1
|
Ricci Conesa H, Skröder H, Norton N, Bencina G, Tsoumani E. Clinical and economic burden of acute otitis media caused by Streptococcus pneumoniae in European children, after widespread use of PCVs-A systematic literature review of published evidence. PLoS One 2024; 19:e0297098. [PMID: 38564583 PMCID: PMC10986968 DOI: 10.1371/journal.pone.0297098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/21/2023] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Acute otitis media (AOM) is a common childhood disease frequently caused by Streptococcus pneumoniae. Pneumococcal conjugate vaccines (PCV7, PCV10, PCV13) can reduce the risk of AOM but may also shift AOM etiology and serotype distribution. The aim of this study was to review estimates from published literature of the burden of AOM in Europe after widespread use of PCVs over the past 10 years, focusing on incidence, etiology, serotype distribution and antibiotic resistance of Streptococcus pneumoniae, and economic burden. METHODS This systematic review included published literature from 31 European countries, for children aged ≤5 years, published after 2011. Searches were conducted using PubMed, Embase, Google, and three disease conference websites. Risk of bias was assessed with ISPOR-AMCP-NPC, ECOBIAS or ROBIS, depending on the type of study. RESULTS In total, 107 relevant records were identified, which revealed wide variation in study methodology and reporting, thus limiting comparisons across outcomes. No homogenous trends were identified in incidence rates across countries, or in detection of S. pneumoniae as a cause of AOM over time. There were indications of a reduction in hospitalization rates (decreases between 24.5-38.8% points, depending on country, PCV type and time since PCV introduction) and antibiotic resistance (decreases between 14-24%, depending on country), following the widespread use of PCVs over time. The last two trends imply a potential decrease in economic burden, though this was not possible to confirm with the identified cost data. There was also evidence of an increase in serotype distributions towards non-vaccine serotypes in all of the countries where non-PCV serotype data were available, as well as limited data of increased antibiotic resistance within non-vaccine serotypes. CONCLUSIONS Though some factors point to a reduction in AOM burden in Europe, the burden still remains high, residual burden from uncovered serotypes is present and it is difficult to provide comprehensive, accurate and up-to-date estimates of said burden from the published literature. This could be improved by standardised methodology, reporting and wider use of surveillance systems.
Collapse
Affiliation(s)
| | | | | | - Goran Bencina
- Center for Observational and Real-World Evidence, MSD, Madrid, Spain
| | - Eleana Tsoumani
- Center for Observational and Real-World Evidence, MSD, Athens, Greece
| |
Collapse
|
2
|
Patikorn C, Kategeaw W, Perdrizet J, Li X, Chaiyakunapruk N. Implementation challenges and real-world impacts of switching pediatric vaccines: A global systematic literature review. Hum Vaccin Immunother 2023; 19:2177459. [PMID: 36880656 PMCID: PMC10026932 DOI: 10.1080/21645515.2023.2177459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Switching a vaccine for another on a pediatric national immunization program is often done for the betterment of society. However, if poorly implemented, switching vaccines could result in suboptimal transitions with negative effects. A systematic review was conducted to evaluate the existing knowledge from identifiable documents on implementation challenges of pediatric vaccine switches and the real-world impact of those challenges. Thirty-three studies met the inclusion criteria. We synthesized three themes: vaccine availability, vaccination program deployment, and vaccine acceptability. Switching pediatric vaccines can pose unforeseen challenges to health-care systems worldwide and additional resources are often required to overcome those challenges. Yet, the magnitude of the impact, especially economic and societal, was frequently under-researched with variability in reporting. Therefore, an efficient vaccine switch requires a thorough consideration of the added benefits of replacing the existing vaccine, preparation, planning, additional resource allocation, implementation timing, public-private partnerships, outreach campaigns, and surveillance for program evaluation.
Collapse
Affiliation(s)
- Chanthawat Patikorn
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Warittakorn Kategeaw
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Johnna Perdrizet
- Global Health Economics and Outcomes Research, Pfizer Inc, New York, NY, USA
| | - Xiuyan Li
- Global Health Economics and Outcomes Research, Pfizer Inc, New York, NY, USA
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- IDEAS Center, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Janssens E, Flamaing J, Vandermeulen C, Peetermans WE, Desmet S, De Munter P. The 20-valent pneumococcal conjugate vaccine (PCV20): expected added value. Acta Clin Belg 2023; 78:78-86. [PMID: 35171752 DOI: 10.1080/17843286.2022.2039865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Currently existing pneumococcal vaccines have contributed to a major reduction in pneumococcal disease. However, there remains an unmet need for vaccine coverage of serotypes not included in PCV13 to further reduce the burden of disease. The objective of this review is to assess the potential impact of implementation of the investigational 20-valent pneumococcal conjugate vaccine (PCV20) in the childhood and adult immunization programme in Belgium and Europe. METHODS A literature search was conducted to identify publications and surveillance reports concerning the effectiveness and safety of pneumococcal vaccines, epidemiological data on pneumococcal disease or serotype distribution dynamics after introduction of systematic vaccination. RESULTS Serotypes included in PCV20 currently account for the majority of pneumococcal disease in Belgium and Europe. In Belgium, PCV20-serotypes accounted for 71.4% of invasive pneumococcal disease (IPD) cases across all age groups in 2019, of which 39.2% were caused by PCV20-non-PCV13-serotypes. In Europe, these seven serotypes accounted for 37,6% of IPD cases in 2018. PCV20 has proven to be well tolerated in vaccine-naïve adults and elicits a substantial immune response against all serotypes included. CONCLUSION Due to serotype replacement following the introduction of PCV7 and PCV13, a considerable proportion of pneumococcal disease is currently caused by PCV20-serotypes. PCV20 has the potential of preventing more pneumococcal disease in children and the adult population at risk than the existing conjugate vaccines. The available evidence on safety and immunogenicity of PCV20 is promising, but further research is needed to provide data about vaccine effectiveness, immune response duration and replacement phenomenon after introduction of PCV20.
