1
|
Xu Y, Fei X. The relationship between IFN-γ, IL-10, IL-6 cytokines, and severity of the condition with serum zinc and Fe in children infected with Mycoplasma pneumoniae. Open Med (Wars) 2024; 19:20240987. [PMID: 39291283 PMCID: PMC11406141 DOI: 10.1515/med-2024-0987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 09/19/2024] Open
Abstract
Objective To explore the relationship between cytokines such as interferon γ (IFN-γ), interleukin-10 (IL-10), and interleukin-6 (IL-6), as well as the severity of the condition, and serum zinc (Zn) and Fe levels in children with Mycoplasma pneumoniae infection. Methods A simple random sampling method was used to select 108 children with Mycoplasma pneumoniae infection admitted to the hospital from January to December 2022 as the study subjects. Collect demographic data such as gender, age, and course of disease from all patients, as well as inflammatory cytokines (InCs) such as IFN-γ, IL-10, and IL-6, the severity of the condition, and serum trace element information such as Zn, Fe, calcium (Ca), and potassium (K) from all patients. Spearman correlation analysis was used to examine the relationship between IFN-γ, IL-10, IL-6, severity of illness, and Zn, Fe, Ca, K in children infected with Mycoplasma pneumoniae. Additionally, receiver operating characteristic (ROC) curve analysis was used to test the predictive efficacy of Zn, Fe, Ca, and K on the severity of the patient's condition. Results This study included 108 children infected with Mycoplasma pneumoniae, of whom 6 had clinical data missing >10% and were all excluded. Finally, 102 complete clinical data were collected, with a data recovery efficiency of 94.44%. The differences in IFN-γ, IL-10, IL-6 levels, severity of the condition, as well as Zn, Fe, Ca, K levels among children of different ages, disease courses, body mass, and body temperature showed P < 0. 05. Spearman correlation analysis showed that the levels of IFN-γ, IL-10, IL-6, and severity of the condition in children with Mycoplasma pneumoniae infection were negatively correlated with Zn, Fe, Ca, and K (ρ = -0.319 to -0.827, P < 0.05). The ROC curve analysis results indicate that Zn, Fe, Ca, and K can all be used as indicators to predict the severity of the patient's condition (AUC = 0.710-0.759, P < 0.05). Conclusion There is a close relationship between InCs and the severity of the condition in children with Mycoplasma pneumoniae and serum trace elements. Therefore, clinical attention should be paid to monitoring the serum trace element levels of children, and reasonable measures should be taken to regulate them to accelerate the progress of disease treatment.
Collapse
Affiliation(s)
- Yi Xu
- Pediatric Department, Dongyang People's Hospital, Dongyang, 322100, China
| | - Xiangyong Fei
- Pharmacy Department, Huai'an Hongze District People's Hospital, Huai'an, 223100, China
| |
Collapse
|
2
|
Wei XY, Huo HC, Li X, Sun SL, Zhang J. Relationship between postoperative rehabilitation style, gastrointestinal function, and inflammatory factor levels in children with intussusception. World J Gastrointest Surg 2024; 16:2640-2648. [PMID: 39220068 PMCID: PMC11362954 DOI: 10.4240/wjgs.v16.i8.2640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Intussusception occurs in children and progresses rapidly. If not treated in time, it may lead to secondary complications such as intestinal perforation, which affect the quality of life and health of children. Surgery is the most common clinical treatment and has a good effect. However, the postoperative prognosis of children with intussusception has a correlation with the postoperative rehabilitation method. Therefore, in this study, we explored the relationship between postoperative rehabilitation, gastrointestinal function, and the expression of inflammatory factors in children with intussusception. AIM To explore the relationship between postoperative rehabilitation, gastrointestinal function, and inflammatory factor levels in children with intussusception. METHODS The medical records of 18 children who were admitted to our hospital for intussusception surgery between October 2022 and May 2024 were retrospectively reviewed. The patients were divided into the routine nursing group (n = 6) and rehabilitation training group (n = 12) according to the postoperative rehabilitation method. The general data, gastrointestinal function, and inflammatory factor levels of the two groups were statistically analyzed. Pearson correlation analysis of gastrointestinal function, inflammatory factors, and postoperative rehabilitation was performed. RESULTS We found no significant intergroup differences in sex, age, or disease course (P > 0.05). The times to first defecation, bowel sound recovery, and anal exhaust were shorter and inflammatory factor levels were lower in the rehabilitation training group than in the routine nursing group (P < 0.05). Pearson correlation analysis showed that gastrin and motilin levels were positively correlated with postoperative rehabilitation (P < 0.05). Interleukin (IL)-2, IL-4, IL-6, IL-10, high-sensitivity C-reactive protein, and tumor necrosis factor-α levels were negatively correlated with postoperative rehabilitation (P < 0.05). Gastrointestinal function was positively correlated (P < 0.05), and levels of inflammatory factors were negatively correlated with postoperative recovery time (P < 0.05). CONCLUSION We found a positive correlation between gastrointestinal function and postoperative rehabilitation training, and a negative correlation between inflammatory factor levels and rehabilitation training in children with intussusception.
