1
|
Chen R, Nie M, Jiang Y, Wu S, Wu J, Qiu D, Wu Y, Yuan Q, Wang S, Jiang Y, Zhang T. A respiratory mucosal vaccine based on chitosan/aluminum adjuvant induces both mucosal and systemic immune responses. Int J Pharm 2025; 670:125168. [PMID: 39756594 DOI: 10.1016/j.ijpharm.2025.125168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The respiratory mucosa serves as a critical barrier against the invasion of pathogens. Effective mucosal vaccines are essential for enhancing local immunity. However, there is an urgent need to develop new mucosal adjuvants. Chitosan is preferred as a mucosal adjuvant due to its mucosal adhesion and immunostimulatory properties. In this work, a novel mucosal adjuvant was synthesized by combining nano-aluminum hydroxide and chitosan (Al-CS), formulating a particle size approximately 1.5 μm. In vitro assays revealed that Al-CS notably promotes antigen uptake by enhancing activation and maturation of dendritic cells and macrophages. Furthermore, in vivo experiments indicated that Al-CS could extend antigen release duration, facilitate immune cell migration to the lungs, stimulates antigen-presenting cell maturation, enhances antigen presentation and significantly improves both humoral and cellular immunity as well as B/T cell memory differentiation. The immunological potential of Al-CS exceeds that of either aluminum or chitosan alone, making it a promising and safe adjuvant for the advancement of mucosal vaccine carrier systems.
Collapse
Affiliation(s)
- Ruitong Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Meifeng Nie
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuetong Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuyu Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Junwei Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Dekui Qiu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Shaojuan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China.
| | - Yao Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China.
| | - Tianying Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
2
|
Tammas I, Bitchava K, Gelasakis AI. Advances in Vaccine Adjuvants for Teleost Fish: Implications for Aquatic Welfare and the Potential of Nanoparticle-Based Formulations. Vaccines (Basel) 2024; 12:1347. [PMID: 39772009 PMCID: PMC11679523 DOI: 10.3390/vaccines12121347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Vaccine adjuvants are crucial for reinforcing the immunogenicity of vaccines. Therefore, they are widely used in the aquaculture sector as vaccine components, facilitating the efficient prevention of infectious diseases and promoting sustainable teleost fish growth. Despite their benefits, there has been a growing concern about the potential adverse effects of vaccine adjuvants in teleost fish, connoting a valid impact on their overall health and welfare. Among the adjuvants used in aquaculture vaccinology, nanoparticle-based formulations have given rise to a promising new alternative to traditional options, such as oil-based emulsions and aluminum compounds, offering the benefit of minimizing relevant side effects. The aim of this paper was to review the current status of the adjuvants used in aquaculture, provide a description and an evaluation of their mode of action and side effects, and explore the potential use of nanoparticle formulations as adjuvants to improve the efficacy of aquaculture vaccines. By demonstrating and assessing the equilibrium between teleost fish welfare and immunological efficacy, this review presents a collective perspective that will assist in establishing a framework for the utilization of effective species-specific practices around adjuvant use in aquaculture, while also addressing the challenges of welfare-friendly immunization.
