1
|
Mulè MP, Martins AJ, Cheung F, Farmer R, Sellers BA, Quiel JA, Jain A, Kotliarov Y, Bansal N, Chen J, Schwartzberg PL, Tsang JS. Integrating population and single-cell variations in vaccine responses identifies a naturally adjuvanted human immune setpoint. Immunity 2024; 57:1160-1176.e7. [PMID: 38697118 DOI: 10.1016/j.immuni.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024]
Abstract
Multimodal single-cell profiling methods can capture immune cell variations unfolding over time at the molecular, cellular, and population levels. Transforming these data into biological insights remains challenging. Here, we introduce a framework to integrate variations at the human population and single-cell levels in vaccination responses. Comparing responses following AS03-adjuvanted versus unadjuvanted influenza vaccines with CITE-seq revealed AS03-specific early (day 1) response phenotypes, including a B cell signature of elevated germinal center competition. A correlated network of cell-type-specific transcriptional states defined the baseline immune status associated with high antibody responders to the unadjuvanted vaccine. Certain innate subsets in the network appeared "naturally adjuvanted," with transcriptional states resembling those induced uniquely by AS03-adjuvanted vaccination. Consistently, CD14+ monocytes from high responders at baseline had elevated phospho-signaling responses to lipopolysaccharide stimulation. Our findings link baseline immune setpoints to early vaccine responses, with positive implications for adjuvant development and immune response engineering.
Collapse
Affiliation(s)
- Matthew P Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA; NIH-Oxford-Cambridge Scholars Program, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Foo Cheung
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Rohit Farmer
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Brian A Sellers
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Juan A Quiel
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Arjun Jain
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Yuri Kotliarov
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Pamela L Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Cell Signaling and Immunity Section, NIAID, NIH, Bethesda, MD, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA; NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Carey Hoppé A, Obeid S, Milner B, Venturi V, Munier CML. Ultrasound-Guided Fine Needle Biopsy of Human Axillary Lymph Nodes to Assess B Cell Responses to Vaccination. Methods Mol Biol 2024; 2826:15-30. [PMID: 39017882 DOI: 10.1007/978-1-0716-3950-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Ultrasound-guided fine needle biopsy, also known as fine needle aspiration, of human axillary lymph nodes is a safe and effective procedure to assess the immune response within the lymph nodes following vaccination. Once acquired, lymph node cells can be characterized via flow cytometric immunophenotyping and/or single-cell RNA sequencing for gene expression and T and B cell receptors. Analysis of the immune cells from the lymph nodes enables the investigation of T and B cells that may interact at this site. These interactions may lead to germinal center formation and expansion, critical for the generation of effective immunity to vaccination. Directly studying the dynamic processes and interaction of the key cells has been challenging in humans due to the anatomically protected location of these cells. Here, we describe the methods involved in ultrasound-guided fine needle biopsy of human axillary lymph nodes in response to vaccination and subsequent analyses of the B cell populations.
Collapse
Affiliation(s)
- Alexandra Carey Hoppé
- Immunology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Solange Obeid
- St Vincent's Hospital Sydney, Sydney, NSW, Australia
| | - Brad Milner
- St Vincent's Hospital Sydney, Sydney, NSW, Australia
| | - Vanessa Venturi
- Immunology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - C Mee Ling Munier
- Immunology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Scholte LLS, Leggat DJ, Cohen KW, Hoeweler L, Erwin GC, Rahaman F, Lombardo A, Philiponis V, Laufer DS, Siefers H, Ruppel AM, Brand J, Maenza J, Bronson R, Prabhakaran M, Jean-Baptiste J, Kolokythas O, Desrosiers AA, Thoreson CK, Heit A, Khati NJ, Malkin E, McElrath MJ, McDermott AB, Schief WR, Diemert D, Bethony JM. Ultrasound-guided lymph node fine-needle aspiration for evaluating post-vaccination germinal center responses in humans. STAR Protoc 2023; 4:102576. [PMID: 37733596 PMCID: PMC10519838 DOI: 10.1016/j.xpro.2023.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
The lymph node (LN) is a critical biological site for immune maturation after vaccination as it includes several cell populations critical for priming the antibody response. Here, we present a protocol for sampling the LN and isolating cell populations to evaluate immunogens targeting germline cells. We describe steps for media and tube preparation and sample collection using an ultrasound-guided LN fine-needle aspiration procedure. This protocol is safe, quick, low-cost, and less invasive than excisional biopsy. For complete details on the use and execution of this protocol, please refer to Leggat et al. (2022).1.