Collapse
Affiliation(s)
- Xue-Yan Wei
- Department of Outpatient, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang 050090, Hebei Province, China
| | - Hong-Chang Huo
- Department of Pediatric Surgery, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang 050090, Hebei Province, China
| | - Xin Li
- Department of Nursing, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang 050090, Hebei Province, China
| | - Su-Li Sun
- Department of Outpatient, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang 050090, Hebei Province, China
| | - Jun Zhang
- Department of Pediatric Surgery, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang 050090, Hebei Province, China
| |
Collapse
|
3
|
Jalilvand S, Latifi T, Kachooei A, Mirhoseinian M, Hoseini-Fakhr SS, Behnezhad F, Roohvand F, Shoja Z. Circulating rotavirus strains in children with acute gastroenteritis in Iran, 1986 to 2023 and their genetic/antigenic divergence compared to approved vaccines strains (Rotarix, RotaTeq, ROTAVAC, ROTASIIL) before mass vaccination: Clues for vaccination policy makers. Virus Res 2024; 346:199411. [PMID: 38823689 PMCID: PMC11190746 DOI: 10.1016/j.virusres.2024.199411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
In the present study, first, rotaviruses that caused acute gastroenteritis in children under five years of age during the time before the vaccine was introduced in Iran (1986 to 2023) are reviewed. Subsequently, the antigenic epitopes of the VP7 and VP4/VP8 proteins in circulating rotavirus strains in Iran and that of the vaccine strains were compared and their genetic differences in histo-blood group antigens (HBGAs) and the potential impact on rotavirus infection susceptibility and vaccine efficacy were discussed. Overall data indicate that rotavirus was estimated in about 38.1 % of samples tested. The most common genotypes or combinations were G1 and P[8], or G1P[8]. From 2015 to 2023, there was a decline in the prevalence of G1P[8], with intermittent peaks of genotypes G3P[8] and G9P[8]. The analyses suggested that the monovalent Rotarix vaccine or monovalent vaccines containing the G1P[8] component might be proper in areas with a similar rotavirus genotype pattern and genetic background as the Iranian population where the G1P[8] strain is the most predominant and has the ability to bind to HBGA secretors. While the same concept can be applied to RotaTeq and RotasIIL vaccines, their complex vaccine technology, which involves reassortment, makes them less of a priority. The ROTASIIL vaccine, despite not having the VP4 arm (P[5]) as a suitable protection option, has previously shown the ability to neutralize not only G9-lineage I strains but also other G9-lineages at high titers. Thus, vaccination with the ROTASIIL vaccine may be more effective in Iran compared to RotaTeq. However, considering the rotavirus genotypic pattern, ROTAVAC might not be a good choice for Iran. Overall, the findings of this study provide valuable insights into the prevalence of rotavirus strains and the potential effectiveness of different vaccines in the Iranian and similar populations.
