1
|
Arévalo‐Herrera M, Rincón‐Orozco B, González‐Escobar JM, Herrera‐Arévalo SM, Carrasquilla‐Agudelo E, Serna‐Ortega PA, Quiceno‐García S, Palacio‐Muñoz N, Rosero‐López B, Mondol‐Miranda E, Freyle‐Roman I, Mendoza‐Landinez B, Mora‐Guevara E, Santos‐Barbosa JC, Bohórquez‐Martínez F, Bolaños‐Cristancho N, Jiménez‐Serna M, Nieto‐Rojas MA, Suarez‐Zamora D, Quintero‐Espinosa J, Londoño‐Trujillo D, Herrera‐ Valencia S. Longitudinal Follow-Up of the Specific Antibody Response to SARS-CoV-2 Vaccination in Colombia. J Med Virol 2025; 97:e70133. [PMID: 39817585 PMCID: PMC11737005 DOI: 10.1002/jmv.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025]
Abstract
A total of 5011 adult volunteers attending vaccination centers in different regions of Colombia were enrolled in a 1-year prospective observational cohort study to evaluate the immunogenicity and effectiveness of SARS-CoV-2-based vaccines as part of a National Vaccine Program established to contain the COVID-19 pandemic. Following informed consent, 5,011 participants underwent a sociodemographic survey and PCR testing to assess SARS-CoV-2 infection. Blood samples were collected, and serum fractions were obtained from a participant subsample (n = 3441) at six-time points to assess virus-specific IgG responses to the Spike protein, its Receptor Binding Domain, and the Nucleoprotein by ELISA. Additionally, antibody-neutralizing activity was evaluated using a cPass SARS-CoV-2 neutralization kit. Most participants (95.8%; n = 4802) received between one Ad26. COV2.S (Janssen vaccine) and four vaccine doses of BNT162b2 (Pfizer/BioNTech), AZD1222 (AstraZeneca), mRNA-1273 (Moderna), CoronaVac (Sinovac), with some receiving vaccine combinations; a small group, 4.2% (n = 209), remained unvaccinated. Throughout the study, only 8.76% (n = 439) of the participants tested positive for SARS-CoV-2 by PCR. Notably, all participants seroconverted for IgG antibodies, with high seropositivity rates for S (99.8%; n = 4795), RBD (99.7%; n = 1691), and N (92.7%; n = 3072) proteins. Moreover, significant (92%-97%) neutralizing activity was observed for all four SARS-CoV-2 circulating variants. This study highlights the importance of assessing the duration of the IgG response to SARS-CoV-2 elicited by vaccination and infection, and the antibody neutralizing activity as a potential surrogate marker of protection. These findings provide important insight for further strengthening the vaccination strategies to control COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Juliana Quintero‐Espinosa
- Fundación Santa Fe de BogotáSalud PoblacionalColombia
- Departamento de Medicina Interna, Sección de Infectología, Fundación Santa Fe de Bogotá
| | | | | |
Collapse
|
2
|
Lopez-Perez M, Jain A, Davies DH, Vásquez-Jiménez JM, Herrera SM, Oñate J, Felgner PL, Herrera S, Arévalo-Herrera M. Profiling the antibody response of humans protected by immunization with Plasmodium vivax radiation-attenuated sporozoites. Sci Rep 2024; 14:2790. [PMID: 38307966 PMCID: PMC10837454 DOI: 10.1038/s41598-024-53175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Malaria sterile immunity has been reproducibly induced by immunization with Plasmodium radiation-attenuated sporozoites (RAS). Analyses of sera from RAS-immunized individuals allowed the identification of P. falciparum antigens, such as the circumsporozoite protein (CSP), the basis for the RTS, S and R21Matrix-M vaccines. Similar advances in P. vivax (Pv) vaccination have been elusive. We previously reported 42% (5/12) of sterile protection in malaria-unexposed, Duffy-positive (Fy +) volunteers immunized with PvRAS followed by a controlled human malaria infection (CHMI). Using a custom protein microarray displaying 515 Pv antigens, we found a significantly higher reactivity to PvCSP and one hypothetical protein (PVX_089630) in volunteers protected against P. vivax infection. In mock-vaccinated Fy + volunteers, a strong antibody response to CHMI was also observed. Although the Fy- volunteers immunized with non-irradiated Pv-infected mosquitoes (live sporozoites) did not develop malaria after CHMI, they recognized a high number of antigens, indicating the temporary presence of asexual parasites in peripheral blood. Together, our findings contribute to the understanding of the antibody response to P. vivax infection and allow the identification of novel parasite antigens as vaccine candidates.Trial registration: ClinicalTrials.gov number: NCT01082341.