Collapse
Affiliation(s)
- Larissa L S Scholte
- Vaccine Research Unit, The George Washington University, Washington, DC 20037, USA.
| | - David J Leggat
- The US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristen W Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lara Hoeweler
- Vaccine Research Unit, The George Washington University, Washington, DC 20037, USA
| | - Guacyara C Erwin
- Vaccine Research Unit, The George Washington University, Washington, DC 20037, USA
| | | | | | | | | | | | - Alexis M Ruppel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, WA 98195, USA
| | - Rhi Bronson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jalen Jean-Baptiste
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Orpheus Kolokythas
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Aimee A Desrosiers
- Vaccine Research Unit, The George Washington University, Washington, DC 20037, USA
| | - Caroline K Thoreson
- Vaccine Research Unit, The George Washington University, Washington, DC 20037, USA
| | - Antje Heit
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nadia J Khati
- Vaccine Research Unit, The George Washington University, Washington, DC 20037, USA
| | - Elissa Malkin
- Vaccine Research Unit, The George Washington University, Washington, DC 20037, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, WA 98195, USA
| | | | - William R Schief
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - David Diemert
- Vaccine Research Unit, The George Washington University, Washington, DC 20037, USA
| | - Jeffrey M Bethony
- Vaccine Research Unit, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
4
|
Mulè MP, Martins AJ, Cheung F, Farmer R, Sellers B, Quiel JA, Jain A, Kotliarov Y, Bansal N, Chen J, Schwartzberg PL, Tsang JS. Multiscale integration of human and single-cell variations reveals unadjuvanted vaccine high responders are naturally adjuvanted. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.20.23287474. [PMID: 37090674 PMCID: PMC10120791 DOI: 10.1101/2023.03.20.23287474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Advances in multimodal single cell analysis can empower high-resolution dissection of human vaccination responses. The resulting data capture multiple layers of biological variations, including molecular and cellular states, vaccine formulations, inter- and intra-subject differences, and responses unfolding over time. Transforming such data into biological insight remains a major challenge. Here we present a systematic framework applied to multimodal single cell data obtained before and after influenza vaccination without adjuvants or pandemic H5N1 vaccination with the AS03 adjuvant. Our approach pinpoints responses shared across or unique to specific cell types and identifies adjuvant specific signatures, including pro-survival transcriptional states in B lymphocytes that emerged one day after vaccination. We also reveal that high antibody responders to the unadjuvanted vaccine have a distinct baseline involving a rewired network of cell type specific transcriptional states. Remarkably, the status of certain innate immune cells in this network in high responders of the unadjuvanted vaccine appear "naturally adjuvanted": they resemble phenotypes induced early in the same cells only by vaccination with AS03. Furthermore, these cell subsets have elevated frequency in the blood at baseline and increased cell-intrinsic phospho-signaling responses after LPS stimulation ex vivo in high compared to low responders. Our findings identify how variation in the status of multiple immune cell types at baseline may drive robust differences in innate and adaptive responses to vaccination and thus open new avenues for vaccine development and immune response engineering in humans.
