre Bikorimana
- Department of Microbiology, Infectious Diseases and ImmunologyUniversité de MontréalMontréalQuebecCanada
| | - Jamilah Abusarah
- Department of Pharmacology and PhysiologyUniversité de MontréalMontréalQuebecCanada
| | - Marina Gonçalves
- Department of Molecular BiologyUniversité de MontréalMontréalQuebecCanada
| | - Roudy Farah
- Department of Microbiology, Infectious Diseases and ImmunologyUniversité de MontréalMontréalQuebecCanada
| | - Wael Saad
- Department of Pharmacology and PhysiologyUniversité de MontréalMontréalQuebecCanada
| | - Sebastien Talbot
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Daniela Stanga
- Defence Therapeutics Inc.VancouverBritish ColumbiaCanada
| | - Simon Beaudoin
- Defence Therapeutics Inc.VancouverBritish ColumbiaCanada
| | | | - Moutih Rafei
- Department of Microbiology, Infectious Diseases and ImmunologyUniversité de MontréalMontréalQuebecCanada
- Department of Pharmacology and PhysiologyUniversité de MontréalMontréalQuebecCanada
- Department of Molecular BiologyUniversité de MontréalMontréalQuebecCanada
| |
Collapse
|
2
|
Lam B, Kung YJ, Lin J, Tseng SH, Tu HF, Huang C, Lee B, Velarde E, Tsai YC, Villasmil R, Park ST, Xing D, Hung CF, Wu TC. In situ vaccination via tissue-targeted cDC1 expansion enhances the immunogenicity of chemoradiation and immunotherapy. J Clin Invest 2024; 134:e171621. [PMID: 37917174 PMCID: PMC10760964 DOI: 10.1172/jci171621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Even with the prolific clinical use of next-generation cancer therapeutics, many tumors remain unresponsive or become refractory to therapy, creating a medical need. In cancer, DCs are indispensable for T cell activation, so there is a restriction on cytotoxic T cell immunity if DCs are not present in sufficient numbers in the tumor and draining lymph nodes to take up and present relevant cancer antigens. To address this bottleneck, we developed a therapeutic based on albumin fused with FMS-related tyrosine kinase 3 ligand (Alb-Flt3L) that demonstrated superior pharmacokinetic properties compared with Flt3L, including significantly longer half-life, accumulation in tumors and lymph nodes, and cross-presenting-DC expansion following a single injection. We demonstrated that Alb-Flt3L, in combination with standard-of-care chemotherapy and radiation therapy, serves as an in situ vaccination strategy capable of engendering polyclonal tumor neoantigen-specific immunity spontaneously. In addition, Alb-Flt3L-mediated tumor control synergized with immune checkpoint blockade delivered as anti-PD-L1. The mechanism of action of Alb-Flt3L treatment revealed a dependency on Batf3, type I IFNs, and plasmacytoid DCs. Finally, the ability of Alb-Flt3L to expand human DCs was explored in humanized mice. We observed significant expansion of human cross-presenting-DC subsets, supporting the notion that Alb-Flt3L could be used clinically to modulate human DC populations in future cancer therapeutic regimens.