Collapse
Affiliation(s)
- Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Kachooei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahtab Mirhoseinian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farzane Behnezhad
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Laban N, Bosomprah S, Chilengi R, Simuyandi M, Chisenga C, Ng’ombe H, Musukuma-Chifulo K, Goodier M. Human cytomegalovirus seropositivity and its influence on oral rotavirus vaccine immunogenicity: a specific concern for HIV-exposed-uninfected infants. Clin Exp Immunol 2024; 217:99-108. [PMID: 38546123 PMCID: PMC11188542 DOI: 10.1093/cei/uxae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 06/21/2024] Open
Abstract
Oral rotavirus vaccines demonstrate diminished immunogenicity in low-income settings where human cytomegalovirus infection is acquired early in childhood and modulates immunity. We hypothesized that human cytomegalovirus infection around the time of vaccination may influence immunogenicity. We measured plasma human cytomegalovirus-specific immunoglobulin M antibodies in rotavirus vaccinated infants from 6 weeks to 12 months old and compared rotavirus immunoglobulin A antibody titers between human cytomegalovirus seropositive and seronegative infants. There was no evidence of an association between human cytomegalovirus serostatus at 9 months and rotavirus-specific antibody titers at 12 months (geometric mean ratio 1.01, 95% CI: 0.70, 1.45; P = 0.976) or fold-increase in RV-IgA titer between 9 and 12 months (risk ratio 0.999, 95%CI: 0.66, 1.52; P = 0.995) overall. However, HIV-exposed-uninfected infants who were seropositive for human cytomegalovirus at 9 months old had a 63% reduction in rotavirus antibody geometric mean titers at 12 months compared to HIV-exposed-uninfected infants who were seronegative for human cytomegalovirus (geometric mean ratio 0.37, 95% CI: 0.17, 0.77; P = 0.008). While the broader implications of human cytomegalovirus infections on oral rotavirus vaccine response might be limited in the general infant population, the potential impact in the HIV-exposed-uninfected infants cannot be overlooked. This study highlights the complexity of immunological responses and the need for targeted interventions to ensure oral rotavirus vaccine efficacy, especially in vulnerable subpopulations.
Collapse
Affiliation(s)
- Natasha Laban
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Samuel Bosomprah
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana
| | - Roma Chilengi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Michelo Simuyandi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Caroline Chisenga
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Harriet Ng’ombe
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Kalo Musukuma-Chifulo
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Martin Goodier
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Flow Cytometry and Immunology Facility, Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia
| |
Collapse
|
5
|
Latifi T, Kachooei A, Jalilvand S, Zafarian S, Roohvand F, Shoja Z. Correlates of immune protection against human rotaviruses: natural infection and vaccination. Arch Virol 2024; 169:72. [PMID: 38459213 DOI: 10.1007/s00705-024-05975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/12/2023] [Indexed: 03/10/2024]
Abstract
Species A rotaviruses are the leading viral cause of acute gastroenteritis in children under 5 years of age worldwide. Despite progress in the characterization of the pathogenesis and immunology of rotavirus-induced gastroenteritis, correlates of protection (CoPs) in the course of either natural infection or vaccine-induced immunity are not fully understood. There are numerous factors such as serological responses (IgA and IgG), the presence of maternal antibodies (Abs) in breast milk, changes in the intestinal microbiome, and rotavirus structural and non-structural proteins that contribute to the outcome of the CoP. Indeed, while an intestinal IgA response and its surrogate, the serum IgA level, are suggested as the principal CoPs for oral rotavirus vaccines, the IgG level is more likely to be a CoP for parenteral non-replicating rotavirus vaccines. Integrating clinical and immunological data will be instrumental in improving rotavirus vaccine efficacy, especially in low- and middle-income countries, where vaccine efficacy is significantly lower than in high-income countries. Further knowledge on CoPs against rotavirus disease will be helpful for next-generation vaccine development. Herein, available data and literature on interacting components and proposed CoPs against human rotavirus disease are reviewed, and limitations and gaps in our knowledge in this area are discussed.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Atefeh Kachooei