Collapse
Affiliation(s)
- Matthew P. Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- NIH-Oxford-Cambridge Scholars Program; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew J. Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Foo Cheung
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Rohit Farmer
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Brian Sellers
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Juan A. Quiel
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Arjun Jain
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Yuri Kotliarov
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Pamela L. Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Cell Signaling and Immunity Section, NIAID, NIH, Bethesda, MD, USA
| | - John S. Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
5
|
Kwiatkowska KM, Mkindi CG, Nielsen CM. Human lymphoid tissue sampling for vaccinology. Front Immunol 2022; 13:1045529. [PMID: 36466924 PMCID: PMC9714609 DOI: 10.3389/fimmu.2022.1045529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 02/15/2024] Open
Abstract
Long-lived plasma cells (LLPCs) - largely resident in the bone marrow - secrete antibody over months and years, thus maintaining serum antibody concentrations relevant for vaccine-mediated immunity. Little is known regarding factors that can modulate the induction of human LLPC responses in draining lymph node germinal centres, or those that maintain LLPCs in bone marrow niches following vaccination. Here, we review human and non-human primate vaccination studies which incorporate draining lymph node and/or bone marrow aspirate sampling. We emphasise the key contributions these samples can make to improve our understanding of LLPC immunology and guide rational vaccine development. Specifically, we highlight findings related to the impact of vaccine dosing regimens, adjuvant/vaccine platform selection, duration of germinal centre reactions in draining lymph nodes and relevance for timing of tissue sampling, and heterogeneity in bone marrow plasma cell populations. Much of this work has come from recent studies with SARS-CoV-2 vaccine candidates or, with respect to the non-human primate work, HIV vaccine development.
Collapse
Affiliation(s)
| | - Catherine G. Mkindi
- Department of Intervention and Clinical Trials, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Carolyn M. Nielsen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Permana AD, Nainu F, Moffatt K, Larrañeta E, Donnelly RF. Recent advances in combination of microneedles and nanomedicines for lymphatic targeted drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1690. [PMID: 33401339 DOI: 10.1002/wnan.1690] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Numerous diseases have been reported to affect the lymphatic system. As such, several strategies have been developed to deliver chemotherapeutics to this specific network of tissues and associated organs. Nanotechnology has been exploited as one of the main approaches to improve the lymphatic uptake of drugs. Different nanoparticle approaches utilized for both active and passive targeting of the lymphatic system are discussed here. Specifically, due to the rich abundance of lymphatic capillaries in the dermis, particular attention is given to this route of administration, as intradermal administration could potentially result in higher lymphatic uptake compared to other routes of administration. Recently, progress in microneedle research has attracted particular attention as an alternative for the use of conventional hypodermic injections. The benefits of microneedles, when compared to intradermal injection, are subsequently highlighted. Importantly, microneedles exhibit particular benefit in relation to therapeutic targeting of the lymphatic system, especially when combined with nanoparticles, which are further discussed. However, despite the apparent benefits provided by this combination approach, further comprehensive preclinical and clinical studies are now necessary to realize the potential extent of this dual-delivery platform, further taking into consideration eventual usability and acceptability in the intended patient end-users. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Kurtis Moffatt
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
7
|
Sant AJ. The Way Forward: Potentiating Protective Immunity to Novel and Pandemic Influenza Through Engagement of Memory CD4 T Cells. J Infect Dis 2020; 219:S30-S37. [PMID: 30715376 PMCID: PMC6452298 DOI: 10.1093/infdis/jiy666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Potentially pandemic strains of influenza pose an undeniable threat to human populations. Therefore, it is essential to develop better strategies to enhance vaccine design and predict parameters that identify susceptible humans. CD4 T cells are a central component of protective immunity to influenza, delivering direct effector function and potentiating responses of other lymphoid cells. Humans have highly diverse influenza-specific CD4 T-cell populations that vary in stimulation history, specificity, and functionality. These complexities constitute a formidable obstacle to predicting immune responses to pandemic strains of influenza and derivation of optimal vaccine strategies. We suggest that more precise efforts to identify and enumerate both the positive and negative contributors of immunity in the CD4 T-cell compartment will aid in both predicting susceptible hosts and in development of vaccination strategies that will poise most human subjects to respond to pandemic influenza strains with protective immune responses.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, New York
| |
Collapse
|
8
|
Havenar-Daughton C, Newton IG, Zare SY, Reiss SM, Schwan B, Suh MJ, Hasteh F, Levi G, Crotty S. Normal human lymph node T follicular helper cells and germinal center B cells accessed via fine needle aspirations. J Immunol Methods 2020; 479:112746. [PMID: 31958451 DOI: 10.1016/j.jim.2020.112746] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Germinal centers (GC) are critically important for maturation of the antibody response and generation of memory B cells, processes that form the basis for long-term protection from pathogens. GCs only occur in lymphoid tissue, such as lymph nodes, and are not present in blood. Therefore, GC B cells and GC T follicular helper (TFH) cells are not well-studied in humans under normal healthy conditions, due to the limited availability of healthy lymph node samples. We used a minimally invasive, routine clinical procedure, lymph node fine needle aspirations (LN FNAs), to obtain LN cells from healthy human subjects. This study of 73 LNs demonstrates that human LN FNAs are a safe and feasible technique for immunological research, and suggests benchmarks for human GC biology under noninflammatory conditions. The findings indicate that assessment of the GC response via LN FNAs will have application to the study of human vaccination, allergy, and autoimmune disease.