Collapse
Affiliation(s)
- Iosif Tammas
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantina Bitchava
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy & Physiology of Farm Animals, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
3
|
Sinani G, Sessevmez M, Şenel S. Applications of Chitosan in Prevention and Treatment Strategies of Infectious Diseases. Pharmaceutics 2024; 16:1201. [PMID: 39339237 PMCID: PMC11434819 DOI: 10.3390/pharmaceutics16091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Chitosan is the most commonly investigated functional cationic biopolymer in a wide range of medical applications due to its promising properties such as biocompatibility, biodegradability, and bioadhesivity, as well as its numerous bioactive properties. Within the last three decades, chitosan and its derivatives have been investigated as biomaterials for drug and vaccine delivery systems, besides for their bioactive properties. Due to the functional groups in its structure, it is possible to tailor the delivery systems with desired properties. There has been a great interest in the application of chitosan-based systems also for the prevention and treatment of infectious diseases, specifically due to their antimicrobial, antiviral, and immunostimulatory effects. In this review, recent applications of chitosan in the prevention and treatment of infectious diseases are reviewed, and possibilities and limitations with regards to technical and regulatory aspects are discussed. Finally, the future perspectives on utilization of chitosan as a biomaterial are discussed.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Altinbas University, 34147 Istanbul, Türkiye;
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye;
| | - Sevda Şenel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe Univesity, 06100 Ankara, Türkiye
| |
Collapse
|
4
|
Valero Y, Souto S, Olveira JG, López-Vázquez C, Dopazo CP, Bandín I. Water-in-oil adjuvant challenges in fish vaccination: An experimental inactivated adjuvanted vaccine against betanodavirus infection in Senegalese sole. JOURNAL OF FISH DISEASES 2024; 47:e13945. [PMID: 38523313 DOI: 10.1111/jfd.13945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
The extensive growth of intensive fish farming has led to a massive spread of infectious diseases. Nervous necrosis virus (NNV) is the causative agent of the viral encephalo- and retinopathy disease which has become a major threat for fish farming all over the globe. The devastating mortality rates recorded in disease outbreaks, especially when infected specimens are at early stages of development, have a high economic impact on the sector. Currently, vaccines are the most cost-effective preventing tool in the fight against viruses. Inactivated vaccines have the advantage of simplicity in their development at the same time as present the antigen in a similar manner than the natural infection in the host. Nevertheless, they usually trigger weaker immune responses needing adjuvants to boost their effectiveness. In this work, we have intraperitoneally vaccinated Senegalese sole juveniles (Solea senegalensis) with a previously designed inactivated vaccine against NNV based on binary ethylenimine (BEI), mixed or not with an oil-adjuvant. Our results demonstrated the potential activation of different immune pathways when the vaccine was administered alone compared to the oil-adjuvanted vaccine, both resulting in an equivalent partial improvement in survival following a NNV challenge. However, whilst the vaccine alone led to a significant increase in specific antibodies, in the adjuvanted version those antibodies were kept basal although with a slight improvement in their neutralization capacity. At transcriptional level, neither vaccine (adjuvanted or not) triggered the immune system activation during the vaccination period. However, after NNV infection, the BEI-inactivated vaccines alone and oil-adjuvanted both elicited the stimulation of antiviral responsive genes (rtp3, herc4), antigen presentation molecules (mhcii) and T-cell markers (cd8a) in the head-kidney. Additionally, the oil-adjuvanted vaccine appears to stimulate mediator cytokines (il6) and B-cell markers (ight and ighm). Surprisingly, when the adjuvant was administered alone, fish showed the highest survival rates concomitantly with a lack of NNV-IgM production, pointing to the possible induction of different immune pathways than the B-cell responses via antibodies by the adjuvant. Since this combined vaccine did not succeed in the full extension of protection against the pathogen, further studies should be performed focusing on unravelling the molecular mechanisms through which adjuvants trigger the immune response, both independently and when added to a vaccine antigen.
Collapse
Affiliation(s)
- Yulema Valero
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sandra Souto
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José G Olveira
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen López-Vázquez
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos P Dopazo
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Bandín
- Departamento de Microbiología y Parasitología, Campus Vida, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Pholchamat S, Vialle R, Luang-In V, Phadee P, Wang B, Wang T, Secombes CJ, Wangkahart E. Evaluation of the efficacy of MONTANIDE™ GR01, a new adjuvant for feed-based vaccines, on the immune response and protection against Streptococcus agalactiae in oral vaccinated Nile tilapia (Oreochromis niloticus) under laboratory and on-farm conditions. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109567. [PMID: 38641215 DOI: 10.1016/j.fsi.2024.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Streptococcosis, an emerging infectious disease caused by Streptococcus agalactiae, has had adverse effects on farmed tilapia. Several vaccines have been developed to prevent this disease and induce a specific immune response against S. agalactiae infection. In this study the use of MONTANIDE™ GR01, a new adjuvant for oral vaccination, was optimized for use in tilapia under laboratory and field studies. In the laboratory trial the immune response and protective efficacy of two doses of MONTANIDE™ GR01, 20 % (w/w) and 2 % (w/w), included into the feed-based adjuvanted vaccines were assessed comparatively. Following immunization, the innate immune parameters studied in serum, including lysozyme, myeloperoxidase, catalase and glutathione peroxidase activity, were all increased significantly. Furthermore, specific IgM antibodies against S. agalactiae were induced significantly in serum post-vaccination, with higher levels observed in both groups that received the feed-based adjuvanted vaccine. Under both injection and immersion challenge conditions, the relative percent survival for the feed-based adjuvanted vaccine groups ranged from 78 % to 84 %. Following use of the low dose concentration of MONTANIDE™ GR01 for oral vaccination of tilapia in cage culture systems, several innate immune parameters were effectively enhanced in the immunized fish. Similarly, the levels of specific IgM antibodies in the serum of feed-based vaccinated fish were significantly enhanced, reaching their highest levels 2-5 months post-vaccination. Cytokines associated with innate and adaptive immunity were also examined, and the expression levels of several genes showed significant up-regulation. This indicates that both cellular and humoral immune responses were induced by the feed-based adjuvanted vaccine. The economic impact of a feed-based adjuvanted vaccine was examined following vaccination, considering the growth performance and feed utilization of the fish. It was found that the Economic Performance Index and Economic Conversion Ratio were unaffected by vaccination, further demonstrating that there are no negative impacts associated with administering a feed-based vaccine to fish. In conclusion, the data from this study indicate that MONTANIDE™ GR01 is a highly valuable adjuvant for oral vaccination, as demonstrated by its ability to induce a strong immune response and effectively prevent streptococcal disease in Nile tilapia.