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Zafarian
- Department of Microbial Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
P KK, Chiteti SR, Aileni VK, Babji S, Blackwelder WC, Kumar A, Vagha J, Nayak U, Mitra M, D N, Kar S, Yadav S, Naidu S, Mahantshetti N, Khalatkar V, Mohapatra S, Purthi PK, Sharma P, Kannan A, Dhongade RK, Prasad SD, Ella R, Vadrevu KM. Phase III randomized clinical studies to evaluate the immunogenicity, lot-to-lot consistency, and safety of ROTAVAC® liquid formulations (ROTAVAC 5C & 5D) and non-inferiority comparisons with licensed ROTAVAC® (frozen formulation) in healthy infants. Hum Vaccin Immunother 2023; 19:2278346. [PMID: 37968237 PMCID: PMC10760372 DOI: 10.1080/21645515.2023.2278346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/28/2023] [Indexed: 11/17/2023] Open
Abstract
The WHO pre-qualified rotavirus vaccine, ROTAVAC®, is derived naturally from the neonatal 116E rotavirus strain, and stored at -20°C. As refrigerator storage is preferable, immunogenicity and safety of liquid formulations kept at 2-8°C, having excipients to stabilize the rotavirus, with or without buffers, were compared with ROTAVAC® in different clinical studies. Study-1, the pivotal trial for this entire product development work, was a randomized, single-blind trial with two operationally seamless phases: (i) an exploratory phase involving 675 infants in which two formulations, ROTAVAC 5C (LnHRV-1.5 mL and LnHRV-2.0 mL) containing buffer and excipients to stabilize the virus against gastric acidity and temperature, were compared with ROTAVAC®. As the immune response of ROTAVAC 5C (LnHRV-2.0 mL) was non-inferior to ROTAVAC®, it was selected for (ii) confirmatory phase, involving 1,302 infants randomized 1:1:1:1 to receive three lots of LnHRV-2.0 mL, or ROTAVAC®. Primary objectives were the evaluation of non-inferiority and lot-to-lot consistency. The secondary objectives were to assess the safety and interference with the concomitant pentavalent vaccine. As it was separately established that buffers are not required for ROTAVAC®, in Study-2, the safety and immunogenicity of ROTAVAC 5D® (with excipients) were compared with ROTAVAC® and lot-to-lot consistency was assessed in another study. All lots elicited consistent immune responses, did not interfere with UIP vaccines, and had reactogenicity similar to ROTAVAC®. ROTAVAC 5C and ROTAVAC 5D® were immunogenic and well tolerated as ROTAVAC®. ROTAVAC 5D® had comparable immunogenicity and safety profiles with ROTAVAC® and can be stored at 2-8°C, leading to WHO pre-qualification.Clinical Trials Registration: Clinical Trials Registry of India (CTRI): CTRI/2015/02/005577CTRI/2016/11/007481 and CTRI/2019/03/017934.
Collapse
Affiliation(s)
- Krishna Kumari P
- Medical Affairs Department, Bharat Biotech International Limited, Hyderabad, India
| | | | - Vinay K. Aileni
- Medical Affairs Department, Bharat Biotech International Limited, Hyderabad, India
| | - Sudhir Babji
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | | | - Ashok Kumar
- Department of Paediatrics, Banaras Hindu University, Varanasi, India
| | - Jayant Vagha
- Department of Paediatrics, Datta Megha Institute of Medical Sciences, Wardha, India
| | - Uma Nayak
- Department of Paediatrics, GMERS Medical College, Vadodara, India
| | - Monjori Mitra
- Department of Paediatrics, Institute of Child Health, Kolkata, India
| | - Narayanaappa D
- Department of Paediatrics, Jagadguru Shivarathreeshwara Medical College, Mysore, India
| | - Sonali Kar
- Department of Community Medicine, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Sangeeta Yadav
- Department of Paediatrics, Maulana Azad Medical College, New Delhi, India
| | - Swamy Naidu
- Department of Paediatrics, King George Hospital, Vishakapatnam, India
| | - Niranjan Mahantshetti
- Department of Paediatrics, Dr. Prabhakar Kore Medical College & Hospital, Belgaum, India
| | | | | | - P. K. Purthi
- Department of Paediatrics, Sri Ganga Ram Hospital, New Delhi, India
| | - Pawan Sharma
- Department of Paediatrics, Maharshi Hospital & Research Centre, Jaipur, India
| | - A. Kannan
- Department of Paediatrics, Meenakshi Mission Hospital, Chennai, India
| | | | - Sai D. Prasad
- Medical Affairs Department, Bharat Biotech International Limited, Hyderabad, India
| | - Raches Ella
- Medical Affairs Department, Bharat Biotech International Limited, Hyderabad, India
| | | |
Collapse
|
7
|