Collapse
Affiliation(s)
- Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Isabel G Newton
- Department of Radiology, Division of Interventional Radiology, University of California, San Diego, CA 92093, USA.; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA
| | - Somaye Y Zare
- Department of Pathology, University of California San Diego, San Diego, CA 92103, USA
| | - Samantha M Reiss
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brittany Schwan
- Clinical Studies Core, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Min Ji Suh
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Farnaz Hasteh
- Department of Pathology, University of California San Diego, San Diego, CA 92103, USA
| | - Gina Levi
- Clinical Studies Core, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, San Diego, CA 92103, USA..
| |
Collapse
|
9
|
Engineering immunity for next generation HIV vaccines: The intersection of bioengineering and immunology. Vaccine 2019; 38:187-193. [PMID: 31759734 DOI: 10.1016/j.vaccine.2019.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022]
Abstract
Bioengineering approaches grounded in immunology have the potential for the discovery and development of a successful HIV vaccine. The overarching goal is to engineer immunity through a fusion of immunology with bioengineering to create novel strategies for the design, development and delivery of vaccines based on the controlled modulation of the immune system. To foster these collaborations, the National Institute of Allergy and Infectious Diseases (NIAID) and National Institute of Biomedical Imaging and Bioengineering (NIBIB) brought together a group of experts (see Table 1) from these diverse fields for a workshop in September 2018 to: (1) engage the engineering, immunology, and HIV vaccinology communities to dialogue on the topic of an HIV vaccine and; (2) generate a framework of new and innovative research avenues to explore in HIV vaccinology between knowledge stakeholders and problem solvers.
Collapse
|
10
|
Mkindi CG, Marandu EA, Masawa N, Bani F, Nyuri A, Byakuzana T, Klimkait T, Ding S, Pantaleo G, Battegay M, Orlova-Fink N, Weisser-Rohacek M, Daubenberger C. Safety and tolerance of lymph node biopsies from chronic HIV-1 volunteers in rural Tanzania. BMC Res Notes 2019; 12:561. [PMID: 31492170 PMCID: PMC6729032 DOI: 10.1186/s13104-019-4600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/03/2019] [Indexed: 11/29/2022] Open
Abstract
Objective HIV-1 rapidly establishes a persistent infection that can be contained under life-long antiretroviral therapy (ART) but not cured. One major viral reservoir is the peripheral lymph node (LN) follicles. Studying the impact of novel HIV-1 treatment and vaccination approaches on cells residing in germinal centers is essential for rapid progress towards HIV-1 prevention and cure. Results We enrolled 9 asymptomatic adult volunteers with a newly diagnosed HIV-1 infection and CD4 T cell counts ≥ 350/ml. The patients underwent venous blood collection and inguinal lymph node excision surgery in parallel. Mononuclear cells were extracted from blood and tissues simultaneously. Participants were followed up regularly for 2 weeks until complete healing of the surgical wounds. All participants completed the lymph node excision surgery without clinical complications. Among the 9 volunteers, one elite controller was identified. The number of mononuclear cells recovered from lymph nodes ranged from 68 to 206 million and correlated positively with lymph node size. This is the first study to show that lymph node biopsy is a safe procedure and can be undertaken with local experts in rural settings. It provides a foundation for detailed immune response investigations during future clinical trials.