Collapse
Affiliation(s)
- Sirinya Pholchamat
- Master of Science Program in Biotechnology & Biobusiness, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Regis Vialle
- SEPPIC, Paris La Défense, 50 boulevard National, CS 90020, 92257, La Garenne Colombes, Cedex, France
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Panarat Phadee
- Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Bei Wang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| |
Collapse
|
6
|
Lu CL, Wangkahart E, Huang JW, Huang YX, Huang Y, Cai J, Jian JC, Wang B. Immune response and protective efficacy of Streptococcus agalactiae vaccine coated with chitosan oligosaccharide for different immunization strategy in nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109353. [PMID: 38184180 DOI: 10.1016/j.fsi.2023.109353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
In the past decade, the outbreak of Streptococcus agalactiae has caused significant economic losses in tilapia farming. Vaccine immunization methods and strategies have gradually evolved from single-mode to multi-mode overall prevention and control strategies. In this study, an inactivated vaccine of S. agalactiae with a chitosan oligosaccharide (COS) adjuvant was constructed using different administration methods: intraperitoneal injection (Ip), immersion combined with intraperitoneal injection (Im + Ip), immersion combined with oral administration (Im + Or), and oral administration (Or). Safety analysis revealed no adverse effects on tilapia, and the vaccine significantly promoted fish growth and development when administered through Im + Or or Or immunization. Following vaccination, innate immunity parameters including SOD, ACP and CAT activities were all significantly enhanced. Additionally, specific serum IgM antibodies reached their highest level at the 6th week post vaccination. Skin and intestinal mucus IgT antibodies reached peaked at the 6th and 7th week post vaccination, respectively. The relative peak expression values for IL-8, IL-12, MHC-I, MHC-II, IgM, IgT, CD4, CD8, TNFα, IFNγ from Im + Ip group were significantly higher than those in Ip group, Im + Or group and Or group in most cases (p < 0.05). Importantly, the relative protection survival of Im + Ip group was the highest (78.6%), followed by the Ip group (71.4%), the Or group (64.3%) and the Im + Or group (57.1%). In summary, this study encourages further research on multi-channel immunization strategies of other kinds of vaccines in other aquatic economic animals to improve their disease resistance.
Collapse
Affiliation(s)
- Chun-Lan Lu
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Jun-Wei Huang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Yong-Xiong Huang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Yu Huang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Jia Cai
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Ji-Chang Jian
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Bei Wang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China.
| |
Collapse
|
7
|
Jones EM, Cain KD. An Introduction to Relevant Immunology Principles with Respect to Oral Vaccines in Aquaculture. Microorganisms 2023; 11:2917. [PMID: 38138061 PMCID: PMC10745647 DOI: 10.3390/microorganisms11122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccines continue to play an enormous role in the progression of aquaculture industries worldwide. Though preventable diseases cause massive economic losses, injection-based vaccine delivery is cost-prohibitive or otherwise impractical for many producers. Most oral vaccines, which are much cheaper to administer, do not provide adequate protection relative to traditional injection or even immersion formulas. Research has focused on determining why there appears to be a lack of protection afforded by oral vaccines. Here, we review the basic immunological principles associated with oral vaccination before discussing the recent progress and current status of oral vaccine research. This knowledge is critical for the development and advancement of efficacious oral vaccines for the aquaculture industry.