Collapse
Affiliation(s)
- Esther Janssens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Johan Flamaing
- Department of Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Public Health & Primary Care, KU Leuven, Leuven, Belgium
| | - Corinne Vandermeulen
- Department of Public Health & Primary Care, KU Leuven, Leuven, Belgium.,Leuven University Vaccinology Centre, Leuven, Belgium
| | - Willy E Peetermans
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Stefanie Desmet
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,National Reference Centre for Streptococcus Pneumoniae, University Hospitals Leuven, Leuven, Belgium
| | - Paul De Munter
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Ekinci E, Van Heirstraeten L, Willen L, Desmet S, Wouters I, Vermeulen H, Lammens C, Goossens H, Van Damme P, Verhaegen J, Beutels P, Theeten H, Malhotra-Kumar S. Serotype 19A and 6C Account for One-Third of Pneumococcal Carriage Among Belgian Day-Care Children Four Years After a Shift to a Lower-Valent PCV. J Pediatric Infect Dis Soc 2022; 12:36-42. [PMID: 36377804 PMCID: PMC9909365 DOI: 10.1093/jpids/piac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pneumococcal conjugate vaccines (PCVs) effectively reduce infection and asymptomatic carriage of Streptococcus pneumoniae vaccine serotypes. In 2016, Belgium replaced its infant PCV13 program by a 4-year period of PCV10. Concomitantly, S. pneumoniae serotype carriage was monitored together with the carriage of other nasopharyngeal pathogens in children attending day-care centers. METHODS From 2016 to 2019, a total of 3459 nasopharyngeal swabs were obtained from children aged 6-30 months. Culture and qPCR were used for the identification of S. pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus and for serotyping and antimicrobial susceptibility assessment of S. pneumoniae strains. RESULTS S. pneumoniae colonization was frequent and stable over the study years. H. influenzae and M. catarrhalis were more frequently carried (P < .001) than S. pneumoniae, by, respectively, 92.3% and 91.0% of children. Prevalence of all PCV13 serotypes together increased significantly over time from 5.8% to 19.6% (P < .001) and was attributable to the increasing prevalence of serotype 19A. Coincidently, non-vaccine serotype 6C increased (P < .001) and the overall pneumococcal non-susceptibility to tetracycline and erythromycin. Non-susceptibility to cotrimoxazole decreased (P < .001). CONCLUSIONS The switch to a PCV program no longer covering serotypes 19A, 6A, and 3 was associated with a sustained increase of serotypes 19A and 6C in healthy children, similarly as in invasive pneumococcal disease. This resulted in a re-introduction of the 13-valent conjugate vaccine during the summer of 2019.
Collapse
Affiliation(s)
- Esra Ekinci
- Corresponding Author: Esra Ekinci, Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium. E-mail:
| | | | - Laura Willen
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Stefanie Desmet
- Reference Centre for Pneumococci, University Hospitals Leuven, Leuven, Belgium
| | - Ine Wouters
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Antwerp, Belgium
| | | | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Jan Verhaegen
- Reference Centre for Pneumococci, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Beutels
- Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Heidi Theeten
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Antwerp, Belgium
| | | |
Collapse
|
5
|
Richardson NI, Kuttel MM, Ravenscroft N. Modeling of pneumococcal serogroup 10 capsular polysaccharide molecular conformations provides insight into epitopes and observed cross-reactivity. Front Mol Biosci 2022; 9:961532. [PMID: 36003080 PMCID: PMC9393222 DOI: 10.3389/fmolb.2022.961532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Streptococcus pneumoniae is an encapsulated gram-negative bacterium and a significant human pathogen. The capsular polysaccharide (CPS) is essential for virulence and a target antigen for vaccines. Although widespread introduction of pneumococcal conjugate vaccines (PCVs) has significantly reduced disease, the prevalence of non-vaccine serotypes has increased. On the basis of the CPS, S. pneumoniae serogroup 10 comprises four main serotypes 10A, 10B, 10C, and 10F; as well as the recently identified 10D. As it is the most prevalent, serotype 10A CPS has been included as a vaccine antigen in the next generation PCVs. Here we use molecular modeling to provide conformational rationales for the complex cross-reactivity reported between serotypes 10A, 10B, 10C, and 10F anti-sera. Although the highly mobile phosphodiester linkages produce very flexible CPS, shorter segments are conformationally defined, with exposed β-D-galactofuranose (β DGalf) side chains that are potential antibody binding sites. We identify four distinct conformational epitopes for the immunodominant β DGalf that assist in rationalizing the complex asymmetric cross-reactivity relationships. In particular, we find that strongly cross-reactive serotypes share common epitopes. Further, we show that human intelectin-1 has the potential to bind the exposed exocyclic 1,2-diol of the terminal β DGalf in each serotype; the relative accessibility of three- or six-linked β DGalf may play a role in the strength of the innate immune response and hence serotype disease prevalence. In conclusion, our modeling study and relevant serological studies support the inclusion of serotype 10A in a vaccine to best protect against serogroup 10 disease.
Collapse
Affiliation(s)
| | - Michelle M. Kuttel
- Department of Computer Science, University of Cape Town, Cape Town, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Cape Town, South Africa
- *Correspondence: Neil Ravenscroft,
| |
Collapse
|
6
|
Kielbik K, Pietras A, Jablonska J, Bakiera A, Borek A, Niedzielska G, Grzegorczyk M, Grywalska E, Korona-Glowniak I. Impact of Pneumococcal Vaccination on Nasopharyngeal Carriage of Streptococcus pneumoniae and Microbiota Profiles in Preschool Children in South East Poland. Vaccines (Basel) 2022; 10:vaccines10050791. [PMID: 35632547 PMCID: PMC9143411 DOI: 10.3390/vaccines10050791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
In 2017, Poland introduced the 10-valent pneumococcal conjugate vaccine (PCV) into its national immunization schedule. This prospective study was conducted between March and June 2020 to determine the impact of vaccination on prevalence of the nasopharyngeal carriage of S. pneumoniae in 176 healthy children and to determine how conjugate vaccines indirectly affect colonization of nasopharyngeal microbiota. Pneumococcal isolates were analyzed by serotyping and antimicrobial resistance tests. Nasopharyngeal microbiota were detected and identified using the culture method and real-time PCR amplification primers and hydrolysis-probe detection with the 16S rRNA gene as the target. In the vaccinated group of children, colonization was in 24.2% of children, compared to 21.4% in the unvaccinated group. Serotypes 23A and 23B constituted 41.5% of the isolates. Serotypes belonging to PCV10 and PCV13 constituted 4.9% and 17.1% of the isolates, respectively. S. pneumoniae isolates were resistant to penicillin (34.1%), erythromycin (31.7%), and co-trimoxazole (26.8%). Microbial DNA qPCR array correlated to increased amounts of Streptococcus mitis and S. sanguinis in vaccinated children, with reduced amounts of C. pseudodiphtericum, S. aureus, and M. catarrhalis. Introduction of PCV for routine infant immunization was associated with significant reductions in nasopharyngeal carriage of PCV serotypes and resistant strains amongst vaccine serotypes, yet carriage of non-PCV serotypes increased modestly, particularly serotype 23B.
Collapse
Affiliation(s)
- Karolina Kielbik
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.B.)
- Correspondence: (K.K.); (I.K.-G.)
| | - Aleksandra Pietras
- Department of Pediatric Otolaryngology, Phoniatrics and Audiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.P.); (J.J.); (G.N.)
| | - Joanna Jablonska
- Department of Pediatric Otolaryngology, Phoniatrics and Audiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.P.); (J.J.); (G.N.)
| | - Adrian Bakiera
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.B.)
| | - Anna Borek
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.B.)
| | - Grazyna Niedzielska
- Department of Pediatric Otolaryngology, Phoniatrics and Audiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.P.); (J.J.); (G.N.)
| | - Michal Grzegorczyk
- Department of Rehabilitation and Physiotherapy, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.B.)