Collapse
Affiliation(s)
- Catherine Gerald Mkindi
- Department of Medical Parasitology and Infection Biology, Clinical Immunology, Swiss Tropical and Public Health Institute, Socinstr. 57, 4002, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | | | | | - Farida Bani
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Amina Nyuri
- Ifakara Health Institute, Bagamoyo, Tanzania
| | | | | | - Song Ding
- EuroVacc Foundation, Amsterdam, The Netherlands
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland.,Swiss Vaccine Research Institute, Lausanne, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Nina Orlova-Fink
- Department of Medical Parasitology and Infection Biology, Clinical Immunology, Swiss Tropical and Public Health Institute, Socinstr. 57, 4002, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | - Maja Weisser-Rohacek
- Department of Medical Parasitology and Infection Biology, Clinical Immunology, Swiss Tropical and Public Health Institute, Socinstr. 57, 4002, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Clinical Immunology, Swiss Tropical and Public Health Institute, Socinstr. 57, 4002, Basel, Switzerland. .,Ifakara Health Institute, Bagamoyo, Tanzania.
| |
Collapse
|
11
|
Palm AKE, Henry C. Remembrance of Things Past: Long-Term B Cell Memory After Infection and Vaccination. Front Immunol 2019; 10:1787. [PMID: 31417562 PMCID: PMC6685390 DOI: 10.3389/fimmu.2019.01787] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 02/03/2023] Open
Abstract
The success of vaccines is dependent on the generation and maintenance of immunological memory. The immune system can remember previously encountered pathogens, and memory B and T cells are critical in secondary responses to infection. Studies in mice have helped to understand how different memory B cell populations are generated following antigen exposure and how affinity for the antigen is determinant to B cell fate. Additionally, such studies were fundamental in defining memory B cell niches and how B cells respond following subsequent exposure with the same antigen. On the other hand, human studies are essential to the development of better, newer vaccines but sometimes limited by the difficulty to access primary and secondary lymphoid organs. However, work using human influenza and HIV virus infection and/or immunization in particular has significantly advanced today's understanding of memory B cells. This review will focus on the generation, function, and longevity of B-cell mediated immunological memory (memory B cells and plasma cells) in response to infection and vaccination both in mice and in humans.
Collapse
Affiliation(s)
- Anna-Karin E Palm
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Carole Henry
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
12
|
Nelson SA, Sant AJ. Imprinting and Editing of the Human CD4 T Cell Response to Influenza Virus. Front Immunol 2019; 10:932. [PMID: 31134060 PMCID: PMC6514101 DOI: 10.3389/fimmu.2019.00932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Immunity to influenza is unique among pathogens, in that immune memory is established both via intermittent lung localized infections with highly variable influenza virus strains and by intramuscular vaccinations with inactivated protein-based vaccines. Studies in the past decades have suggested that the B cell responses to influenza infection and vaccination are highly biased by an individual's early history of influenza infection. This reactivity likely reflects both the competitive advantage that memory B cells have in an immune response and the relatively limited diversity of epitopes in influenza hemagglutinin that are recognized by B cells. In contrast, CD4 T cells recognize a wide array of epitopes, with specificities that are heavily influenced by the diversity of influenza antigens available, and a multiplicity of functions that are determined by both priming events and subsequent confrontations with antigens. Here, we consider the events that prime and remodel the influenza-specific CD4 T cell response in humans that have highly diverse immune histories and how the CD4 repertoire may be edited in terms of functional potential and viral epitope specificity. We discuss the consequences that imprinting and remodeling may have on the potential of different human hosts to rapidly respond with protective cellular immunity to infection. Finally, these issues are discussed in the context of future avenues of investigation and vaccine strategies.
Collapse
Affiliation(s)
| | - Andrea J. Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|