Collapse
Affiliation(s)
- Mary Lopez-Perez
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
| | - Aarti Jain
- Department Physiology & Biophysics, Vaccine R&D Center, University of California Irvine, Irvine, CA, USA
| | - D Huw Davies
- Department Physiology & Biophysics, Vaccine R&D Center, University of California Irvine, Irvine, CA, USA
| | | | | | | | - Philip L Felgner
- Department Physiology & Biophysics, Vaccine R&D Center, University of California Irvine, Irvine, CA, USA
| | - Sócrates Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center, Cali, Colombia
| | - Myriam Arévalo-Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia.
- Caucaseco Scientific Research Center, Cali, Colombia.
| |
Collapse
|
3
|
Shears MJ, Reynolds RA, Duncombe CJ, Watson FN, Staubus WJ, Chavtur C, Seilie AM, Tran TM, Chakravarty S, Hoffman SL, Murphy SC. Plasmodium knowlesi in pig-tailed macaques: a potential new model for malaria vaccine research. Malar J 2023; 22:379. [PMID: 38093306 PMCID: PMC10720125 DOI: 10.1186/s12936-023-04788-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/11/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Plasmodium knowlesi is an established experimental model for basic and pre-clinical malaria vaccine research. Historically, rhesus macaques have been the most common host for malaria vaccine studies with P. knowlesi parasites. However, rhesus are not natural hosts for P. knowlesi, and there is interest in identifying alternative hosts for vaccine research. The study team previously reported that pig-tailed macaques (PTM), a natural host for P. knowlesi, could be challenged with cryopreserved P. knowlesi sporozoites (PkSPZ), with time to blood stage infection equivalent to in rhesus. Here, additional exploratory studies were performed to evaluate PTM as potential hosts for malaria vaccine studies. The aim was to further characterize the parasitological and veterinary health outcomes after PkSPZ challenge in this macaque species. METHODS Malaria-naïve PTM were intravenously challenged with 2.5 × 103 PkSPZ and monitored for blood stage infection by Plasmodium 18S rRNA RT-PCR and thin blood smears. Disease signs were evaluated by daily observations, complete blood counts, serum chemistry tests, and veterinary examinations. After anti-malarial drug treatment, a subset of animals was re-challenged and monitored as above. Whole blood gene expression analysis was performed on selected animals to assess host response to infection. RESULTS In naïve animals, the kinetics of P. knowlesi blood stage replication was reproducible, with parasite burden rising linearly during an initial acute phase of infection from 6 to 11 days post-challenge, before plateauing and transitioning into a chronic low-grade infection. After re-challenge, infections were again reproducible, but with lower blood stage parasite densities. Clinical signs of disease were absent or mild and anti-malarial treatment was not needed until the pre-defined study day. Whole blood gene expression analysis identified immunological changes associated with acute and chronic phases of infection, and further differences between initial challenge versus re-challenge. CONCLUSIONS The ability to challenge PTM with PkSPZ and achieve reliable blood stage infections indicate this model has significant potential for malaria vaccine studies. Blood stage P. knowlesi infection in PTM is characterized by low parasite burdens and a benign disease course, in contrast with the virulent P. knowlesi disease course commonly reported in rhesus macaques. These findings identify new opportunities for malaria vaccine research using this natural host-parasite combination.