Collapse
Affiliation(s)
- Brandon Lam
- Department of Pathology and
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Stanford Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | - Esteban Velarde
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Rafael Villasmil
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Sung Taek Park
- Department of Pathology and
- Department of Obstetrics and Gynecology, Hallym University Kangnam Sacred Heart Hospital, Seoul, South Korea
| | | | | | - T.-C. Wu
- Department of Pathology and
- Department of Oncology
- Department of Obstetrics and Gynecology
- Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Avila JP, Carvalho BM, Coimbra EC. A Comprehensive View of the Cancer-Immunity Cycle (CIC) in HPV-Mediated Cervical Cancer and Prospects for Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:1333. [PMID: 36831674 PMCID: PMC9954575 DOI: 10.3390/cancers15041333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer in women worldwide, with more than 500,000 new cases each year and a mortality rate of around 55%. Over 80% of these deaths occur in developing countries. The most important risk factor for CC is persistent infection by a sexually transmitted virus, the human papillomavirus (HPV). Conventional treatments to eradicate this type of cancer are accompanied by high rates of resistance and a large number of side effects. Hence, it is crucial to devise novel effective therapeutic strategies. In recent years, an increasing number of studies have aimed to develop immunotherapeutic methods for treating cancer. However, these strategies have not proven to be effective enough to combat CC. This means there is a need to investigate immune molecular targets. An adaptive immune response against cancer has been described in seven key stages or steps defined as the cancer-immunity cycle (CIC). The CIC begins with the release of antigens by tumor cells and ends with their destruction by cytotoxic T-cells. In this paper, we discuss several molecular alterations found in each stage of the CIC of CC. In addition, we analyze the evidence discovered, the molecular mechanisms and their relationship with variables such as histological subtype and HPV infection, as well as their potential impact for adopting novel immunotherapeutic approaches.
Collapse
Affiliation(s)
| | | | - Eliane Campos Coimbra
- Institute of Biological Sciences, University of Pernambuco (ICB/UPE), Rua Arnóbio Marques, 310, Santo Amaro, Recife 50100-130, PE, Brazil
| |
Collapse
|
4
|
Kumar A, Sahu U, Kumari P, Dixit A, Khare P. Designing of multi-epitope chimeric vaccine using immunoinformatic platform by targeting oncogenic strain HPV 16 and 18 against cervical cancer. Sci Rep 2022; 12:9521. [PMID: 35681036 PMCID: PMC9184633 DOI: 10.1038/s41598-022-13442-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer is the most common gynaecological cancer and reaches an alarming stage. HPVs are considered the main causative agents for cervical cancer and other sexually transmitted infections across the globe. Currently, three prophylactic vaccines are available against HPV infections with no therapeutic values. Due to a lack of effective therapeutic and prophylactic measures, the HPV infection is spreading in an uncontrolled manner. Next-generation of vaccine is needed to have both prophylactic and therapeutic values against HPV. Here first time we have designed a multi-epitope chimeric vaccine using the most oncogenic strain HPV 16 and HPV 18 through an immunoinformatic approach. In this study, we have used the L1, E5, E6 and E7 oncoproteins from both HPV 16 and HPV 18 strains for epitope prediction. Our recombinant chimeric vaccine construct consists, selected helper and cytotoxic T cell epitopes. Our computational analysis suggests that this chimeric construct is highly stable, non-toxic and also capable of inducing both cell-mediated and humoral immune responses. Furthermore, in silico cloning of the multi-epitope chimeric vaccine construct was done and the stabilization of the vaccine construct is validated with molecular dynamics simulation studies. Finally, our results indicated that our construct could be used for an effective prophylactic and therapeutic vaccine against HPV.
Collapse
Affiliation(s)
- Anoop Kumar
- National Institute of Biologicals (NIB), Noida, Uttar Pradesh, India
| | - Utkarsha Sahu
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India
- Division of Synthetic Biology, Absolute foods, 5th floor, Plot 68, Sector 44, Gurugram, Haryana, 122003, India
| | - Pratima Kumari
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad Rd, Faridabad, Haryana, 121001, India
| | - Anshuman Dixit
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Prashant Khare
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India.
- Division of Synthetic Biology, Absolute foods, 5th floor, Plot 68, Sector 44, Gurugram, Haryana, 122003, India.