- Correspondence: (K.K.); (I.K.-G.)
| |
Collapse
|
7
|
Patel SM, Shaik-Dasthagirisaheb YB, Congdon M, Young RR, Patel MZ, Mazhani T, Boiditswe S, Leburu T, Lechiile K, Arscott-Mills T, Steenhoff AP, Feemster KA, Shah SS, Cunningham CK, Pelton SI, Kelly MS. Evolution of pneumococcal serotype epidemiology in Botswana following introduction of 13-valent pneumococcal conjugate vaccine. PLoS One 2022; 17:e0262225. [PMID: 34986196 PMCID: PMC8730465 DOI: 10.1371/journal.pone.0262225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Pneumococcal conjugate vaccines reduce the burden of invasive pneumococcal disease, but the sustained effect of these vaccines can be diminished by an increase in disease caused by non-vaccine serotypes. To describe pneumococcal serotype epidemiology in Botswana following introduction of 13-valent pneumococcal conjugate vaccine (PCV-13) in July 2012, we performed molecular serotyping of 268 pneumococcal strains isolated from 221 children between 2012 and 2017. The median (interquartile range) age of the children included in this analysis was 6 (3,12) months. Fifty-nine percent of the children had received at least one dose of PCV-13 and 35% were fully vaccinated with PCV-13. While colonization by vaccine serotypes steadily declined following PCV-13 introduction, 25% of strains isolated more than 3 years after vaccine introduction were PCV-13 serotypes. We also observed an increase in colonization by non-vaccine serotypes 21 and 23B, which have been associated with invasive pneumococcal disease and antibiotic resistance in other settings.
Collapse
Affiliation(s)
- Sweta M. Patel
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University, Durham, NC, United States of America
- Duke Global Health Institute, Duke University, Durham, NC, United States of America
| | | | - Morgan Congdon
- Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Rebecca R. Young
- Division of Pediatric Infectious Diseases, Duke University, Durham, NC, United States of America
| | - Mohamed Z. Patel
- Department of Paediatric and Adolescent Health, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Tiny Mazhani
- Department of Paediatric and Adolescent Health, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | | | - Tirayaone Leburu
- Botswana—University of Pennsylvania Partnership, Gaborone, Botswana
| | - Kwana Lechiile
- Botswana—University of Pennsylvania Partnership, Gaborone, Botswana
| | - Tonya Arscott-Mills
- Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Paediatric and Adolescent Health, Faculty of Medicine, University of Botswana, Gaborone, Botswana
- Botswana—University of Pennsylvania Partnership, Gaborone, Botswana
| | - Andrew P. Steenhoff
- Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Paediatric and Adolescent Health, Faculty of Medicine, University of Botswana, Gaborone, Botswana
- Division of Pediatric Infectious Diseases and Global Health Center, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Kristen A. Feemster
- Division of Pediatric Infectious Diseases and Global Health Center, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Samir S. Shah
- Divisions of Hospital Medicine and Infectious Diseases, Cincinnati Children’s Medical Center, Cincinnati, OH, United States of America
| | - Coleen K. Cunningham
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States of America
| | - Stephen I. Pelton
- Division of Pediatric Infectious Diseases, Boston University School of Medicine, Boston, MA, United States of America
| | - Matthew S. Kelly
- Duke Global Health Institute, Duke University, Durham, NC, United States of America
- Division of Pediatric Infectious Diseases, Duke University, Durham, NC, United States of America
| |
Collapse
|
8
|
Antimicrobial Resistance in Pneumococcal Carriage Isolates from Children under 2 Years of Age in Rural Pakistan. Microbiol Spectr 2021; 9:e0101921. [PMID: 34935431 PMCID: PMC8693922 DOI: 10.1128/spectrum.01019-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antimicrobial resistance is an emerging public health concern. Ten-valent pneumococcal vaccine (PCV10) was introduced in Pakistan’s Expanded Program on Immunization (EPI) in 2012 as a 3 + 0 schedule without catchup. From 2014 to 2018, children <2 years were randomly selected in two rural union councils of Matiari, Pakistan. Nasopharyngeal swabs were collected using standard WHO guidelines by trained staff and processed at Infectious Disease Research Laboratory at The Aga Khan University, Karachi using culture on sheep blood agar and Multiplex PCR methods described by CDC, USA. Pneumococcal isolates were identified by optochin sensitivity and bile solubility tests. Isolates were then tested for antimicrobial susceptibility by standard Kirby-Bauer disk-diffusion method on Mueller-Hinton Agar (MHA) with 5% sheep blood agar as per Clinical & Laboratory Standards Institute (CLSI) recommendations. Of 3140 children enrolled, pneumococcal isolates were detected in 2370 (75%). Vaccine coverage improved from 41% to 68.4%. Out of the 2370 isolates, 88.4%, 37.6% and 25% were resistant to cotrimoxazole, tetracycline and erythromycin, respectively. There was no resistance to penicillin, ceftriaxone, and vancomycin. For erythromycin, resistance increased from 20% in 2014/15 to 30.8% in 2017/18 and for tetracycline it increased from 34.9% to 41.8% both of which were explained by an increase in prevalence of serotype 19A. Pneumococcal isolates were susceptible to penicillin, ceftriaxone, and vancomycin. They were largely resistant to cotrimoxazole and tetracycline. There was an increase in erythromycin and tetracycline resistance attributed to increasing prevalence of serotype 19A. Pneumococcal isolates from carriage and invasive disease should be closely monitored for antimicrobial susceptibility. IMPORTANCE Antimicrobial resistance is an emerging public health concern particularly in low- and middle-income countries where there is poor regulation and easy availability of antibiotics. This is the first study from Pakistan to report antimicrobial resistance patterns of pneumococcus after vaccine introduction in the community. Pakistan was the first South-Asian country to introduce PCV10 in its Expanded Program on Immunization (EPI) in 2012 as a 3 + 0 schedule without catchup. In this study, we describe the PCV10 impact on antimicrobial resistance patterns of pneumococcal nasopharyngeal carriage in children younger than 2 years of age in a rural district in Pakistan after the introduction of the vaccine.
Collapse
|
9
|
Almeida SCG, Lo SW, Hawkins PA, Gladstone RA, Cassiolato AP, Klugman KP, Breiman RF, Bentley SD, McGee L, Brandileone MCDC. Genomic surveillance of invasive Streptococcus pneumoniae isolates in the period pre-PCV10 and post-PCV10 introduction in Brazil. Microb Genom 2021; 7. [PMID: 34609274 PMCID: PMC8627213 DOI: 10.1099/mgen.0.000635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In 2010, Brazil introduced the 10-valent pneumococcal conjugate vaccine (PCV10) into the national children’s immunization programme. This study describes the genetic characteristics of invasive Streptococcus pneumoniae isolates before and after PCV10 introduction. A subset of 466 [pre-PCV10 (2008–2009): n=232, post-PCV10 (2012–2013): n=234;<5 years old: n=310, ≥5 years old: n=156] pneumococcal isolates, collected through national laboratory surveillance, were whole-genome sequenced (WGS) to determine serotype, pilus locus, antimicrobial resistance and genetic lineages. Following PCV10 introduction, in the <5 years age group, non-vaccine serotypes (NVT) serotype 3 and serotype 19A were the most frequent, and serotypes 12F, 8 and 9 N in the ≥5 years old group. The study identified 65 Global Pneumococcal Sequence Clusters (GPSCs): 49 (88 %) were GPSCs previously described and 16 (12 %) were Brazilian clusters. In total, 36 GPSCs (55 %) were NVT lineages, 18 (28 %) vaccine serotypes (VT) and 11 (17 %) were both VT and NVT lineages. In both sampling periods, the most frequent lineage was GPSC6 (CC156, serotypes 14/9V). In the <5 years old group, a decrease in penicillin (P=0.0123) and cotrimoxazole (P<0.0001) resistance and an increase in tetracycline (P=0.019) were observed. Penicillin nonsusceptibility was predicted in 40 % of the isolates; 127 PBP combinations were identified (51 predicted MIC≥0.125 mg l−1); cotrimoxazole (folA and/or folP alterations), macrolide (mef and/or ermB) and tetracycline (tetM, tetO or tetS/M) resistance were predicted in 63, 13 and 21.6 % of pneumococci studied, respectively. The main lineages associated with multidrug resistance in the post-PCV10 period were composed of NVT, GPSC1 (CC320, serotype 19A), and GPSC47 (ST386, serotype 6C). The study provides a baseline for future comparisons and identified important NVT lineages in the post-PCV10 period in Brazil.