Mwila-Kazimbaya K, Bosomprah S, Chilyabanyama ON, Chisenga CC, Chibuye M, Laban NM, Simuyandi M, Huffer B, Iturriza-Gomara M, Choy RKM, Chilengi R. Association of biomarkers of enteric dysfunction, systemic inflammation, and growth hormone resistance with seroconversion to oral rotavirus vaccine: A lasso for inference approach. PLoS One 2023; 18:e0293101. [PMID: 37976323 PMCID: PMC10656027 DOI: 10.1371/journal.pone.0293101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Rotavirus gastroenteritis remains a leading cause of morbidity and mortality despite the introduction of vaccines. Research shows there are several factors contributing to the reduced efficacy of rotavirus vaccines in low- and middle-income settings. Proposed factors include environmental enteric dysfunction (EED), malnutrition, and immune dysfunction. This study aimed to assess the effect of these factors on vaccine responses using a machine learning lasso approach. METHODS Serum samples from two rotavirus clinical trials (CVIA 066 n = 99 and CVIA 061 n = 124) were assessed for 11 analytes using the novel Micronutrient and EED Assessment Tool (MEEDAT) multiplex ELISA. Immune responses to oral rotavirus vaccines (Rotarix, Rotavac, and Rotavac 5D) as well as a parenteral rotavirus vaccine (trivalent P2-VP8) were also measured and machine learning using the lasso approach was then applied to investigate any associations between immune responses and environmental enteric dysfunction, systemic inflammation, and growth hormone resistance biomarkers. RESULTS Both oral and parenteral rotavirus vaccine responses were negatively associated with retinol binding protein 4 (RBP4), albeit only weakly for oral vaccines. The parenteral vaccine responses were positively associated with thyroglobulin (Tg) and histidine-rich protein 2 (HRP2) for all three serotypes (P8, P6 and P4), whilst intestinal fatty acid binding protein (I-FABP) was negatively associated with P6 and P4, but not P8, and soluble transferrin receptor (sTfR) was positively associated with P6 only. CONCLUSION MEEDAT successfully measured biomarkers of growth, systemic inflammation, and EED in infants undergoing vaccination, with RBP4 being the only analyte associated with both oral and parenteral rotavirus vaccine responses. Tg and HRP2 were associated with responses to all three serotypes in the parenteral vaccine, while I-FABP and sTfR results indicated possible strain specific immune responses to parenteral immunization.
Collapse
Affiliation(s)
| | - Samuel Bosomprah
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana
| | | | | | - Mwelwa Chibuye
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Michelo Simuyandi
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Bert Huffer
- Cincinnati Childrens Hospital Medical Center, Cincinnati, Ohio, United States of America
| | | | | | - Roma Chilengi
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| |
Collapse
|
8
|
Behera JK, Mishra P, Jena AK, Behera B, Bhattacharya M. Human health implications of emerging diseases and the current situation in India's vaccine industry. SCIENCE IN ONE HEALTH 2023; 2:100046. [PMID: 39077045 PMCID: PMC11262297 DOI: 10.1016/j.soh.2023.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/22/2023] [Indexed: 07/31/2024]
Abstract
Emerging diseases are infectious diseases that pose significant threat to human health, causing millions of deaths and disabilities in the upcoming days. Periodic epidemics of new infections and old reinfections increase the global burden of disease prevalence. They can be caused by new pathogens or evolving ones, which change human behavior and environmental factors. Researchers have studied the dynamic connections between microbes, hosts, and the environment, but new infectious diseases like coronavirus disease 2019 (COVID-19), re-emerging diseases, and deliberately disseminated diseases persist despite earlier hopes of elimination. With heavy privatesector investments, Indian pharmacology now provides core Expanded Programme on Immunization vaccines to United Nations International Children's Emergency Fund, producing previously unattainable vaccines for diseases like meningitis, hepatitis B, pneumococcal conjugate, rotavirus, influenza A (H1N1), and COVID-19. India's vaccine sector has emerged, among the oriented leaders of the Bharat Biotech, Serum Institute of India, Panacea Biotech and Biological E. Specifically, the technology transferred from Western countries has benefited the sector, which produces 1.3 billion doses annually. The Serum Institute is the world's largest manufacturer of vaccines, providing measles and diphtheria-tetanus-pertussis vaccines to United Nations. The Serum Institute has developed several vaccines, including Nasovac, MenAfriVac, Pentavac, and an inactivated polio vaccine. India's success in vaccinations can be attributed to attractive investment conditions, government assistance, international alliances, and rising domestic technical talent. Despite its booming economy and technical advances, India's disproportionate share of the world's child mortality rate remains unchanged. However, the growing production and distribution of vaccinations in developing nations has initiated a new era, leading to a worldwide decline in childhood death and disease.
