1
|
Myers ML, Conlon MT, Gallagher JR, Woolfork DD, Khorrami ND, Park WB, Stradtman-Carvalho RK, Harris AK. Analysis of polyclonal and monoclonal antibody to the influenza virus nucleoprotein in different oligomeric states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612748. [PMID: 39372734 PMCID: PMC11451747 DOI: 10.1101/2024.09.12.612748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Influenza virus nucleoprotein (NP) is one of the most conserved influenza proteins. Both NP antigen and anti-NP antibodies are used as reagents in influenza diagnostic kits, with applications in both clinical practice, and influenza zoonotic surveillance programs. Despite this, studies on the biochemical basis of NP diagnostic serology and NP epitopes are not as developed as for hemagglutinin (HA), the fast-evolving antigen which has been the critical component of current influenza vaccines. Here, we characterized the NP serology of mice, ferret, and human sera and the immunogenic effects of NP antigen presented as different structural complexes. Furthermore, we show that a classical anti-NP mouse mAb HB65 could detect NP in some commercial influenza vaccines. MAb HB65 bound a linear epitope with nanomolar affinity. Our analysis suggests that linear NP epitopes paired with their corresponding characterized detection antibodies could aid in designing and improving diagnostic technologies for influenza virus.
Collapse
Affiliation(s)
- Mallory L. Myers
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Michael T. Conlon
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
- Current Address: Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA 98195
| | - John R. Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - De’Marcus D. Woolfork
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Noah D. Khorrami
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - William B. Park
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Regan K. Stradtman-Carvalho
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Audray K. Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| |
Collapse
|
2
|
Salgado CL, Corea AFM, Covre LP, Fonseca-Martins AMD, Falqueto A, Guedes HLDM, Rossi-Bergmann B, Gomes DCO. Intranasal delivery of LaAg vaccine improves immunity of aged mice against visceral Leishmaniasis. Acta Trop 2024; 252:107125. [PMID: 38280636 DOI: 10.1016/j.actatropica.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
There are no approved vaccines yet for human visceral leishmaniasis (VL), the most severe form of the leishmaniasis clinical manifestations that is fatal in over 95 % of untreated cases. It is well-accepted that immunological changes during aging have deleterious impact on the efficacy of vaccines and response to infections. In this work, we compared the response of young and aged mice to intranasal vaccination with killed Leishmania amazonensis promastigote antigens (LaAg) that were then challenged with L. infantum infection, a species that causes visceral leishmaniasis. Intranasal vaccination with LaAg induced a similar reduction in parasitism and hepatosplenomegaly in both young and aged mice compared to their unvaccinated counterparts. Following infection, there was also a less prominent inflammatory profile particularly in the vaccinated aged group, with lower production of TNF-α and nitrite compared to the respective unvaccinated group. Interestingly, the LaAg intranasal vaccination promoted increased production of IFN-γ that was observed in both young- and aged vaccinated groups. Additionally, CD4+ and CD8+T cells from both vaccinated groups presented decreased expression of the inhibitory receptors PD-1 and KLRG1 compared to their unvaccinated controls. Interestingly, a strong positive correlation was observed between the expression of both inhibitory receptors PD-1 and KLRG1 and parasitism, which was more conspicuous in the unvaccinated-aged mice than in the others. Overall, this study helps define new strategies to improve vaccine effectiveness and provides a perspective for prophylactic alternatives against leishmaniasis.
Collapse
Affiliation(s)
- Caio Loureiro Salgado
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | | | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil; Division of Medicine, University College London, London, United Kingdom
| | | | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Cláudio Oliviera Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil; Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, Brazil.
| |
Collapse
|
3
|
Rak A, Isakova-Sivak I, Rudenko L. Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines. Vaccines (Basel) 2023; 11:1747. [PMID: 38140152 PMCID: PMC10747533 DOI: 10.3390/vaccines11121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Annual vaccination is considered as the main preventive strategy against seasonal influenza. Due to the highly variable nature of major viral antigens, such as hemagglutinin (HA) and neuraminidase (NA), influenza vaccine strains should be regularly updated to antigenically match the circulating viruses. The influenza virus nucleoprotein (NP) is much more conserved than HA and NA, and thus seems to be a promising target for the design of improved influenza vaccines with broad cross-reactivity against antigenically diverse influenza viruses. Traditional subunit or recombinant protein influenza vaccines do not contain the NP antigen, whereas live-attenuated influenza vaccines (LAIVs) express the viral NP within infected cells, thus inducing strong NP-specific antibodies and T-cell responses. Many strategies have been explored to design broadly protective NP-based vaccines, mostly targeted at the T-cell mode of immunity. Although the NP is highly conserved, it still undergoes slow evolutionary changes due to selective immune pressure, meaning that the particular NP antigen selected for vaccine design may have a significant impact on the overall immunogenicity and efficacy of the vaccine candidate. In this review, we summarize existing data on the conservation of the influenza A viral nucleoprotein and review the results of preclinical and clinical trials of NP-targeting influenza vaccine prototypes, focusing on the ability of NP-specific immune responses to protect against diverse influenza viruses.