Collapse
Affiliation(s)
| | - Kenneth D. Cain
- Department of Fisheries and Wildlife, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
8
|
Kwong KWY, Xin Y, Lai NCY, Sung JCC, Wu KC, Hamied YK, Sze ETP, Lam DMK. Oral Vaccines: A Better Future of Immunization. Vaccines (Basel) 2023; 11:1232. [PMID: 37515047 PMCID: PMC10383709 DOI: 10.3390/vaccines11071232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Oral vaccines are gaining more attention due to their ease of administration, lower invasiveness, generally greater safety, and lower cost than injectable vaccines. This review introduces certified oral vaccines for adenovirus, recombinant protein-based, and transgenic plant-based oral vaccines, and their mechanisms for inducing an immune response. Procedures for regulatory approval and clinical trials of injectable and oral vaccines are also covered. Challenges such as instability and reduced efficacy in low-income countries associated with oral vaccines are discussed, as well as recent developments, such as Bacillus-subtilis-based and nanoparticle-based delivery systems that have the potential to improve the effectiveness of oral vaccines.
Collapse
Affiliation(s)
- Keith Wai-Yeung Kwong
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Ying Xin
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
| | - Nelson Cheuk-Yin Lai
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Johnny Chun-Chau Sung
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Kam-Chau Wu
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
| | | | - Eric Tung-Po Sze
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Dominic Man-Kit Lam
- DrD Novel Vaccines Limited, Hong Kong, China
- Torsten Wiesel International Research Institute, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Deusdará TT, Félix MKC, de S Brito H, Cangussu EWS, de S Moura W, Albuquerque B, Silva MG, Dos Santos GR, de Morais PB, da Silva EF, Chaves YO, Mariúba LAM, Nogueira PA, Astolfi-Filho S, Assunção EN, Epiphanio S, Marinho CRF, Brandi IV, Viana KF, Oliveira EE, Cangussu ASR. Using an Aluminum Hydroxide–Chitosan Matrix Increased the Vaccine Potential and Immune Response of Mice against Multi-Drug-Resistant Acinetobacter baumannii. Vaccines (Basel) 2023; 11:vaccines11030669. [PMID: 36992253 DOI: 10.3390/vaccines11030669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative, immobile, aerobic nosocomial opportunistic coccobacillus that causes pneumonia, septicemia, and urinary tract infections in immunosuppressed patients. There are no commercially available alternative antimicrobials, and multi-drug resistance is an urgent concern that requires emergency measures and new therapeutic strategies. This study evaluated a multi-drug-resistant A. baumannii whole-cell vaccine, inactivated and adsorbed on an aluminum hydroxide–chitosan (mAhC) matrix, in an A. baumannii sepsis model in immunosuppressed mice by cyclophosphamide (CY). CY-treated mice were divided into immunized, non-immunized, and adjuvant-inoculated groups. Three vaccine doses were given at 0D, 14D, and 28D, followed by a lethal dose of 4.0 × 108 CFU/mL of A. baumannii. Immunized CY-treated mice underwent a significant humoral response, with the highest IgG levels and a higher survival rate (85%); this differed from the non-immunized CY-treated mice, none of whom survived (p < 0.001), and from the adjuvant group, with 45% survival (p < 0.05). Histological data revealed the evident expansion of white spleen pulp from immunized CY-treated mice, whereas, in non-immunized and adjuvanted CY-treated mice, there was more significant organ tissue damage. Our results confirmed the proof-of-concept of the immune response and vaccine protection in a sepsis model in CY-treated mice, contributing to the advancement of new alternatives for protection against A. baumannii infections.