Collapse
Affiliation(s)
- Jiban Kumar Behera
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Pabitra Mishra
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Anway Kumar Jena
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| |
Collapse
|
9
|
Wu ZW, Jin F, Li QL, Gao JM, Zhou HS, Duan K, Gao Z, Liu Y, Hao ZY, Chen W, Liu YY, Xu GL, Yang B, Dong B, Zhang JW, Zhao YL, Yang XM. Immunogenicity and safety of a new hexavalent rotavirus vaccine in Chinese infants: A randomized, double-blind, placebo-controlled phase 2 clinical trial. Hum Vaccin Immunother 2023; 19:2263228. [PMID: 37843437 PMCID: PMC10580834 DOI: 10.1080/21645515.2023.2263228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Rotavirus remains a major cause of diarrhea among 5-y-old children, and vaccination is currently the most effective and economical measure. We conducted a randomized, double-blind, placebo-controlled phase II clinical trial designed to determine the dosage, immunogenicity, and safety profile of a novel hexavalent rotavirus vaccine. In total, 480 eligible healthy infants, who were 6-12 weeks of age at the time of randomization were randomly allocated (1:1:1) to receive 105.5 focus-forming unit (FFU) or 106.5FFU of vaccine or placebo on a 0, 28 and 56-d schedule. Blood samples were collected 28 d after the third dose to assess rotavirus immunoglobulin A (IgA) antibody levels. Adverse events (AEs) up to 28 d after each dose and serious adverse events (SAEs) up to 6 months after the third dose were recorded as safety measurements. The anti-rotavirus IgA seroconversion rate of the vaccine groups reached more than 70.00%, ranging from 74.63% to 76.87%. The postdose 3 (PD3) geometric mean concentrations (GMCs) of anti-rotavirus IgA among vaccine recipients ranged from 76.97 U/ml to 84.46 U/ml. At least one solicited AE was recorded in 114 infants (71.25%) in the high-dose vaccine group, 106 infants (66.25%) in the low-dose vaccine group and 104 infants (65.00%) in the placebo group. The most frequently solicited AE was fever. The novel oral hexavalent rotavirus vaccine was safe and immunogenic in infants support the conclusion to advance the candidate vaccine for phase 3 efficacy trials.
Collapse
Affiliation(s)
- Zhi-Wei Wu
- Institute for Vaccine Clinical Research, Hebei Province Center for Disease Control and Prevention, Shijiazhuang, People’s Republic of China
| | - Fei Jin
- Institute for Vaccine Clinical Research, Hebei Province Center for Disease Control and Prevention, Shijiazhuang, People’s Republic of China
| | - Qing-Liang Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, People’s Republic of China
| | - Jia-Mei Gao
- National Institutes for Food and Drug Control, Beijing, China
| | - Hai-Song Zhou
- Zhengding County Center for Disease Control and Prevention, Zhengding, People’s Republic of China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, People’s Republic of China
| | - Zhao Gao
- Institute for Vaccine Clinical Research, Hebei Province Center for Disease Control and Prevention, Shijiazhuang, People’s Republic of China
| | - Yan Liu
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhi-Yong Hao
- Zhengding County Center for Disease Control and Prevention, Zhengding, People’s Republic of China
| | - Wei Chen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, People’s Republic of China
| | - Yue-Yue Liu
- National Institutes for Food and Drug Control, Beijing, China
| | - Ge-Lin Xu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, People’s Republic of China
| | - Biao Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, People’s Republic of China
| | - Ben Dong
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, People’s Republic of China
| | - Jiu-Wei Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, People’s Republic of China
| | - Yu-Liang Zhao
- Institute for Vaccine Clinical Research, Hebei Province Center for Disease Control and Prevention, Shijiazhuang, People’s Republic of China
| | - Xiao-Ming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, People’s Republic of China
| |
Collapse
|
10
|