Collapse
Affiliation(s)
| | | | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (A.R.); (I.I.-S.)
| |
Collapse
|
4
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
5
|
Henson TR, Richards KA, Gandhapudi SK, Woodward JG, Sant AJ. R-DOTAP Cationic Lipid Nanoparticles Outperform Squalene-Based Adjuvant Systems in Elicitation of CD4 T Cells after Recombinant Influenza Hemagglutinin Vaccination. Viruses 2023; 15:538. [PMID: 36851752 PMCID: PMC9959843 DOI: 10.3390/v15020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
It is clear that new approaches are needed to promote broadly protective immunity to viral pathogens, particularly those that are prone to mutation and escape from antibody-mediated immunity. Prototypic pathogens of this type are influenza and SARS-CoV-2, where the receptor-binding protein exhibits extremely high variability in its receptor-binding regions. T cells, known to target many viral proteins, and within these, highly conserved peptide epitopes, can contribute greatly to protective immunity through multiple mechanisms but are often poorly recruited by current vaccine strategies. Here, we have studied a promising novel pure enantio-specific cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (R-DOTAP), which was previously recognized for its ability to generate anti-tumor immunity through the induction of potent cytotoxic CD8 T cells. Using a preclinical mouse model, we have assessed an R-DOTAP nanoparticle adjuvant system for its ability to promote CD4 T cell responses to vaccination with recombinant influenza protein. Our studies revealed that R-DOTAP consistently outperformed a squalene-based adjuvant emulsion, even when it was introduced with a potent TLR agonist CpG, in the ability to elicit peptide epitope-specific CD4 T cells when quantified by IFN-γ and IL-2 ELISpot assays. Clinical testing of R-DOTAP containing vaccines in earlier work by others has demonstrated an acceptable safety profile. Hence, R-DOTAP can offer exciting opportunities as an immune stimulant for next-generation prophylactic recombinant protein-based vaccines.
Collapse
Affiliation(s)
- Thomas R. Henson
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Siva K. Gandhapudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40506, USA
| | - Jerold G. Woodward
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40506, USA
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
6
|
Portilho AI, Santos JS, Trzewikoswki de Lima G, Lima GG, De Gaspari E. Study of avidity-ELISA: Comparison of chaotropic agents, incubation temperature and affinity maturation after meningococcal immunization. J Immunol Methods 2023; 512:113387. [PMID: 36442652 DOI: 10.1016/j.jim.2022.113387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/14/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The avidity index (AI) measures the binding strength between the antibody and the antigen, reflecting the affinity maturation. It can be measured by a modified ELISA, adding a chaotropic agent to disrupt the antigen x antibody interaction. However, details of the protocols used affect the final results. We compared the AI of mice sera after a three-dose immunization with meningococcal antigens using different adjuvants. The AI was assessed using potassium thiocyanate (KSCN) and urea as chaotropic agents, incubated at 4 °C, room temperature (RT) and 37 °C. KSCN presented statistically different results when the incubation was set at 4 °C vs RT and 4 °C vs 37 °C, thus, the mean AI obtained were lower. For Urea, 4 °C vs 37 °C presented relevant differences. Using whole-cells suspensions or OMVs as coating antigen provided similar results in some protocols. Thus, the affinity maturation was assessed after each immunization dose and adjuvant use (aluminium hydroxide and dimethyldioctadecylammonium bromide) supported affinity maturation. It is important to study the AI as a functional parameter of humoral response, and both KSCN and Urea are suitable chaotropic agents, however, the protocols should be standardized considering the nature of the antigen, the chaotropic activity and overall laboratory conditions. Adjuvants are important tools to improve antibody avidity following immunization.