Collapse
Affiliation(s)
- Samanta C. G. Almeida
- National Reference Laboratory for Meningitis and Pneumococcal Infections, Institute Adolfo Lutz, São Paulo, Brazil
- *Correspondence: Samanta C. G. Almeida,
| | - Stephanie W. Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Paulina A. Hawkins
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, USA
| | | | - Ana Paula Cassiolato
- National Reference Laboratory for Meningitis and Pneumococcal Infections, Institute Adolfo Lutz, São Paulo, Brazil
| | - Keith P. Klugman
- Emeritus Professor of Global Health, Emory University, Atlanta, GA, USA
| | | | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, USA
| | | |
Collapse
|
10
|
Al-Lahham A, Khanfar N, Albataina N, Al Shwayat R, Altwal R, Abulfeilat T, Alawneh G, Khurd M, Alqadi Altamimi A. Urban and Rural Disparities in Pneumococcal Carriage and Resistance in Jordanian Children, 2015-2019. Vaccines (Basel) 2021; 9:vaccines9070789. [PMID: 34358205 PMCID: PMC8309963 DOI: 10.3390/vaccines9070789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A pneumococcal carriage surveillance study took place examining Jordanian children in urban and rural areas in the period 2015-2019. OBJECTIVES To determine urban and rural differences in pneumococcal carriage rate, resistance, and serotypes among healthy Jordanian children from Amman (urban) and eastern Madaba (rural). METHODS Nasopharyngeal swabs (NP) were taken from 682 children aged 1 to 163 months. Pneumococcal identification, serotyping, and resistance were performed according to standard method. RESULTS The number of cases tested for Amman was 267 and there were 415 cases tested for eastern Madaba. Carriage rate for eastern Madaba was 39.5% and 31.1% for Amman. Predominant serotypes for eastern Madaba and Amman were 19F (21.3%; 15.7%), 23F (12.2%; 9.6%), 14 (6.7%; 2.4%), 19A (4.9%; 2.4%), and 6A (5.5%; 3.6%). Resistance rates for eastern Madaba and Amman were as follows: penicillin (95.8%; 81.9%), clarithromycin (68.9%; 59.0%), clindamycin (40.8%; 31.3%), and trimethoprim-sulfamethoxazole (73.2%; 61.4%). Coverage of PCV7, PCV13, and the future PCV20 for Amman was 42.2%, 48.2%, and 60.2%; for eastern Madaba, coverage was 50.0%, 62.2%, and 73.2%, respectively. In Amman 25.8% of children received 1-3 PCV7 injections compared to 1.9% of children in eastern Madaba. CONCLUSIONS There were significant differences in carriage, resistance, and coverage between both regions. The potential inclusion of a PCV vaccination program for rural areas is essential.
Collapse
Affiliation(s)
- Adnan Al-Lahham
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
- Correspondence: ; Tel.: +962-799706079
| | - Nashat Khanfar
- Pediatric Clinic, Khalda, Salim Khouri Str. 48, Amman 11953, Jordan;
| | - Noor Albataina
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
| | - Rana Al Shwayat
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
| | - Rawsan Altwal
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
| | - Talal Abulfeilat
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
| | - Ghaith Alawneh
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
| | - Mohammad Khurd
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
| | - Abdelsalam Alqadi Altamimi
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
| |
Collapse
|
11
|
Zhang T, Zhang J, Shao X, Feng S, Xu X, Zheng B, Liu C, Dai Z, Jiang Q, Gessner BD, Chen Q, Zhu J, Luan L, Tian J, Zhao G. Effectiveness of 13-valent pneumococcal conjugate vaccine against community acquired pneumonia among children in China, an observational cohort study. Vaccine 2021; 39:4620-4627. [PMID: 34253417 DOI: 10.1016/j.vaccine.2021.06.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND In China, 13-valent pneumococcal conjugate vaccine (PCV13) has been available since 2017, but only via the private market with low uptake rate. We assessed the direct effectiveness of PCV13 against community acquired pneumonia (CAP) associated with PCV13 serotype carriage (VT-CAP). METHODS We conducted an observational cohort study of children born during 12-Dec-2016 to 30-Nov-2018 identified in the Suzhou Centers for Disease Control vaccine registry database, and who had at least one inpatient or outpatient record at the Suzhou University Affiliated Children's hospital (SCH) health-information-system (HIS) database. The vaccine registry cohort was followed through the HIS database through 30-Jun-2019 to identify hospitalized VT-CAP. Pneumococci were isolated from deep upper respiratory aspirates and serotyped with Quellung reactions. RESULTS We included 139,127 children of whom 9024 (6.5%) received 1 + PCV13 doses (95.8% received 2 + doses). Within the total cohort, we identified 548 children hospitalized at SCH for VT-CAP, of whom 10 had received 2 + PCV13 doses. Adjusted for demographics, receipt of other childhood vaccines, and underlying medical conditions, the first visit vaccine effectiveness among children who had received 2 + PCV13 doses was 60.9% (95% CI: 25.8% to 79.4%) for VT-CAP and 17.9% (95% CI: 5.5% to 28.6%) for clinical CAP. Incidence rate reductions per 100,000 child-years of observation for all visits were 208 (95% CI: 118 to 298) for VT-CAP and 720 (95% CI: 304 to 1135) for clinical CAP. CONCLUSIONS PCV13 was protective against hospitalized VT-CAP and clinical CAP with large associated incidence rate reductions among children living in Suzhou, China.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jun Zhang
- Suzhou Center for Disease Prevention and Control, Suzhou, China
| | - Xuejun Shao
- Suzhou University Affiliated Children's Hospital, Suzhou, China
| | - Shuang Feng
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Xinxin Xu
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Benfeng Zheng
- Suzhou Center for Disease Prevention and Control, Suzhou, China
| | - Changpeng Liu
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Zirui Dai
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Qin Jiang
- Pfizer, Collegeville, PA, United States
| | | | - Qinghui Chen
- Suzhou University Affiliated Children's Hospital, Suzhou, China
| | - Jun Zhu
- Suzhou University Affiliated Children's Hospital, Suzhou, China
| | - Lin Luan
- Suzhou Center for Disease Prevention and Control, Suzhou, China
| | - Jianmei Tian
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| | - Genming Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
12
|
Delic S, Mijac V, Gajic I, Kekic D, Ranin L, Jegorovic B, Culic D, Cirkovic V, Siljic M, Stanojevic M, Paragi M, Markovic M, Opavski N. A Laboratory-Based Surveillance Study of Invasive Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae Diseases in a Serbian Pediatric Population-Implications for Vaccination. Diagnostics (Basel) 2021; 11:1059. [PMID: 34207530 PMCID: PMC8228891 DOI: 10.3390/diagnostics11061059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to present the epidemiology of invasive diseases caused by Neisseria meningitidis and Streptococcus pneumoniae in the pre-vaccine period, and Haemophilus influenzae in the post-vaccine period in a pediatric population from Serbia. Among the meningococci, serogroup B dominated (83%), followed by serogroup C (11.3%). High antigenic diversity was found, with fine type P1.5-1,10-4 being the most frequent. Moderate susceptibility to penicillin was common (55%). Within pneumococci, serotypes 19F, 14, 6B, 6A, 18C, 23F, 3, and 7F prevailed, while 19A was rare (3.6%). The coverages of PCV10 and PCV13 were 68% and 84%, respectively. Major sequence types were ST320, ST15, ST273, ST271, and ST81. Non-susceptibility to penicillin (66.7%), cefotaxime (37%), and macrolides (55%) was predominantly detected in vaccine-related serotypes. Among the 11 invasive H. influenzae isolates collected, there were six Hib, three non-type b, and two non-typeable strains (ntHi) that were antibiotic susceptible. These results imply a potential benefit of future Men-B vaccine implementations. For pneumococci, as PCV10 was recently introduced, a significant reduction of morbidity and antibiotic resistance might be expected. The efficiency of Hib vaccination is evident, but a shift towards non-type b and ntHi strains may be anticipated.