Wang G, Zhang K, Zhang R, Kong X, Guo C. Impact of vaccination with different types of rotavirus vaccines on the incidence of intussusception: a randomized controlled meta-analysis. Front Pediatr 2023; 11:1239423. [PMID: 37583623 PMCID: PMC10424850 DOI: 10.3389/fped.2023.1239423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Background Intussusception is a prevalent pediatric issue causing acute abdominal pain, with potential links to rotavirus vaccines. The variety of these vaccines has grown in recent years. This meta-analysis study aims to evaluate the impact of various rotavirus vaccines on intussusception incidence. Methods We executed a thorough search across databases like PubMed, Cochrane Library, Embase, and Web of Science, leading to the selection of 15 credible randomized controlled trials (RCTs) that encompass various types of rotavirus vaccines. From each study, we extracted essential details such as vaccine types and intussusception occurrences. We assessed the risk of bias using the Cochrane Collaboration's tool, conducted statistical analysis with R (version 4.2.3), determined relative risk (RR) using a random effects model, and performed a subgroup analysis for vaccines of differing brands and types. Results We included 15 randomized controlled studies from various countries. While intussusception incidence differed between vaccinated and control groups, this difference was not statistically significant. The overall risk ratio (RR), calculated using a random effects model, was 0.81, with a 95% confidence interval of [0.53, 1.23]. This crossing 1 shows that vaccination didn't notably change disease risk. Additionally, the 0% group heterogeneity suggests consistency across studies, strengthening our conclusions. Subgroup analysis for different vaccine brands and types (RV1 (Rotarix, Rotavac, RV3-BB), RV3 (LLR3), RV5 (RotasiiL, RotaTeq), and RV6) showed no significant variation in intussusception incidence. Despite variations in RR among subgroups, these differences were not statistically significant (P > 0.05). Conclusions Our study indicates that rotavirus vaccination does not significantly increase the incidence of intussusception. Despite varying impacts across different vaccine brands and types, these variations are insignificant. Given the substantial benefits outweighing the risks, promoting the use of newly developed rotavirus vaccines remains highly valuable. Systematic Review Registration www.crd.york.ac.uk/prospero/, Identifier CRD42023425279.
Collapse
Affiliation(s)
- Guoyong Wang
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric General Surgery, Children's Hospital, Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics,Chongqing Medical University, Chongqing, China
| | - Kaijun Zhang
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric General Surgery, Children's Hospital, Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics,Chongqing Medical University, Chongqing, China
| | - Rensen Zhang
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xiangru Kong
- Department of Pediatric General Surgery, Children's Hospital, Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics,Chongqing Medical University, Chongqing, China
| | - Chunbao Guo
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics,Chongqing Medical University, Chongqing, China
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China
| |
Collapse
|
11
|
Evaluation of ROTARIX ® Booster Dose Vaccination at 9 Months for Safety and Enhanced Anti-Rotavirus Immunity in Zambian Children: A Randomised Controlled Trial. Vaccines (Basel) 2023; 11:vaccines11020346. [PMID: 36851224 PMCID: PMC9960729 DOI: 10.3390/vaccines11020346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Oral rotavirus vaccines show diminished immunogenicity in low-resource settings where rotavirus burden is highest. This study assessed the safety and immune boosting effect of a third dose of oral ROTARIX® (GlaxoSmithKline) vaccine administered at 9 months of age. A total of 214 infants aged 6 to 12 weeks were randomised to receive two doses of ROTARIX® as per standard schedule with other routine vaccinations or an additional third dose of ROTARIX® administered at 9 months old concomitantly with measles/rubella vaccination. Plasma collected pre-vaccination, 1 month after first- and second-dose vaccination, at 9 months old before receipt of third ROTARIX® dose and/or measles/rubella vaccination, and at 12 months old were assayed for rotavirus-specific IgA (RV-IgA). Geometric mean RV-IgA at 12 months of age and the incidence of clinical adverse events 1 month following administration of the third dose of ROTARIX® among infants in the intervention arm were compared between infants in the two arms. We found no significant difference in RV-IgA titres at 12 months between the two arms. Our findings showed that rotavirus vaccines are immunogenic in Zambian infants but with modest vaccine seroconversion rates in low-income settings. Importantly, however, a third dose of oral ROTARIX® vaccine was shown to be safe when administered concomitantly with measles/rubella vaccine at 9 months of age in Zambia. This speaks to opportunities for enhancing rotavirus vaccine immunity within feasible schedules in the national immunization program.