| |
Collapse
|
5
|
Mousavi T, Valadan R, Rafiei A, Abbasi A, Haghshenas MR. A novel recombinant protein vaccine containing the different E7 proteins of the HPV16, 18, 6, 11 E7 linked to the HIV-1 Tat (47-57) improve cytotoxic immune responses. Biotechnol Lett 2021; 43:1933-1944. [PMID: 34313864 DOI: 10.1007/s10529-021-03166-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Human papillomavirus infection (HPV) is the most common viral infection which is causes of cervical, penal, vulvar, anal and, oropharyngeal cancer. E7 protein of HPV is a suitable target for induction of T cell responses and controlling HPV-related cancer. The aim of the current study was to designed and evaluated a novel fusion protein containing the different E7 proteins of the HPV 16, 18, 6 and 11, linked to the cell-penetrating peptide HIV-1 Tat 49-57, in order to improve cytotoxic immune responses in in-vitro and in-vivo. RESULTS In this study whole sequence of HPV16,18,6,11 E7-Tat (47-57) and HPV16,18,6,11 E7 cloned into the vector and expressed in E. coli (BL21). The purified protein was confirmed by SDS page and western blotting and then injected into the C57BL/6 mice. The efficiency of the fusion protein vaccine was assessed by antibody response assay, cytokine assay (IL-4 and IFN-γ), CD + 8 cytotoxicity assay and tumor challenge experiment. Result showed that fusion proteins containing Adjuvant (IFA,CFA) could express higher titer of antibody. Also, we showed that vaccination with E7-Tat and, E7-Tat-ADJ induced high frequencies of E7-specific CD8 + T cells and CD107a expression as well as IFN-γ level and enhanced long-term survival in the therapeutic animal models. CONCLUSION Our finding suggested that this novel fusion protein vaccine was able to induce therapeutic efficacy and immunogenicity by improving CD8 + T cell in TC-1 tumor bearing mice; so this vaccine may be appreciated for research against HPV and tumor immunotherapies.
Collapse
Affiliation(s)
- Tahoora Mousavi
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Molecular and Cell Biology Research Center (MCBRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Abbasi
- Department of Community Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Mohammad Reza Haghshenas
- Department of Microbiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
6
|
Chai P, Pu X, Ge J, Ren S, Xia X, Luo A, Wang S, Wang X, Li J. The recombinant protein combined vaccine based on the fragment C of tetanus toxin and the cross-reacting material 197. Appl Microbiol Biotechnol 2021; 105:1683-1692. [PMID: 33511443 DOI: 10.1007/s00253-021-11139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022]
Abstract
Diphtheria and tetanus toxoids and acellular pertussis (DTaP) vaccines were widely used since 1940s. The exceptional success of childhood vaccination is undisputed. However, the anti-diphtheria and tetanus antibody will decrease with the increase of age in human body. A boosting vaccine for tetanus and diphtheria in adult is recommended by WHO. Recombinant protein vaccine has the advantages of single component and high safety, which is one of the directions to develop boosting vaccines. Therefore, in this study, we evaluated a recombinant TTc and CRM197 combination vaccine (RTCV) that uses the fragment C (TTc) of tetanus toxin and the cross-reacting material 197 (CRM197) of the diphtheria toxin mutant. Our results displayed that RTCV (composed of 10 μg/mL TTc, 20 μg/mL CRM197 antigens, and 500 μg/mL aluminum adjuvants) could induce high levels of IgG and IgG1 antibody in mice, which were similar as those induced by DTaP. These results will provide technical support for a novel boosting vaccine against diphtheria and tetanus. KEY POINTS: • We successfully expressed CRM197 protein in E. coli BL21 (DE3) using pET26b (+) vector. • The anti-TTc and anti-CRM197 antibody titer (IgG) of RTCV was similar with DTaP.
Collapse
Affiliation(s)
- Pengdi Chai
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiuying Pu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jun Ge
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Sulin Ren
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Xiaoyu Xia
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Amiao Luo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shiwei Wang
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Xiaodong Wang
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Jianqiang Li
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China.