Collapse
Affiliation(s)
- Túllio T Deusdará
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Mellanie K C Félix
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Helio de S Brito
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Edson W S Cangussu
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| | - Wellington de S Moura
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Benedito Albuquerque
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| | - Marcos G Silva
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| | - Gil R Dos Santos
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| | - Paula B de Morais
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
| | - Elizangela F da Silva
- Instituto Leônidas e Maria Deane, Oswaldo Cruz Foundation-Fiocruz Amazônia, Manaus 69057-070, AM, Brazil
| | - Yury O Chaves
- Instituto Leônidas e Maria Deane, Oswaldo Cruz Foundation-Fiocruz Amazônia, Manaus 69057-070, AM, Brazil
| | - Luis Andre M Mariúba
- Instituto Leônidas e Maria Deane, Oswaldo Cruz Foundation-Fiocruz Amazônia, Manaus 69057-070, AM, Brazil
| | - Paulo A Nogueira
- Instituto Leônidas e Maria Deane, Oswaldo Cruz Foundation-Fiocruz Amazônia, Manaus 69057-070, AM, Brazil
| | - Spartaco Astolfi-Filho
- Laboratory of DNA Technology, Biotechnology Department, Multidisciplinary Support Center, Federal University of Amazonas, Manaus 69080-900, AM, Brazil
| | - Enedina N Assunção
- Laboratory of DNA Technology, Biotechnology Department, Multidisciplinary Support Center, Federal University of Amazonas, Manaus 69080-900, AM, Brazil
| | - Sabrina Epiphanio
- Department of Immunology, Biomedical Science Institute, University of São Paulo (USP), São Paulo 05508-060, SP, Brazil
| | - Claudio R F Marinho
- Department of Immunology, Biomedical Science Institute, University of São Paulo (USP), São Paulo 05508-060, SP, Brazil
| | - Igor V Brandi
- Institute of Agricultural Sciences, Federal University of Minas Gerais, Montes Claros 39400-310, MG, Brazil
- Department of Biotchnology, State University of Montes Claros, Montes Claros 39401-089, MG, Brazil
| | - Kelvinson F Viana
- Interdisciplinary Center for Life Sciences and Nature, Federal University of Latin American Integration (UNILA), Foz do Iguaçu 85866-000, PR, Brazil
| | - Eugenio E Oliveira
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Alex Sander R Cangussu
- Graduate Program for Biodiversity and Biotechnology of Legal Amazon, Federal University of Tocantins, Palmas 77001-090, TO, Brazil
- Graduate Program in Biotechnology, Federal University of Tocantins, Gurupi 77425-000, TO, Brazil
| |
Collapse
|
10
|
Sheng X, Zhang H, Liu M, Tang X, Xing J, Chi H, Zhan W. Development and Evaluation of Recombinant B-Cell Multi-Epitopes of PDHA1 and GAPDH as Subunit Vaccines against Streptococcus iniae Infection in Flounder (Paralichthys olivaceus). Vaccines (Basel) 2023; 11:vaccines11030624. [PMID: 36992208 DOI: 10.3390/vaccines11030624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Streptococcus iniae is a severe Gram-positive pathogen that can infect a wide range of freshwater and marine fish species. In continuation of our earlier studies on the development of S. iniae vaccine candidates, pyruvate dehydrogenase E1 subunit alpha (PDHA1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were highly efficacious in protecting flounder (Paralichthys olivaceus) against S. iniae. In the present study, to investigate the potential of multi-epitope vaccination strategy to prevent flounder against S. iniae infection, the liner B-cell epitopes of PDHA1 and GAPDH proteins were predicted using a bioinformatics approach and were identified by immunoassay, and recombinant B-cell multi-epitopes of PDHA1 and GAPDH (rMEPIP and rMEPIG) containing immunodominant epitope-concentrated domains were expressed in Escherichia coli BL21 (DE3) and were used as a subunit vaccine to immunize healthy flounder, while recombinant PDHA1 (rPDHA1), GAPDH (rGAPDH) and formalin-inactivated S. iniae (FKC) served as controls. Then, the immunoprotection efficacy of rMEPIP and rMEPIG was evaluated by determining the percentages of CD4-1+, CD4-2+, CD8β+ T lymphocytes and surface-IgM-positive (sIgM+) lymphocytes in peripheral blood leucocytes (PBLs), spleen leucocytes (SPLs) and head kidney leucocytes (HKLs), as well as total IgM, specific IgM, and relative percentage survival (RPS) post immunization, respectively. It was found that fish immunized with rPDHA1, rGAPDH, rMEPIP, rMEPIG and FKC showed significant increases in sIgM+, CD4-1+, CD4-2+, and CD8β+ lymphocytes and production of total IgM and specific IgM against S. iniae or recombinant proteins rPDHA1 and rGAPDH, which indicated the activation of humoral and cellular immune responses after vaccination. Moreover, RPS rate of the multi-epitope vaccine rMEPIP and rMEPIG groups reached 74.07% and 77.78%, higher than that of rPDHA1 and rGAPDH (62.96% and 66.67%) and KFC (48.15%). These results demonstrated that B-cell multi-epitope protein vaccination, rMEPIP and rMEPIG, could give a better protective effect against S. iniae infection, which provided a promising strategy to design the efficient vaccine in teleost fish.