Collapse
Affiliation(s)
- Snezana Delic
- Centre for Microbiology, National Reference Laboratory for Meningococcus and Haemophilus, Institute of Public Health, 25101 Sombor, Serbia
| | - Vera Mijac
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
- National Reference Laboratory for Streptococci, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Ina Gajic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
- National Reference Laboratory for Streptococci, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Dusan Kekic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
- National Reference Laboratory for Streptococci, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Lazar Ranin
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
- National Reference Laboratory for Streptococci, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Boris Jegorovic
- Clinical Centre of Serbia, University Hospital for Infectious and Tropical Diseases, 11000 Belgrade, Serbia
| | - Davor Culic
- Centre for Microbiology, National Reference Laboratory for Meningococcus and Haemophilus, Institute of Public Health, 25101 Sombor, Serbia
| | - Valentina Cirkovic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Marina Siljic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Maja Stanojevic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Metka Paragi
- National Laboratory of Health Environment and Food, Department for Public Health Microbiology, 1000 Ljubljana, Slovenia
| | - Milos Markovic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Natasa Opavski
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
- National Reference Laboratory for Streptococci, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
Wang J, Bai S, Zhou S, Zhao W, Li Q, Lv M, Zhang P, Zhang H, Lan W, Kang Y, Wang Y, Li J, Gao X, Tong X, Wu J, Zheng Q. Immunogenicity and safety of 7-valent pneumococcal conjugate vaccine (PCV7) in children aged 2-5 years in China. Vaccine 2021; 39:3428-3434. [PMID: 33965257 DOI: 10.1016/j.vaccine.2021.04.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND The widespread use of pneumococcal conjugate vaccines (PCVs) has significantly decreased pneumococcal disease worldwide. However, China has not adopted PCVs in their national immunization schedules and had only approved these vaccines for children aged 2-15 months by 2020. METHODS In an open-label trial, enrolled healthy children aged 2-5 years old were randomized 1:1 and divided into a 7-valent pneumococcal conjugate vaccine (PCV7) group and a Haemophilus influenzae type b conjugate vaccine (Hib) group. Children in the PCV7 group received a single dose of PCV7, and the Hib group received a single dose of Hib vaccine. Blood samples were collected before and 6 months after vaccination. Immunogenicity and safety of PCV7 were assessed at prespecified time points. RESULTS Six months after a single dose of PCV7, children in the PCV7 group for all 7 serotypes, IgG mean concentrations (GMCs) and opsonophagocytic geometric mean titres (GMTs) were significantly higher (P < .001) than at baseline, and the proportion of IgG ≥ 0.35 µg/mL ranged from 90.0% to 100%. Although the antibody level increased with age, preexisting antibodies did not induce hyporesponsiveness to PCV7. In the Hib group, the antibody levels were not significantly different or had changed slightly at 6 months. PCV7 was well tolerated in all age groups, and no serious adverse events (AEs) emerged during this study. CONCLUSIONS A single dose of PCV7 was immunogenic and safe for Chinese children aged 2-5 years, and the preexisting antibodies against the PCV7 serotypes did not change the response to vaccination. The findingssupported the effectiveness of PCV7 in this age group. PCVs with broader serotype coverage are expected to expand pneumococcal disease protection.
Collapse
Affiliation(s)
- Jian Wang
- Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Preventive Medicine, Beijing, China
| | - Shuang Bai
- Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Preventive Medicine, Beijing, China
| | - Shanshan Zhou
- Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Preventive Medicine, Beijing, China
| | - Wei Zhao
- Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Preventive Medicine, Beijing, China
| | - Qin Li
- Department of Laboratory, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Min Lv
- Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Preventive Medicine, Beijing, China
| | - Peng Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Preventive Medicine, Beijing, China
| | - Haizhou Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Preventive Medicine, Beijing, China
| | - Wenwen Lan
- Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Preventive Medicine, Beijing, China
| | - Yanli Kang
- Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Preventive Medicine, Beijing, China
| | - Yali Wang
- Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Preventive Medicine, Beijing, China
| | - Jin Li
- Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Preventive Medicine, Beijing, China
| | - Xiaotong Gao
- Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Preventive Medicine, Beijing, China
| | - Xiaomei Tong
- Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Preventive Medicine, Beijing, China
| | - Jiang Wu
- Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Preventive Medicine, Beijing, China
| | - Qun Zheng
- Experimental Center for Basic Medical Teaching, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Case-Control Microbiome Study of Chronic Otitis Media with Effusion in Children Points at Streptococcus salivarius as a Pathobiont-Inhibiting Species. mSystems 2021; 6:6/2/e00056-21. [PMID: 33879499 PMCID: PMC8546964 DOI: 10.1128/msystems.00056-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chronic otitis media with effusion (OME) has been associated with a shift in microbiome composition and microbial interaction in the upper respiratory tract (URT). While most studies have focused on potential pathogens, this study aimed to find bacteria that could be protective against OME through a case-control microbiome study and characterization of isolates from healthy subjects. The URT and ear microbiome profiles of 70 chronic OME patients and 53 controls were compared by 16S rRNA amplicon sequencing. Haemophilus influenzae was the most frequent classic middle ear pathobiont. However, other taxa, especially Alloiococcus otitis, were also frequently detected in the ear canal of OME patients. Streptococci of the salivarius group and Acinetobacter lwoffii were more abundant in the nasopharynx of healthy controls than in OME patients. In addition to the microbiome analysis, 142 taxa were isolated from healthy individuals, and 79 isolates of 13 different Streptococcus species were tested for their pathobiont-inhibiting potential. Of these, Streptococcus salivarius isolates showed a superior capacity to inhibit the growth of H. influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, A. otitis, and Corynebacterium otitidis. S. salivarius strains thus show potential as a probiotic for prevention or treatment of OME based on their overrepresentation in the healthy nasopharynx and their ability to inhibit the growth of respiratory pathobionts. (This study has been registered at ClinicalTrials.gov under registration no. NCT03109496.) IMPORTANCE The majority of probiotics marketed today target gastrointestinal health. This study searched for bacteria native to the human upper respiratory tract, with a beneficial potential for respiratory and middle ear health. Comparison of the microbiomes of children with chronic otitis media with effusion (OME) and of healthy controls identified Streptococcus salivarius as a health-associated and prevalent inhabitant of the human nasopharynx. However, beneficial potential should be assessed at strain level. Here, we also isolated specific S. salivarius strains from the healthy individuals in our study. These isolates showed a beneficial safety profile and efficacy potential to inhibit OME pathogens in vitro. These properties will now have to be evaluated and confirmed in human clinical studies.