| |
Collapse
|
7
|
HPV16-E7 Protein T Cell Epitope Prediction and Global Therapeutic Peptide Vaccine Design Based on Human Leukocyte Antigen Frequency: An In-Silico Study. Int J Pept Res Ther 2020; 27:365-378. [PMID: 32837456 PMCID: PMC7320846 DOI: 10.1007/s10989-020-10089-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 02/08/2023]
Abstract
Cervical cancer is the second most common leading cause of women's death due to cancer worldwide, about 528,000 patients’ cases and 266,000 deaths per year, related to human papillomavirus (HPV). Peptide-based vaccines being safe, stable, and easy to produce have demonstrated great potential to develop therapeutic HPV vaccine. In this study, the major histocompatibility complex (MHC) class I, class II T cell epitopes of HPV16-E7 were predicted. Therefore, we designed a plan to find the most effective peptides to prompt appropriate immune responses. For this purpose, retrieving protein sequences, conserved region identification, phylogenic tree construction, T cell epitope prediction, epitope-predicted population coverage calculation, and molecular docking were performed consecutively and most effective immune response prompting peptides were selected. Based on different tools index, six CD8+ T cells and six CD4+ epitopes were chosen. This combination of 12 epitopes created a putative global vaccine with a 95.06% population coverage. These identified peptides can be employed further for peptide analysis and can be used as a peptide or poly-epitope candidates for therapeutic vaccine studies to treat HPV-associated cancers.
Collapse
|
8
|
Sunthamala N, Sankla N, Chuerduangphui J, Swangphon P, Boontun W, Ngaochaiyaphum S, Wongjampa W, Ekalaksananan T, Pientong C. Enhancement of specific T-lymphocyte responses by monocyte-derived dendritic cells pulsed with E2 protein of human papillomavirus 16 and human p16INK4A. PeerJ 2020; 8:e9213. [PMID: 32509466 PMCID: PMC7245333 DOI: 10.7717/peerj.9213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/27/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction Prophylactic vaccines are already available for prevention of human papillomavirus (HPV) infection. However, we still await development of therapeutic vaccines with high efficiency for stimulating specific T lymphocytes to clear HPV infection. Objective This study investigates the potential for subunits of human p16INK4a protein and E2 protein of HPV16 to stimulate dendritic cells and enhance the specific response of T lymphocytes against HPV-infected cells. Methodology Immunogenic epitopes of HPV16 E2 and p16INK4a proteins were predicted through the common HLA class I and II alleles present in the Thai population. Then, monocyte-derived dendritic cells (MDCs) were pulsed with HPV16 E2 and/or p16INK4a protein s and their maturity assessed. MDCs pulsed with either or both of these proteins at optimal concentrations were used for activation of autologous T lymphocytes and IFN-γ production was measured for specific response function. Results HPV16 E2 and p16INK4a proteins contain various immunogenic epitopes which can be presented by antigen-presenting cells via both HLA class I and II molecules. The stimulation of MDCs with either HPV16 E2 or p16INK4a proteins increased percentages and mean fluorescence intensity (MFI) of CD83+ MDCs in a dose-dependent manner. An optimum concentration of 250 ng/mL and 150 ng/mL of HPV16 E2 and p16INK4a proteins, respectively, stimulated MDCs via the MAPK pathway (confirmed by use of MAPK inhibitors). T lymphocytes could be activated by MDCs pulsed with these proteins, leading to high percentages of both CD4+ IFN-γ+ T lymphocytes and CD8+ IFN-γ+ T lymphocytes. The production of IFN-γ was higher in co-cultures containing MDCs pulsed with HPV16 E2 protein than those pulsed with p16INK4a. Interestingly, MDCs pulsed with a combination of HPV16 E2 and p16INK4a significantly increased IFN-γ production of T lymphocytes. The IFN-γ production was inhibited by both HLA class I and II blockade, particularly in co-cultures with MDCs pulsed with a combination of HPV16 E2 and p16INK4a. Conclusions This suggests that MDCs pulsed with both proteins enhances specific response of both CD4+ and CD8+ T lymphocytes. This study might provide a strategy for further in vivo study of stimulation of T lymphocytes for therapy of HPV-associated cancer.