Collapse
Affiliation(s)
- Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Honghua Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Min Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
11
|
Lin G, Da F, Wan X, Huang Y, Yang S, Jian J, Cai S. Immune-enhancing effects of Astragalus polysaccharides and Ganoderma lucidum polysaccharides on Vibrio harveyi flgJ DNA vaccine in grouper. JOURNAL OF FISH DISEASES 2023; 46:147-156. [PMID: 36352832 DOI: 10.1111/jfd.13728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Astragalus polysaccharides (APS) and Ganoderma lucidum polysaccharides (GLP) have been shown to possess strong immunoregulatory properties in aquatic animals. In this study, the fragment containing Vibrio harveyi flgJ gene was ligated into pcDNA3.1(+) vector and pcDNA3.1(+)-flgJ was constructed as DNA vaccine. APS and GLP were used as DNA vaccine adjuvants to evaluate the immunoregulatory effect by intramuscular injection to pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂E. lanceolatus). The results showed that pcDNA3.1(+)-flgJ combined with APS or GLP could significantly up-regulate the innate and adaptive immune response in fish, including serum-specific antibody titres, catalase and lysozyme activities. At the same time, DNA vaccine combined with APS or GLP significantly up-regulated the expression levels of CD8α, IgM, IL-1β, MHC-Iα, MyD88 and TLR3 genes in thymus, head kidney, spleen and liver of pearl gentian grouper in comparison with those of the pFlgJ group. After 42 days post-vaccination, V. harveyi was used to challenge pearl gentian grouper by intraperitoneal injection. The relative percentage of survival (RPS) of pFlgJ, pFlgJ +APS, pFlgJ +GLP and pFlgJ+APS+GLP groups were 69%, 81%, 77% and 88%, respectively. These results suggested APS and GLP were potential adjuvants for DNA vaccine against V. harveyi infection in pearl gentian grouper.
Collapse
Affiliation(s)
- Guixiang Lin
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Fan Da
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Xiaoju Wan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Yucong Huang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Shiping Yang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Shuanghu Cai
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| |
Collapse
|
12
|
Zhang J, Zhang S, Sun X, Xu X. Comparative transcriptome analysis reveals the immune response of turbot (Scophthalmus maximus) induced by inactivated bivalent vaccine. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108461. [PMID: 36462744 DOI: 10.1016/j.fsi.2022.108461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Vibrio species are important pathogens that affect a wide range of farmed fish. Vaccination is regarded as the most efficacious strategy for fighting bacterial infections. However, the underlying mechanisms remain to be elucidated. In the present study, a comparative transcriptome analysis was performed on the spleens from turbot (Scophthalmus maximus) induced by an inactivated bivalent vaccine (Vibrio anguillarum and Vibrio harveyi, IVVah1) at 4 week and 1 day post further challenge. Strong immune responses were induced by the bivalent vaccine, besides differentially expressed genes (DEGs) associated with adaptive immunity, more innate immunity-related DEGs were detected. At the late stage of vaccination, immune-related molecules associated with pattern recognition receptors, inflammatory factors, complement and coagulation cascade-related components, and antigen processing and presentation were significantly regulated, and some of them were even further up-regulated after the bacterial challenge, indicating the cooperation of multiple immune processes during the vaccine immunization process. In addition to the terms or pathways associated with the immune response, enrichment analysis revealed multiple significantly enriched terms/pathways associated with the response to stimulus/stress, homeostasis, metabolism, and biosynthesis, suggesting that a defensive status was established by the bivalent vaccine. This study furnishes new insights into the internal mechanism of immunity upon a combined vaccine administrating in turbot and lays a foundation for developing highly immunogenic vaccines in teleost.