Collapse
|
15
|
Dynamics of antimicrobial resistance of Streptococcus pneumoniae following PCV10 introduction in Brazil: Nationwide surveillance from 2007 to 2019. Vaccine 2021; 39:3207-3215. [PMID: 33707062 DOI: 10.1016/j.vaccine.2021.02.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Brazil introduced 10-valent pneumococcal conjugate vaccine (PCV10) into its immunization program in 2010. We assessed antimicrobial susceptibility of Streptococcus pneumoniae (Spn) obtained from a national surveillance system for invasive pneumococcal diseases (IPD) before/after PCV10 introduction. METHODS Antimicrobial non-susceptible isolates were defined as intermediate or resistant. Minimum inhibitory concentrations (MICs) to penicillin and ceftriaxone were analyzed by year. Antimicrobial susceptibility rates were assessed for each three-year-period using the pre-PCV10-period as reference. Susceptibility of vaccine-types was evaluated for 2017-2019. RESULTS 11,380 isolates were studied. Spn with penicillin ≥ 0.125 mg/L and ceftriaxone ≥ 1.0 mg/L decreased in the three-years after PCV10 introduction (2011-2013: penicillin, 28.1-22.5%; ceftriaxone, 11.3%-7.6%) versus pre-PCV10-years (2007-2009: penicillin, 33.8-38.1%; ceftriaxone, 17.2%-15.6%). After 2013, the proportion of Spn with those MICs to penicillin and ceftriaxone increased to 39.4% and 19.7% in 2019, respectively. Non-susceptibility to penicillin and ceftriaxone increased in 2014-2016, and again in 2017-2019 especially among children < 5 years with meningitis (penicillin, 53.9%; ceftriaxone, 28.0%); multidrug-resistance reached 25% in 2017-2019. Serotypes 19A, 6C and 23A were most associated with antimicrobial non-susceptibility. CONCLUSIONS Antimicrobial non-susceptible Spn decreased in the three-years after vaccination but subsequently increased and was associated with non-PCV10-types. Antimicrobial susceptibility surveillance is fundamental for guiding antibiotic therapy policies.
Collapse
|
16
|
Ekinci E, Desmet S, Van Heirstraeten L, Mertens C, Wouters I, Beutels P, Verhaegen J, Malhotra-Kumar S, Theeten H. Streptococcus pneumoniae Serotypes Carried by Young Children and Their Association With Acute Otitis Media During the Period 2016-2019. Front Pediatr 2021; 9:664083. [PMID: 34291017 PMCID: PMC8286995 DOI: 10.3389/fped.2021.664083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Streptococcus pneumoniae (Sp) is a major cause of acute otitis media (AOM). Pneumococcal conjugate vaccine (PCV) programs have altered pneumococcal serotype epidemiology in disease and carriage. In this study, we used samples collected during a cross-sectional study to examine if the clinical picture of acute otitis media (AOM) in young children exposed to the PCV program in Belgium was related to the carried pneumococcal strains, and if their carriage profile differed from healthy children attending daycare centers. Material/Methods: In three collection periods from February 2016 to May 2018, nasopharyngeal swabs and background characteristics were collected from children aged 6-30 months either presenting at their physician with AOM (AOM-group) or healthy and attending day care (DCC-group). Clinical signs of AOM episodes and treatment schedule were registered by the physicians. Sp was detected, quantified, and characterized using both conventional culture analysis and real-time PCR analysis. Results: Among 3,264 collected samples, overall pneumococcal carriage and density were found at similar rates in both AOM and DCC. As expected non-vaccine serotypes were most frequent: 23B (AOM: 12.3%; DCC: 17.4%), 11A (AOM: 7.5%; DCC: 7.4%) and 15B (AOM: 7.5%; DCC: 7.1%). Serotypes 3, 6C, 7B, 9N, 12F, 17F, and 29 were more often found in AOM than in DCC (p-value < 0.05), whereas 23A and 23B were less often present in AOM (p-value < 0.05). Antibiotic non-susceptibility of Sp strains was similar in both groups. No predictors of AOM severity were identified. Conclusion: In the present study, overall carriage prevalence and density of S. pneumoniae were found similar in young children with AOM and in healthy children attending day-care centers in Belgium. Certain serotypes not currently included in the PCV vaccines were found to be carried more often in children with AOM than in DCC, a finding that might suggest a relationship between these serotypes and AOM.
Collapse
Affiliation(s)
- Esra Ekinci
- Centre for Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Stefanie Desmet
- Reference Centre for Pneumococci, University Hospitals Leuven, Leuven, Belgium
| | - Liesbet Van Heirstraeten
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Colette Mertens
- Centre for Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Ine Wouters
- Centre for Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Philippe Beutels
- Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium
| | - Jan Verhaegen
- Reference Centre for Pneumococci, University Hospitals Leuven, Leuven, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Heidi Theeten
- Centre for Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
17
|
Desmet S, Wouters I, Heirstraeten LV, Beutels P, Van Damme P, Malhotra-Kumar S, Maes P, Verhaegen J, Peetermans WE, Lagrou K, Theeten H. In-depth analysis of pneumococcal serotypes in Belgian children (2015-2018): Diversity, invasive disease potential, and antimicrobial susceptibility in carriage and disease. Vaccine 2020; 39:372-379. [PMID: 33308889 DOI: 10.1016/j.vaccine.2020.11.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Changes in serotype distribution have been described after the switch from the 13-valent pneumococcal conjugate vaccine (PCV13) to the 10-valent pneumococcal conjugate vaccine (PCV10) in Belgium. AIM To describe serotype's invasive disease potential and the detailed evolution of serotype distribution and antimicrobial susceptibility of pneumococcal isolates (carriage and IPD) in children up to 30 months of age over a period during and after the vaccine switch (2015-2018). METHODS S. pneumoniae strains isolated from the nasopharynx of healthy children attending day-care centres (DCCs) and strains from normally sterile sites of children with IPD were serotyped (Quellung-reaction) and antimicrobial susceptibility testing was performed. Invasive disease potential was defined as the serotype-specific odds ratio (OR). RESULTS The highly invasive (OR > 1) serotypes 12F, 1, 3, 24A/B/F, 33F, 19A, and 9N were not frequently carried (<7.5% of carriage strains). Different serotypes dominated in carriage (23B, 23A, 11A, 15B) versus IPD (12F, 19A, 10A, 33F). PCV13 vaccine serotypes increased in carriage (5.4% (25/463) in period 1 vs 10.3% (69/668) in period 3) and in IPD (7.3% (8/110 in period 1 vs 23.9% (34/142) in period 3) due to an increase (p < 0.01) in serotype 19A. The penicillin non-susceptibility of 19A was lower (p = 0.02) in carriage (6.8%) than in IPD (23.5%). Erythromycin and tetracycline non-susceptibility were more frequent (p < 0.01) in IPD (26.0%; 23.0%) compared to carriage strains (18.2%; 14.5%) and penicillin non-susceptibility increased over the three year study period (carriage: 13.4%, 19.8%, 18.5%, p = 0.05; IPD: 11.8%, 15.0%, 20.4%, p = 0.02). CONCLUSION Only some of the serotypes with high invasive disease potential (serotype 1, 3, 19A) in Belgium are included in PCV10 and/or PCV13. This reinforces the need for continuous monitoring, both in healthy children as in children with IPD, to better understand the dynamics of pneumococcal disease, to optimise the composition and implementation of PCVs.