Collapse
Affiliation(s)
- Nuchsupha Sunthamala
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand.,HPV&EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Neeranuch Sankla
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Jureeporn Chuerduangphui
- HPV&EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Piyawut Swangphon
- HPV&EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.,Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkla, Thailand
| | - Wanchareeporn Boontun
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | | | - Weerayut Wongjampa
- HPV&EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Tipaya Ekalaksananan
- HPV&EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chamsai Pientong
- HPV&EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
9
|
Panahi HA, Bolhassani A, Javadi G, Noormohammadi Z, Agi E. Development of multiepitope therapeutic vaccines against the most prevalent high-risk human papillomaviruses. Immunotherapy 2020; 12:459-479. [DOI: 10.2217/imt-2019-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Our goal was the development of DNA- or peptide-based multiepitope vaccines targeting HPV E7, E6 and E5 oncoproteins in tumor mouse model. Materials & methods: After designing the multiepitope E7, E6 and E5 constructs from four types of high risk HPVs (16, 18, 31 & 45) using bioinformatics tools, mice vaccination was performed by different homologous and heterologous modalities in a prophylactic setting. Then, anti-tumor effects of the best prophylactic strategies were studied in a therapeutic setting. Results: In both prophylactic and therapeutic experiments, groups receiving homologous E7+E6+E5 polypeptide, and heterologous E7+E6+E5 DNA prime/polypeptide boost were successful in complete rejection of tumors. Conclusion: The designed multiepitope constructs can be considered as promising candidates to develop effective therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Heidar Ali Panahi
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Javadi
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Elnaz Agi
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| |
Collapse
|
10
|
Crosstalk between Dendritic Cells and Immune Modulatory Agents against Sepsis. Genes (Basel) 2020; 11:genes11030323. [PMID: 32197507 PMCID: PMC7140865 DOI: 10.3390/genes11030323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) play a critical role in the immune system which sense pathogens and present their antigens to prime the adaptive immune responses. As the progression of sepsis occurs, DCs are capable of orchestrating the aberrant innate immune response by sustaining the Th1/Th2 responses that are essential for host survival. Hence, an in-depth understanding of the characteristics of DCs would have a beneficial effect in overcoming the obstacle occurring in sepsis. This paper focuses on the role of DCs in the progression of sepsis and we also discuss the reverse sepsis-induced immunosuppression through manipulating the DC function. In addition, we highlight some potent immunotherapies that could be used as a novel strategy in the early treatment of sepsis.
Collapse
|
11
|
Cuschieri K, Lorincz AT, Nedjai B. Human Papillomavirus Research: Where Should We Place Our Bets? Acta Cytol 2019; 63:85-96. [PMID: 30921789 DOI: 10.1159/000493800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Massive strides have been made with respect to primary and secondary prevention of human papillomavirus (HPV)-associated disease as a result of prophylactic vaccination and cervical screening based on molecular HPV testing. However, cervical cancer continues to be an important clinical and societal burden. Additionally, other HPV-associated cancers, for which there are no screening programmes, are rising. Finally, the optimal combination of vaccination and screening strategies will require careful thinking. Considering this unprecedented and important time, we were keen to solicit the views of the expert community to determine what they perceived were the key priorities for HPV research. Our objective was to identify consensus and key priorities for HPV-based research through provision of a questionnaire disseminated to a multidisciplinary group of key opinion leaders (KOLs). SUMMARY A structured survey composed of 46 HPV research "categories" was sent to 73 KOLs who were invited to "rank" the categories according to priority. The invitees represented clinical and public health disciplines as well as basic scientists. Scores were weighted according to the number of responses. Invitees also had the opportunity to comment on barriers to the research and suggest other research areas that required attention not reflected in the survey. We received 29 responses in total; overall, the 3 highest-ranked categories were "optimal cervical screening in low and middle-income countries (LMICs)," "primary disease prevention in LMICs" and "impact of vaccine on HPV infection and associated disease." "HPV and the microbiome" and "mechanisms of transformation" were the highest-ranked categories with respect to basic research. Consistent barriers to research were around governance on the use of samples and data and funding, particularly in an era of vaccination. Key Messages: Research to support the management of disease in LMICs is clearly perceived as a priority in the international community in addition to other diverse areas which necessitate an improved basic understanding of viral mechanisms and interactions. International, multidisciplinary efforts which articulate the broader HPV research agenda will be important when seeking funding in addition to international endeavours to support the efficient use of existing samples and cohorts to facilitate such research.