Collapse
Affiliation(s)
- Jian Zhang
- School of Ocean, Yantai University, Yantai, China
| | | | - Xiangyi Sun
- School of Ocean, Yantai University, Yantai, China
| | - Xiudan Xu
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
13
|
Du Y, Hu X, Miao L, Chen J. Current status and development prospects of aquatic vaccines. Front Immunol 2022; 13:1040336. [PMID: 36439092 PMCID: PMC9684733 DOI: 10.3389/fimmu.2022.1040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Diseases are a significant impediment to aquaculture's sustainable and healthy growth. The aquaculture industry is suffering significant financial losses as a result of the worsening water quality and increasing frequency of aquatic disease outbreaks caused by the expansion of aquaculture. Drug control, immunoprophylaxis, ecologically integrated control, etc. are the principal control strategies for fish infections. For a long time, the prevention and control of aquatic diseases have mainly relied on the use of various antibiotics and chemical drugs. However, long-term use of chemical inputs not only increases pathogenic bacteria resistance but also damages the fish and aquaculture environments, resulting in drug residues in aquatic products, severely impeding the development of the aquaculture industry. The development and use of aquatic vaccines are the safest and most effective ways to prevent aquatic animal diseases and preserve the health and sustainability of aquaculture. To give references for the development and implementation of aquatic vaccines, this study reviews the development history, types, inoculation techniques, mechanisms of action, development prospects, and challenges encountered with aquatic vaccines.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Zhao Z, Jiang FY, Zhou GQ, Duan HX, Xia JY, Zhu B. Protective immunity against spring viremia of carp virus by mannose modified chitosan loaded DNA vaccine. Virus Res 2022; 320:198896. [PMID: 35977626 DOI: 10.1016/j.virusres.2022.198896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/25/2022]
Abstract
Spring viremia of carp virus (SVCV) usually be considered as one of the serious in viral diseases of aquaculture, and DNA vaccine with novel delivery mechanism or adjuvant has proven to be a promising and effective strategy to control aquatic animal diseases. In this study, the mannose-modified chitosan, a carrier system for vaccine delivery, were used to developed a chitosan-encapsulated DNA vaccine (CS-M-G) against SVCV, then investigated immune response induced by the vaccine. Our results showed that CS-M-G was confirmed the spherical or elliptical with even distribution and ranging from approximately 50 to 150 nm in size, the expression of the antigen gene could still be detected after 21 d post vaccination. The CS-M-G induces the highest antibody levels in the 20 μg dose group which is about 3 times than naked plasmid group at 21 d post vaccination, and still hold a higher level than control group at 28 d post vaccination. On the side, strongest protection with relative percent survival of 62.1% in the 20 μg CS-M-G group, which could produce significantly higher enzyme activities and up-regulated expression of immune-associated genes than control group. Thus, our results indicate that DNA vaccine loaded with mannose-modified chitosan induces strong immune response and provided an effective protection against SVCV infection, may be helpful and extended for developing more aquatic animal vaccines in the future.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Fu-Yi Jiang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Guo-Qing Zhou
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Hui-Xin Duan
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Jun-Yao Xia
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Wu X, Xing J, Tang X, Sheng X, Chi H, Zhan W. Protective cellular and humoral immune responses to Edwardsiella tarda in flounder (Paralichthys olivaceus) immunized by an inactivated vaccine. Mol Immunol 2022; 149:77-86. [DOI: 10.1016/j.molimm.2022.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022]
|
16
|
Pumchan A, Sae-Ueng U, Prasittichai C, Sirisuay S, Areechon N, Unajak S. A Novel Efficient Piscine Oral Nano-Vaccine Delivery System: Modified Halloysite Nanotubes (HNTs) Preventing Streptococcosis Disease in Tilapia ( Oreochromis sp.). Vaccines (Basel) 2022; 10:1180. [PMID: 35893829 PMCID: PMC9331641 DOI: 10.3390/vaccines10081180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Generally, the injection method is recommended as the best efficient method for vaccine applications in fish. However, labor-intensive and difficult injection for certain fish sizes is always considered as a limitation to aquatic animals. To demonstrate the effectiveness of a novel oral delivery system for the piscine vaccine with nano-delivery made from nano clay, halloysite nanotubes (HNTs) and their modified forms were loaded with killed vaccines, and we determined the ability of the system in releasing vaccines in a mimic digestive system. The efficaciousness of the oral piscine vaccine nano-delivery system was evaluated for its level of antibody production and for the level of disease prevention in tilapia. Herein, unmodified HNTs (H) and modified HNTs [HNT-Chitosan (HC), HNT-APTES (HA) and HNT-APTES-Chitosan (HAC)] successfully harbored streptococcal bivalent vaccine with inactivated S. agalactiae, designated as HF, HAF, HCF and HACF. The releasing of the loading antigens in the mimic digestive tract demonstrated a diverse pattern of protein releasing depending on the types of HNTs. Remarkably, HCF could properly release loading antigens with relevance to the increasing pH buffer. The oral vaccines revealed the greatest elevation of specific antibodies to S. agalactiae serotype Ia in HCF orally administered fish and to some extent in serotype III. The efficacy of streptococcal disease protection was determined by continually feeding with HF-, HAF-, HCF- and HACF-coated feed pellets for 7 days in the 1st and 3rd week. HCF showed significant RPS (75.00 ± 10.83%) among the other tested groups. Interestingly, the HCF-treated group exhibited noticeable efficacy similar to the bivalent-vaccine-injected group (RPS 81.25 ± 0.00%). This novel nano-delivery system for the fish vaccine was successfully developed and exhibited appropriated immune stimulation and promised disease prevention through oral administration. This delivery system can greatly support animals' immune stimulation, which conquers the limitation in vaccine applications in aquaculture systems. Moreover, this delivery system can be applied to carrying diverse types of biologics, including DNA, RNA and subunit protein vaccines.