Collapse
Affiliation(s)
- Stefanie Desmet
- Reference Centre for Pneumococci, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Ine Wouters
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Liesbet Van Heirstraeten
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Philippe Beutels
- Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Piet Maes
- Reference Centre for Pneumococci, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jan Verhaegen
- Reference Centre for Pneumococci, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Willy E Peetermans
- Reference Centre for Pneumococci, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Katrien Lagrou
- Reference Centre for Pneumococci, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Heidi Theeten
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
18
|
Lee J, Kim KH, Jo DS, Ma SH, Kim JH, Kim CS, Kim HM, Kang JH. A longitudinal hospital-based epidemiology study to assess acute otitis media incidence and nasopharyngeal carriage in Korean children up to 24 months. Hum Vaccin Immunother 2020; 16:3090-3097. [PMID: 32330397 DOI: 10.1080/21645515.2020.1748978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
This study was conducted to assess the nasopharyngeal (NP) carriage and acute otitis media (AOM) occurrence in Korean children who received pneumococcal conjugate vaccines (PCVs). The longitudinal study was conducted through four consecutive visits. At each visit, NP aspirates were obtained and subjects were asked to visit if AOM occurred. A total of 305 subjects were enrolled and received PCV13 (n = 182) or PCV10 (n = 123). In the PCV13 group, the NP carriage of Streptococcus pneumoniae at each visit was 2.7%, 14.8%, 18.7%, and 15.9%, respectively. Non-typeable Haemophilus influenzae (NTHi) was 3.3%, 2.7%, 2.7%, and 5.5%, and that of Moraxella catarrhalis was 1.1%, 9.3%, 4.9%, and 0.5%. In the PCV10 group, the NP carriage of S. pneumoniae at each visit was 3.3%, 7.3%, 6.5%, and 4.1%, respectively. That of NTHi was 2.4%, 4.1%, 1.6%, and 0.8%, and that of M. catarrhalis was 4.1%, 0.8%, 0.8%, and 0.0%. AOM occurrence in the PCV13 group observed after the primary dose and before booster dose was 20.9%, occurrence after booster dose was 11.0%, and the incidence of two or more AOM was 11.0%. In the PCV10 group, AOM occurrence was 9.8%, 7.3%, respectively, and the incidence of two or more AOM was 2.4%. The predominant S. pneumoniae isolated were non-vaccine type (10A, 15A, and 15B). In this study, AOM occurrence was lower in the PCV10 group than in the PCV13 group. This seems to be related to ecological changes that lead to differences in NP carriage, especially S. pneumoniae and NTHi.
Collapse
Affiliation(s)
- Jin Lee
- Department of Pediatrics, Hanil General Hospital , Seoul, Republic of Korea
| | - Ki Hwan Kim
- Department of Pediatrics, Incheon St. Mary's Hospital, The Catholic University of Korea , Incheon, Republic of Korea
| | - Dae Sun Jo
- Department of Pediatrics, Chonbuk National University Children's Hospital , Jeonju, Republic of Korea
| | - Sang Hyuk Ma
- Department of Pediatrics, Changwon Fatima Hospital , Changwon, Republic of Korea
| | - Jong-Hyun Kim
- Department of Pediatrics, St. Vincent's Hospital, the Catholic University of Korea , Suwon, Republic of Korea
| | - Chun Soo Kim
- Department of Pediatrics, Dongsan Medical Center, Keimyung University School of Medicine , Daegu, Republic of Korea
| | - Hwang Min Kim
- Department of Pediatrics, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine , Wonju, Republic of Korea
| | - Jin Han Kang
- Department of Pediatrics, Seoul St. Mary's Hospital, The Catholic University of Korea , Seoul, Republic of Korea
| |
Collapse
|
19
|
Wouters I, Desmet S, Van Heirstraeten L, Herzog SA, Beutels P, Verhaegen J, Goossens H, Van Damme P, Malhotra-Kumar S, Theeten H. How nasopharyngeal pneumococcal carriage evolved during and after a PCV13-to-PCV10 vaccination programme switch in Belgium, 2016 to 2018. ACTA ACUST UNITED AC 2020; 25. [PMID: 32046817 PMCID: PMC7014673 DOI: 10.2807/1560-7917.es.2020.25.5.1900303] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background The current carriage study was set up to reinforce surveillance during/after the PCV13-to-PCVC10 switch in Belgium. Aim This observational study monitored carriage of Streptococcus pneumoniae (Sp) serotypes, particularly those no longer covered (3, 6A, 19A), as well as Haemophilus influenzae (Hi), because PCV10 contains the non-typeable Hi protein D. Methods A total of 2,615 nasopharyngeal swabs from children (6–30 months old) attending day care were collected in three periods over 2016–2018. Children’s demographic and clinical characteristics and vaccination status were obtained through a questionnaire. Sp and Hi were identified by culture and PCR. Pneumococcal strains were tested for antimicrobial (non-)susceptibility by disc diffusion and serotyped by Quellung-reaction (Quellung-reaction and PCR for serotypes 3, 6A, 19A). Results The carriage prevalence of Sp (> 75%) remained stable over the successive periods but that of Hi increased (87.4%, 664 Hi-carriers/760 in 2016 vs 93.9%, 895/953 in 2017–2018). The proportion of non-PCV13 vaccine serotypes decreased (94.6%, 438 isolates/463 in 2016 vs 89.7%, 599/668 in 2017–2018) while that of PCV13-non-PCV10 vaccine serotypes (3 + 6A + 19A) increased (0.9%, 4 isolates/463 in 2016 vs 7.8%, 52/668 in 2017–2018), with serotype 19A most frequently identified (87.9%, 58/66 isolates). Non-susceptibility of pneumococci against any of the tested antibiotics was stable over the study period (> 44%). Conclusions During and after the PCV13-to-PCV10 vaccine switch, the proportion of non-PCV13 serotypes decreased, mainly due to a serotype 19A carriage prevalence increase. These results complement invasive pneumococcal disease surveillance data, providing further basis for pneumococcal vaccination programme policy making.