Collapse
Affiliation(s)
- Kate Cuschieri
- Scottish HPV Reference Laboratory, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Attila T Lorincz
- Wolfson Institute of Preventive Medicine, Centre for Cancer Prevention, Queen Mary University of London, Barts and the London School of Medicine, London, United Kingdom,
| | - Belinda Nedjai
- Wolfson Institute of Preventive Medicine, Centre for Cancer Prevention, Queen Mary University of London, Barts and the London School of Medicine, London, United Kingdom
| |
Collapse
|
12
|
Abstract
Ongoing genetic and epigenetic research involving DNA methylation, salivary biomarkers, wild-type p53 tumor suppressor gene proteins, and HPV oncogenes are being directed at identification and treatment of dysplastic and malignant squamous cell mucosal lesions. Research is being conducted to improve immunotherapy drug response rates by increasing the amount of inflammation within the tumor microenvironment. Ongoing research is focused on the application of the antidiabetic drug metformin for the prevention and management of oral squamous cell dysplastic lesions. Professional and nonprofit cancer support organizations are essential for furthering education and research within the area of head and neck cancer.
Collapse
Affiliation(s)
- Joshua E Lubek
- Oral-Head and Neck Surgery/Microvascular Surgery, Department of Oral and Maxillofacial Surgery, University of Maryland, 650 West Baltimore Street, Suite 1401, Baltimore, MD 21201, USA.
| |
Collapse
|
13
|
Panahi HA, Bolhassani A, Javadi G, Noormohammadi Z. A comprehensive in silico analysis for identification of therapeutic epitopes in HPV16, 18, 31 and 45 oncoproteins. PLoS One 2018; 13:e0205933. [PMID: 30356257 PMCID: PMC6200245 DOI: 10.1371/journal.pone.0205933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/11/2018] [Indexed: 11/25/2022] Open
Abstract
Human papillomaviruses (HPVs) are a group of circular double-stranded DNA viruses, showing severe tropism to mucosal tissues. A subset of HPVs, especially HPV16 and 18, are the primary etiological cause for several epithelial cell malignancies, causing about 5.2% of all cancers worldwide. Due to the high prevalence and mortality, HPV-associated cancers have remained as a significant health problem in human society, making an urgent need to develop an effective therapeutic vaccine against them. Achieving this goal is primarily dependent on the identification of efficient tumor-associated epitopes, inducing a robust cell-mediated immune response. Previous information has shown that E5, E6, and E7 early proteins are responsible for the induction and maintenance of HPV-associated cancers. Therefore, the prediction of major histocompatibility complex (MHC) class I T cell epitopes of HPV16, 18, 31 and 45 oncoproteins was targeted in this study. For this purpose, a two-step plan was designed to identify the most probable CD8+ T cell epitopes. In the first step, MHC-I and II binding, MHC-I processing, MHC-I population coverage and MHC-I immunogenicity prediction analyses, and in the second step, MHC-I and II protein-peptide docking, epitope conservation, and cross-reactivity with host antigens’ analyses were carried out successively by different tools. Finally, we introduced five probable CD8+ T cell epitopes for each oncoprotein of the HPV genotypes (60 epitopes in total), which obtained better scores by an integrated approach. These predicted epitopes are valuable candidates for in vitro or in vivo therapeutic vaccine studies against the HPV-associated cancers. Additionally, this two-step plan that each step includes several analyses to find appropriate epitopes provides a rational basis for DNA- or peptide-based vaccine development.
Collapse
Affiliation(s)
- Heidar Ali Panahi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: ,
| | - Gholamreza Javadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|