Collapse
Affiliation(s)
- Melanie J Shears
- Department of Laboratory Medicine and Pathology, University of Washington, 750 Republican Street, F870, Seattle, WA, 98109, USA
- Center for Emerging and Re-Emerging Infectious Diseases, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
- Washington National Primate Research Center, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Rebekah A Reynolds
- Department of Laboratory Medicine and Pathology, University of Washington, 750 Republican Street, F870, Seattle, WA, 98109, USA
- Center for Emerging and Re-Emerging Infectious Diseases, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
| | - Caroline J Duncombe
- Department of Laboratory Medicine and Pathology, University of Washington, 750 Republican Street, F870, Seattle, WA, 98109, USA
- Center for Emerging and Re-Emerging Infectious Diseases, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
| | - Felicia N Watson
- Department of Laboratory Medicine and Pathology, University of Washington, 750 Republican Street, F870, Seattle, WA, 98109, USA
- Center for Emerging and Re-Emerging Infectious Diseases, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
| | - Weston J Staubus
- Department of Laboratory Medicine and Pathology, University of Washington, 750 Republican Street, F870, Seattle, WA, 98109, USA
- Center for Emerging and Re-Emerging Infectious Diseases, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
| | - Chris Chavtur
- Department of Laboratory Medicine and Pathology, University of Washington, 750 Republican Street, F870, Seattle, WA, 98109, USA
- Center for Emerging and Re-Emerging Infectious Diseases, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
| | - Annette M Seilie
- Department of Laboratory Medicine and Pathology, University of Washington, 750 Republican Street, F870, Seattle, WA, 98109, USA
- Center for Emerging and Re-Emerging Infectious Diseases, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sumana Chakravarty
- Sanaria, Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Stephen L Hoffman
- Sanaria, Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, 750 Republican Street, F870, Seattle, WA, 98109, USA.
- Center for Emerging and Re-Emerging Infectious Diseases, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA.
- Washington National Primate Research Center, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
- Department of Microbiology, University of Washington, 750 Republican Street, F870, Seattle, WA, 98109, USA.
| |
Collapse
|
4
|
Sirima SB, Ouédraogo A, Tiono AB, Kaboré JM, Bougouma EC, Ouattara MS, Kargougou D, Diarra A, Henry N, Ouédraogo IN, Billingsley PF, Manoj A, Abebe Y, Kc N, Ruben A, Richie TL, James ER, Joshi S, Shrestha B, Strauss K, Lyke KE, Plowe CV, Potter GE, Cox C, Jones W, Sim BKL, Hoffman SL, Laurens MB. A randomized controlled trial showing safety and efficacy of a whole sporozoite vaccine against endemic malaria. Sci Transl Med 2022; 14:eabj3776. [PMID: 36475905 PMCID: PMC10041996 DOI: 10.1126/scitranslmed.abj3776] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A highly effective malaria vaccine remains elusive despite decades of research. Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), a metabolically active, nonreplicating, whole parasite vaccine demonstrated safety and vaccine efficacy (VE) against endemic P. falciparum for 6 months in Malian adults receiving a five-dose regimen. Safety, immunogenicity, and VE of a three-dose regimen were assessed in adults in Balonghin, Burkina Faso in a two-component study: an open-label dose escalation trial with 32 participants followed by a double-blind, randomized, placebo-controlled trial (RCT) with 80 participants randomized to receive three doses of 2.7 × 106 PfSPZ (N = 39) or normal saline (N = 41) just before malaria season. To clear parasitemia, artesunate monotherapy was administered before first and last vaccinations. Thick blood smear microscopy was performed on samples collected during illness and every 4 weeks for 72 weeks after last vaccinations, including two 6-month malaria transmission seasons. Safety outcomes were assessed in all 80 participants who received at least one dose and VE for 79 participants who received three vaccinations. Myalgia was the only symptom that differed between groups. VE (1 - risk ratio; primary VE endpoint) was 38% at 6 months (P = 0.017) and 15% at 18 months (0.078). VE (1 - hazard ratio) was 48% and 46% at 6 and 18 months (P = 0.061 and 0.018). Two weeks after the last dose, antibodies to P. falciparum circumsporozoite protein and PfSPZ were higher in protected versus unprotected vaccinees. A three-dose regimen of PfSPZ Vaccine demonstrated safety and efficacy against malaria infection in malaria-experienced adults.