Collapse
Affiliation(s)
- Ine Wouters
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Stefanie Desmet
- Reference Centre for Pneumococci, University Hospitals Leuven, Leuven, Belgium
| | - Liesbet Van Heirstraeten
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Sereina A Herzog
- Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Wilrijk, Belgium
| | - Philippe Beutels
- Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Wilrijk, Belgium
| | - Jan Verhaegen
- Reference Centre for Pneumococci, University Hospitals Leuven, Leuven, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Heidi Theeten
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | -
- The members of the NPcarriage Study Group are listed at the end of the article
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW This review highlights the recent impacts of vaccines against the major bacterial causes of meningitis in children, and the challenges for further prevention of bacterial meningitis, with a focus on Streptococcus pneumoniae, Neisseria meningitidis and group B Streptococcus. RECENT FINDINGS Conjugate vaccines against S. pneumoniae and N. meningitidis have resulted in dramatic reductions in bacterial meningitis globally where they have been used. Recent licensure and use of capsular group B meningococcal protein vaccines have further reduced meningococcal meningitis in infants, young children and adolescents for countries with endemic disease and during outbreaks. SUMMARY Existing vaccines to prevent bacterial meningitis in children should be utilized in countries with significant numbers of cases of pneumococcal and/or meningococcal meningitis. Vaccines, which are able to protect against more than 13 serotypes of S. pneumoniae are in clinical trials and should be able to further reduce pneumococcal meningitis cases. Cost effective meningococcal vaccines against non-A capsular groups are needed for low-resource countries. There remains an urgent need for a vaccine against group B Streptococcus, which is a major cause of neonatal meningitis globally and for which no vaccine currently exists.
Collapse
|
21
|
Desmet S, Lagrou K, Wyndham-Thomas C, Braeye T, Verhaegen J, Maes P, Fieuws S, Peetermans WE, Blumental S. Dynamic changes in paediatric invasive pneumococcal disease after sequential switches of conjugate vaccine in Belgium: a national retrospective observational study. THE LANCET. INFECTIOUS DISEASES 2020; 21:127-136. [PMID: 32702303 DOI: 10.1016/s1473-3099(20)30173-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/16/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ten-valent and 13-valent pneumococcal conjugate vaccines (PCVs) have shown important benefits by decreasing invasive pneumococcal disease caused by vaccine serotypes. Belgium had an uncommon situation with sequential use of PCV7, PCV13, and PCV10 in the childhood vaccination programmes between 2007 and 2018. We aimed to analyse the changes in incidence of invasive pneumococcal disease and serotype distribution in children throughout this period. METHODS Streptococcus pneumoniae isolates were obtained from patients with invasive pneumococcal disease in Belgium between 2007 and 2018 by the national laboratory-based surveillance. Paediatric invasive pneumococcal disease incidence, serotype distribution, and antimicrobial susceptibility were analysed in periods during which PCV7 (2009-10), PCV13 (2013-14), both PCV13 and PCV10 (2015-16), and PCV10 (2017-18) were used. Incidence rates and trends were compared. Vaccination status was collected. For a subset of serotype 19A isolates, multilocus sequence type was identified. FINDINGS After a decrease in PCV7 serotype invasive pneumococcal disease was observed during the PCV7 period, total paediatric invasive pneumococcal disease incidence significantly declined during the PCV13 period (-2·6% monthly, p<0·0001). During the PCV13-PCV10 period (2015-16), the lowest mean in paediatric invasive pneumococcal disease incidence was achieved, but the incidence increased again during the PCV10 period (2017-18), especially in children younger than 2 years (+1·7% monthly; p=0·028). This increase was mainly due to a significant rise in serotype 19A invasive pneumococcal disease incidence in the PCV10 period compared with the PCV13 period (p<0·0001), making serotype 19A the predominant serotype in paediatric invasive pneumococcal disease in the PCV10 period. Genetic diversity within the 2017-18 serotype 19A collection was seen, with two predominant clones, ST416 and ST994, that were infrequently observed before PCV10 introduction. In 2018, among children younger than 5 years with invasive pneumococcal disease who were correctly vaccinated, 37% (37 of 100) had PCV13 serotype invasive pneumococcal disease, all caused by serotype 19A and serotype 3. INTERPRETATION After a significant decrease during the PCV13 period, paediatric invasive pneumococcal disease incidence increased again during the PCV10 period. This observation mainly resulted from a significant increase of serotype 19A cases. During the PCV10 period, dominant serotype 19A clones differed from those detected during previous vaccine periods. Whether changes in epidemiology resulted from the vaccine switch or also from natural evolution remains to be further elucidated. FUNDING The Belgian National Reference is funded by the Belgian National Institute for Health and Disability Insurance and the whole genome sequencing by an investigator-initiated research grant from Pfizer.
Collapse
Affiliation(s)
- Stefanie Desmet
- National Reference Centre for Streptococcus pneumoniae, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| | - Katrien Lagrou
- National Reference Centre for Streptococcus pneumoniae, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | | - Toon Braeye
- Department Epidemiology of Infectious Diseases, Sciensano, Brussels, Belgium; Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | - Jan Verhaegen
- National Reference Centre for Streptococcus pneumoniae, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Steffen Fieuws
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, KU Leuven, University of Leuven and Universiteit Hasselt, Leuven, Belgium
| | - Willy E Peetermans
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Sophie Blumental
- Hôpital Universitaire des Enfants Reine Fabiola, Unité de Maladies Infectieuses Pédiatriques, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
22
|
Vyse A, Theilacker C, Sings H, Fletcher M. Pneumococcal immunization with conjugate vaccines – are 10-valent and 13-valent vaccines similar? Future Microbiol 2020; 15:575-577. [DOI: 10.2217/fmb-2019-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Andrew Vyse
- Vaccines Medical, Pfizer Limited, Walton Oaks, Surrey, UK
| | - Christian Theilacker
- Vaccines Medical Development & Scientific & Clinical Affairs, Pfizer Inc, Collegeville, PA 19426, USA
| | - Heather Sings
- Vaccines Medical Development & Scientific & Clinical Affairs, Pfizer Inc, Collegeville, PA 19426, USA
| | | |
Collapse
|
23
|
Tin Tin Htar M, Sings HL, Syrochkina M, Taysi B, Hilton B, Schmitt HJ, Gessner BD, Jodar L. The impact of pneumococcal conjugate vaccines on serotype 19A nasopharyngeal carriage. Expert Rev Vaccines 2019; 18:1243-1270. [DOI: 10.1080/14760584.2019.1675521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Heather L. Sings
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Maria Syrochkina
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc, Moscow, Russia
| | - Bulent Taysi
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc, Istanbul, Turkey
| | - Betsy Hilton
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Heinz-Josef Schmitt
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Bradford D. Gessner
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Luis Jodar
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|