Collapse
|
12
|
Were FN, Jere KC, Armah GE, Mphahlele MJ, Mwenda JM, Steele AD. Maintaining Momentum for Rotavirus Immunization in Africa during the COVID-19 Era: Report of the 13th African Rotavirus Symposium. Vaccines (Basel) 2022; 10:vaccines10091463. [PMID: 36146541 PMCID: PMC9503285 DOI: 10.3390/vaccines10091463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The 13th African Rotavirus Symposium was held as a virtual event hosted by the University of Nairobi, Kenya and The Kenya Paediatric Association on 3rd and 4th November 2021. This biennial event organized under the auspices of the African Rotavirus Network shapes the agenda for rotavirus research and prevention on the continent, attracting key international and regional opinion leaders, researchers, and public health scientists. The African Rotavirus Network is a regional network of institutions initially established in 1999, and now encompassing much of the diarrheal disease and rotavirus related research in Africa, in collaboration with the World Health Organization African Regional Office (WHO-AFRO), Ministries of Health, and other partners. Surges in SARS-CoV2 variants and concomitant travel restrictions limited the meeting to a webinar platform with invited scientific presentations and scientific presentations from selected abstracts. The scientific program covered updates on burden of diarrheal diseases including rotavirus, the genomic characterization of rotavirus strains pre- and post-rotavirus vaccine introduction, and data from clinical evaluation of new rotavirus vaccines in Africa. Finally, 42 of the 54 African countries have fully introduced rotavirus vaccination at the time of the meeting, including the two recently WHO pre-qualified vaccines from India. Nonetheless, the full benefit of rotavirus vaccination is yet to be realized in Africa where approximately 80% of the global burden of rotavirus mortality exists.
Collapse
Affiliation(s)
- Frederick N. Were
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi 00625, Kenya
- Kenya Paediatric Association, Nairobi 00100, Kenya
| | - Khuzwayo C. Jere
- Malawi-Liverpool-Wellcome Trust Clinical Research Program, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK
| | - George E. Armah
- Noguchi Memorial Institute of Medical Research, University of Ghana, Legon, Accra LG 581, Ghana
| | | | - Jason M. Mwenda
- WHO Regional Office for Africa, Brazzaville P.O. Box 2465, Congo
| | - A. Duncan Steele
- Department of Virology, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
- Correspondence: ; Tel.: +1-(206)-915-3677
| |
Collapse
|
13
|
Cates J, Tate JE, Parashar U. Rotavirus vaccines: progress and new developments. Expert Opin Biol Ther 2022; 22:423-432. [PMID: 34482790 PMCID: PMC10839819 DOI: 10.1080/14712598.2021.1977279] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Rotavirus is the primary cause of severe acute gastroenteritis among children under the age of five globally, leading to 128,500 to 215,000 vaccine-preventable deaths annually. There are six licensed oral, live-attenuated rotavirus vaccines: four vaccines pre-qualified for global use by WHO, and two country-specific vaccines. Expansion of rotavirus vaccines into national immunization programs worldwide has led to a 59% decrease in rotavirus hospitalizations and 36% decrease in diarrhea deaths due to rotavirus in vaccine-introducing countries. AREAS COVERED This review describes the current rotavirus vaccines in use, global coverage, vaccine efficacy from clinical trials, and vaccine effectiveness and impact from post-licensure evaluations. Vaccine safety, particularly as it relates to the risk of intussusception, is also summarized. Additionally, an overview of candidate vaccines in the pipeline is provided. EXPERT OPINION Considerable evidence over the past decade has demonstrated high effectiveness (80-90%) of rotavirus vaccines at preventing severe rotavirus disease in high-income countries, although the effectiveness has been lower (40-70%) in low-to-middle-income countries. Surveillance and research should continue to explore modifiable factors that influence vaccine effectiveness, strengthen data to better evaluate newer rotavirus vaccines, and aid in the development of future vaccines that can overcome the limitations of current vaccines.
Collapse
Affiliation(s)
- Jordan Cates
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jacqueline E. Tate
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Umesh Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|