Collapse
Affiliation(s)
- Sodiomon B Sirima
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alphonse Ouédraogo
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alfred B Tiono
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Jean M Kaboré
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Edith C Bougouma
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Maurice S Ouattara
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Désiré Kargougou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Noelie Henry
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa N Ouédraogo
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | | | | | | | | | | | | | - Sudhaunshu Joshi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathy Strauss
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher V Plowe
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Walter Jones
- Parasitic and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Chora ÂF, Mota MM, Prudêncio M. The reciprocal influence of the liver and blood stages of the malaria parasite's life cycle. Int J Parasitol 2022; 52:711-715. [PMID: 35367213 DOI: 10.1016/j.ijpara.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/27/2021] [Accepted: 02/09/2022] [Indexed: 12/26/2022]
Abstract
While the liver and blood stages of the Plasmodium life cycle are commonly regarded as two separate fields of malaria research, several studies have pointed towards the existence of a bidirectional cross-talk, where one stage of mammalian infection may impact the establishment and progression of the other. Despite the constraints in experimentally addressing concurrent liver and blood stage Plasmodium infections, animal models and clinical studies have unveiled a plethora of molecular interactions between the two. Here, we review the current knowledge on the reciprocal influence of hepatic and erythrocytic infection by malaria parasites, and discuss its impacts on immunity, pathology and vaccination against this deadly disease.
Collapse
Affiliation(s)
- Ângelo Ferreira Chora
- Instituto de Medicina Molecular João Lobo Antunes, Fac. Medicina Univ. Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Fac. Medicina Univ. Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Fac. Medicina Univ. Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
6
|
Owalla TJ, Hergott DEB, Seilie AM, Staubus W, Chavtur C, Chang M, Kublin JG, Egwang TG, Murphy SC. Rethinking detection of pre-existing and intervening Plasmodium infections in malaria clinical trials. Front Immunol 2022; 13:1003452. [PMID: 36203582 PMCID: PMC9531235 DOI: 10.3389/fimmu.2022.1003452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 02/02/2023] Open
Abstract
Pre-existing and intervening low-density Plasmodium infections complicate the conduct of malaria clinical trials. These infections confound infection detection endpoints, and their immunological effects may detract from intended vaccine-induced immune responses. Historically, these infections were often unrecognized since infrequent and often analytically insensitive parasitological testing was performed before and during trials. Molecular diagnostics now permits their detection, but investigators must weigh the cost, complexity, and personnel demands on the study and the laboratory when scheduling such tests. This paper discusses the effect of pre-existing and intervening, low-density Plasmodium infections on malaria vaccine trial endpoints and the current methods employed for their infection detection. We review detection techniques, that until recently, provided a dearth of cost-effective strategies for detecting low density infections. A recently deployed, field-tested, simple, and cost-effective molecular diagnostic strategy for detecting pre-existing and intervening Plasmodium infections from dried blood spots (DBS) in malaria-endemic settings is discussed to inform new clinical trial designs. Strategies that combine sensitive molecular diagnostic techniques with convenient DBS collections and cost-effective pooling strategies may enable more thorough and informative infection monitoring in upcoming malaria clinical trials and epidemiological studies.