Collapse
Affiliation(s)
- Ansaya Pumchan
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand;
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - Udom Sae-Ueng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Chaiya Prasittichai
- Department of Chemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand;
| | - Soranuth Sirisuay
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; (S.S.); (N.A.)
| | - Nontawith Areechon
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; (S.S.); (N.A.)
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand;
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
17
|
Xu C, Qiao M, Huo X, Liao Z, Su J. An Oral Microencapsulated Vaccine Loaded by Sodium Alginate Effectively Enhances Protection Against GCRV Infection in Grass Carp (Ctenopharyngodon idella). Front Immunol 2022; 13:848958. [PMID: 35401526 PMCID: PMC8987307 DOI: 10.3389/fimmu.2022.848958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Grass carp reovirus (GCRV) is highly infectious and lethal to grass carp, causing huge economic losses to the aquaculture industry annually. Currently, vaccination is the most effective method against viral infections. Among the various vaccination methods, the oral vaccination is an ideal way in aquaculture. However, low protective efficiency is the major problem for oral vaccination owing to some reasons, such as antigen degradation and low immunogenicity. In our study, we screened the antigenic epitopes of GCRV-II and prepared an oral microencapsulated vaccine using sodium alginate (SA) as a carrier and flagellin B (FlaB) as an adjuvant, and evaluated its protective effects against GCRV-II infection in grass carp. The full length and three potential antigenic epitope regions of GCRV-II VP56 gene were expressed in Escherichia coli and purified by glutathione affinity column respectively. The optimal antigen (VP56-3) was screened by enzyme-linked immunosorbent assay (ELISA). Adjuvant FlaB was also expressed in E. coli and purified by Ni2+ affinity column. Subsequently, we prepared the oral vaccines using sodium alginate as a carrier. The vaccine (SA-VP56-3/FlaB) forms microsphere (1.24 ± 0.22 μm), examined by transmission electron microscopy, scanning electron microscopy, and dynamic light scattering assay. SA-VP56-3/FlaB vaccine has excellent stability, slow-release, and low toxicity by dynamic light scattering assay, release dynamic assay, in vivo fluorescence imaging system, hemolytic activity and cytotoxicity. Then we vaccinated grass carp orally with SA-VP56-3/FlaB and measured immune-related parameters (serum neutralizing antibody titer, serum enzyme activity (TSOD, LZM, C3), immune-related genes ((IgM, IFN1, MHC-II, CD8 in head kidney and spleen), IgZ in hindgut)). The results showed that SA-VP56-3/FlaB significantly induced strong immune responses, compared to other groups. The highest survival rate achieved in SA-VP56-3/FlaB microencapsulated vaccine (56%) in 2 weeks post GCRV challenge, while 10% for the control group. Meanwhile, the tissue virus load in survival grass carp is lowest in SA-VP56-3/FlaB group. These results indicated that SA-VP56-3/FlaB could be a candidate oral vaccine against GCRV-II infection in aquaculture.
Collapse
Affiliation(s)
- Chuang Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Meihua Qiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
- *Correspondence: Jianguo Su,
| |
Collapse
|