Collapse
Affiliation(s)
- Amanda Izeli Portilho
- Immunology Center, Adolfo Lutz Institute, São Paulo, SP, Brazil; Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, SP, Brazil.
| | | | - Gabriela Trzewikoswki de Lima
- Immunology Center, Adolfo Lutz Institute, São Paulo, SP, Brazil; Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, SP, Brazil
| | - Gabrielle Gimenes Lima
- Immunology Center, Adolfo Lutz Institute, São Paulo, SP, Brazil; Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, SP, Brazil.
| | - Elizabeth De Gaspari
- Immunology Center, Adolfo Lutz Institute, São Paulo, SP, Brazil; Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Kugler‐Umana O, Zhang W, Kuang Y, Liang J, Castonguay CH, Tonkonogy SL, Marshak‐Rothstein A, Devarajan P, Swain SL. IgD + age-associated B cells are the progenitors of the main T-independent B cell response to infection that generates protective Ab and can be induced by an inactivated vaccine in the aged. Aging Cell 2022; 21:e13705. [PMID: 36056604 PMCID: PMC9577953 DOI: 10.1111/acel.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/18/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
Age-associated B cells (ABC) accumulate with age and are associated with autoimmunity and chronic infection. However, their contributions to acute infection in the aged and their developmental pathways are unclear. We find that the response against influenza A virus infection in aged mice is dominated by a Fas+ GL7- effector B cell population we call infection-induced ABC (iABC). Most iABC express IgM and include antibody-secreting cells in the spleen, lung, and bone marrow. We find that in response to influenza, IgD+ CD21- CD23- ABC are the precursors of iABC and become memory B cells. These IgD+ ABC develop in germ-free mice, so are independent of foreign antigen recognition. The response of ABC to influenza infection, resulting in iABC, is T cell independent and requires both extrinsic TLR7 and TLR9 signals. In response to influenza infection, IgD+ ABC can induce a faster recovery of weight and higher total anti-influenza IgG and IgM titers that can neutralize virus. Immunization with whole inactivated virus also generates iABC in aged mice. Thus, in unimmunized aged mice, whose other B and T cell responses have waned, IgD+ ABC are likely the naive B cells with the potential to become Ab-secreting cells and to provide protection from infection in the aged.
Collapse
Affiliation(s)
- Olivia Kugler‐Umana
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Wenliang Zhang
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Yi Kuang
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Jialing Liang
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Catherine H. Castonguay
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Susan L. Tonkonogy
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ann Marshak‐Rothstein
- Department of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Susan L. Swain
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
8
|
Liu X, Zhao T, Wang L, Li M, Sun C, Shu Y. Strategies targeting hemagglutinin cocktail as a potential universal influenza vaccine. Front Microbiol 2022; 13:1014122. [PMID: 36246271 PMCID: PMC9558277 DOI: 10.3389/fmicb.2022.1014122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccination is the most effective means of protecting people from influenza virus infection. The effectiveness of existing vaccines is very limited due to antigenic drift of the influenza virus. Therefore, there is a requirement to develop a universal vaccine that provides broad and long-lasting protection against influenza. CD8+ T-cell response played a vital role in controlling influenza virus infection, reducing viral load, and less clinical syndrome. In this study, we optimized the HA sequences of human seasonal influenza viruses (H1N1, H3N2, Victoria, and Yamagata) by designing multivalent vaccine antigen sets using a mosaic vaccine design strategy and genetic algorithms, and designed an HA mosaic cocktail containing the most potential CTL epitopes of seasonal influenza viruses. We then tested the recombinant mosaic antigen, which has a significant number of potential T-cell epitopes. Results from genetic evolutionary analyses and 3D structural simulations demonstrated its potential to be an effective immunogen. In addition, we have modified an existing neutralizing antibody-based seasonal influenza virus vaccine to include a component that activates cross-protective T cells, which would provide an attractive strategy for improving human protection against seasonal influenza virus drift and mutation and provide an idea for the development of a rationally designed influenza vaccine targeting T lymphocyte immunity.