Collapse
Affiliation(s)
- Tonny J. Owalla
- Department of Immunology and Parasitology, Med Biotech Laboratories, Kampala, Uganda
| | - Dianna E. B. Hergott
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - Annette M. Seilie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Weston Staubus
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Chris Chavtur
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Ming Chang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, United States,Seattle Malaria Clinical Trials Center, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Thomas G. Egwang
- Department of Immunology and Parasitology, Med Biotech Laboratories, Kampala, Uganda
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States,Seattle Malaria Clinical Trials Center, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States,Department of Microbiology, University of Washington, Seattle, WA, United States,*Correspondence: Sean C. Murphy,
| |
Collapse
|
7
|
Feng G, Kurtovic L, Agius PA, Aitken EH, Sacarlal J, Wines BD, Hogarth PM, Rogerson SJ, Fowkes FJI, Dobaño C, Beeson JG. Induction, decay, and determinants of functional antibodies following vaccination with the RTS,S malaria vaccine in young children. BMC Med 2022; 20:289. [PMID: 36002841 PMCID: PMC9402280 DOI: 10.1186/s12916-022-02466-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/06/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND RTS,S is the first malaria vaccine recommended for implementation among young children at risk. However, vaccine efficacy is modest and short-lived. Antibodies play the major role in vaccine-induced immunity, but knowledge on the induction, decay, and determinants of antibody function is limited, especially among children. Antibodies that promote opsonic phagocytosis and other cellular functions appear to be important contributors to RTS,S immunity. METHODS We studied a phase IIb trial of RTS,S/AS02 conducted in young children in malaria-endemic regions of Mozambique. We evaluated the induction of antibodies targeting the circumsporozoite protein (CSP, vaccine antigen) that interact with Fcγ-receptors (FcRγs) and promote phagocytosis (neutrophils, monocytes, THP-1 cells), antibody-dependent respiratory burst (ADRB) by neutrophils, and natural killer (NK) cell activity, as well as the temporal kinetics of responses over 5 years of follow-up (ClinicalTrials.gov registry number NCT00197041). RESULTS RTS,S vaccination induced CSP-specific IgG with FcγRIIa and FcγRIII binding activity and promoted phagocytosis by neutrophils, THP-1 monocytes, and primary human monocytes, neutrophil ADRB activity, and NK cell activation. Responses were highly heterogenous among children, and the magnitude of neutrophil phagocytosis by antibodies was relatively modest, which may reflect modest vaccine efficacy. Induction of functional antibodies was lower among children with higher malaria exposure. Functional antibody magnitude and the functional activity of antibodies largely declined within a year post-vaccination, and decay were highest in the first 6 months, consistent with the decline in vaccine efficacy over that time. Decay rates varied for different antibody parameters and decay was slower for neutrophil phagocytosis. Biostatistical modelling suggested IgG1 and IgG3 contribute in promoting FcγR binding and phagocytosis, and IgG targeting the NANP-repeat and C-terminal regions CSP were similarly important for functional activities. CONCLUSIONS Results provide new insights to understand the modest and time-limited efficacy of RTS,S in children and the induction of antibody functional activities. Improving the induction and maintenance of antibodies that promote phagocytosis and cellular functions, and combating the negative effect of malaria exposure on vaccine responses are potential strategies for improving RTS,S efficacy and longevity.
Collapse
Affiliation(s)
- Gaoqian Feng
- Burnet Institute, Melbourne, Australia.,Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Liriye Kurtovic
- Burnet Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - Paul A Agius
- Burnet Institute, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia.,Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Elizabeth H Aitken
- Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Jahit Sacarlal
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Faculdade de Medicina, Universidade Eduardo Mondlane (UEM), Maputo, Mozambique
| | - Bruce D Wines
- Burnet Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia.,Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - P Mark Hogarth
- Burnet Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia.,Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Medicine, The University of Melbourne, Melbourne, Australia.,Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Freya J I Fowkes
- Burnet Institute, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia.,Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Carlota Dobaño
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,ISGlobal, Hospital Clínic Universitat de Barcelona, Barcelona, Catalonia, Spain.,CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - James G Beeson
- Burnet Institute, Melbourne, Australia. .,Department of Medicine, The University of Melbourne, Melbourne, Australia. .,Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
8
|
Marques-da-Silva C, Peissig K, Walker MP, Shiau J, Bowers C, Kyle DE, Vijay R, Lindner SE, Kurup SP. Direct type I interferon signaling in hepatocytes controls malaria. Cell Rep 2022; 40:111098. [PMID: 35858541 PMCID: PMC9422951 DOI: 10.1016/j.celrep.2022.111098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Malaria is a devastating disease impacting over half of the world’s population. Plasmodium parasites that cause malaria undergo obligatory development and replication in hepatocytes before infecting red blood cells and initiating clinical disease. While type I interferons (IFNs) are known to facilitate innate immune control to Plasmodium in the liver, how they do so has remained unresolved, precluding the manipulation of such responses to combat malaria. Utilizing transcriptomics, infection studies, and a transgenic Plasmodium strain that exports and traffics Cre recombinase, we show that direct type I IFN signaling in Plasmodium-infected hepatocytes is necessary to control malaria. We also show that the majority of infected hepatocytes naturally eliminate Plasmodium infection, revealing the potential existence of anti-malarial cell-autonomous immune responses in such hepatocytes. These discoveries challenge the existing paradigms in Plasmodium immunobiology and are expected to inspire anti-malarial drugs and vaccine strategies. Utilizing a transgenic Plasmodium strain expressing Cre recombinase that selectively ablates type I IFN receptor in only the infected hepatocytes, Marques-da-Silva et al. show that direct type I IFN signaling in the infected hepatocytes is both necessary and sufficient to control liver-stage malaria.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Kristen Peissig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Michael P Walker
- Department of Biochemistry and Molecular Biology, The Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Justine Shiau
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Carson Bowers
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Dennis E Kyle
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Rahul Vijay
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, The Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
9
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Arévalo-Herrera M, Gaitán X, Larmat-Delgado M, Caicedo MA, Herrera SM, Henao-Giraldo J, Castellanos A, Devaud JC, Pannatier A, Oñate J, Corradin G, Herrera S. Randomized clinical trial to assess the protective efficacy of a Plasmodium vivax CS synthetic vaccine. Nat Commun 2022; 13:1603. [PMID: 35338131 PMCID: PMC8956637 DOI: 10.1038/s41467-022-29226-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
A randomized, double-blind, controlled vaccine clinical trial was conducted to assess, as the primary outcome, the safety and protective efficacy of the Plasmodium vivax circumsporozoite (CS) protein in healthy malaria-naïve (phase IIa) and semi-immune (phase IIb) volunteers. Participants (n = 35) were randomly selected from a larger group (n = 121) and further divided into naïve (n = 17) and semi-immune (n = 18) groups and were immunized at months 0, 2, and 6 with PvCS formulated in Montanide ISA-51 adjuvant or placebo (adjuvant alone). Specific antibodies and IFN-γ responses to PvCS were determined as secondary outcome; all experimental volunteers developed specific IgG and IFN-γ. Three months after the last immunization, all participants were subjected to controlled human malaria infection. All naive controls became infected and drastic parasitemia reduction, including sterile protection, developed in several experimental volunteers in phase IIa (6/11) (54%, 95% CI 0.25-0.84) and phase IIb (7/11) (64%, 95% CI 0.35-0.92). However, no difference in parasitemia was observed between the phase IIb experimental and control subgroups. In conclusion, this study demonstrates significant protection in both naïve and semi-immune volunteers, encouraging further PvCS vaccine clinical development. Trial registration number NCT02083068. This trial was funded by Colciencias (grant 529-2009), NHLBI (grant RHL086488 A), and MVDC/CIV Foundation (grant 2014-1206).
Collapse
Affiliation(s)
- Myriam Arévalo-Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center, Cali, Colombia
| | - Xiomara Gaitán
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
| | | | | | | | | | | | | | - André Pannatier
- Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | - Sócrates Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia.
- Caucaseco Scientific Research Center, Cali, Colombia.
| |
Collapse
|