Collapse
Affiliation(s)
- Xuejie Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Tianyi Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Minchao Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yuelong Shu,
| |
Collapse
|
9
|
Carascal MB, Pavon RDN, Rivera WL. Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response. Front Immunol 2022; 13:878943. [PMID: 35663997 PMCID: PMC9162156 DOI: 10.3389/fimmu.2022.878943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Flu, a viral infection caused by the influenza virus, is still a global public health concern with potential to cause seasonal epidemics and pandemics. Vaccination is considered the most effective protective strategy against the infection. However, given the high plasticity of the virus and the suboptimal immunogenicity of existing influenza vaccines, scientists are moving toward the development of universal vaccines. An important property of universal vaccines is their ability to induce heterosubtypic immunity, i.e., a wide immune response coverage toward different influenza subtypes. With the increasing number of studies and mounting evidence on the safety and efficacy of recombinant influenza vaccines (RIVs), they have been proposed as promising platforms for the development of universal vaccines. This review highlights the current progress and advances in the development of RIVs in the context of heterosubtypic immunity induction toward universal vaccine production. In particular, this review discussed existing knowledge on influenza and vaccine development, current hemagglutinin-based RIVs in the market and in the pipeline, other potential vaccine targets for RIVs (neuraminidase, matrix 1 and 2, nucleoprotein, polymerase acidic, and basic 1 and 2 antigens), and deantigenization process. This review also provided discussion points and future perspectives in looking at RIVs as potential universal vaccine candidates for influenza.
Collapse
Affiliation(s)
- Mark B Carascal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.,Clinical and Translational Research Institute, The Medical City, Pasig City, Philippines
| | - Rance Derrick N Pavon
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
10
|
Tan MP, Tan WS, Mohamed Alitheen NB, Yap WB. M2e-Based Influenza Vaccines with Nucleoprotein: A Review. Vaccines (Basel) 2021; 9:739. [PMID: 34358155 PMCID: PMC8310010 DOI: 10.3390/vaccines9070739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022] Open
Abstract
Discovery of conserved antigens for universal influenza vaccines warrants solutions to a number of concerns pertinent to the currently licensed influenza vaccines, such as annual reformulation and mismatching with the circulating subtypes. The latter causes low vaccine efficacies, and hence leads to severe disease complications and high hospitalization rates among susceptible and immunocompromised individuals. A universal influenza vaccine ensures cross-protection against all influenza subtypes due to the presence of conserved epitopes that are found in the majority of, if not all, influenza types and subtypes, e.g., influenza matrix protein 2 ectodomain (M2e) and nucleoprotein (NP). Despite its relatively low immunogenicity, influenza M2e has been proven to induce humoral responses in human recipients. Influenza NP, on the other hand, promotes remarkable anti-influenza T-cell responses. Additionally, NP subunits are able to assemble into particles which can be further exploited as an adjuvant carrier for M2e peptide. Practically, the T-cell immunodominance of NP can be transferred to M2e when it is fused and expressed as a chimeric protein in heterologous hosts such as Escherichia coli without compromising the antigenicity. Given the ability of NP-M2e fusion protein in inducing cross-protective anti-influenza cell-mediated and humoral immunity, its potential as a universal influenza vaccine is therefore worth further exploration.
Collapse
Affiliation(s)
- Mei Peng Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.P.T.); (N.B.M.A.)
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.P.T.); (N.B.M.A.)
| | - Wei Boon Yap
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Biomedical Science Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
11
|
Targeting Antigens for Universal Influenza Vaccine Development. Viruses 2021; 13:v13060973. [PMID: 34073996 PMCID: PMC8225176 DOI: 10.3390/v13060973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.
Collapse
|
12
|
Chen J, Qiu M, Ye Z, Nyalile T, Li Y, Glass Z, Zhao X, Yang L, Chen J, Xu Q. In situ cancer vaccination using lipidoid nanoparticles. SCIENCE ADVANCES 2021; 7:7/19/eabf1244. [PMID: 33952519 PMCID: PMC8099179 DOI: 10.1126/sciadv.abf1244] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/17/2021] [Indexed: 05/08/2023]
Abstract
In situ vaccination is a promising strategy for cancer immunotherapy owing to its convenience and the ability to induce numerous tumor antigens. However, the advancement of in situ vaccination techniques has been hindered by low cross-presentation of tumor antigens and the immunosuppressive tumor microenvironment. To balance the safety and efficacy of in situ vaccination, we designed a lipidoid nanoparticle (LNP) to achieve simultaneously enhancing cross-presentation and STING activation. From combinatorial library screening, we identified 93-O17S-F, which promotes both the cross-presentation of tumor antigens and the intracellular delivery of cGAMP (STING agonist). Intratumor injection of 93-O17S-F/cGAMP in combination with pretreatment with doxorubicin exhibited excellent antitumor efficacy, with 35% of mice exhibiting total recovery from a primary B16F10 tumor and 71% of mice with a complete recovery from a subsequent challenge, indicating the induction of an immune memory against the tumor. This study provides a promising strategy for in situ cancer vaccination.
Collapse
Affiliation(s)
- Jinjin Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Min Qiu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Thomas Nyalile
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Zachary Glass
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Xuewei Zhao
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Liu Yang
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|