1
|
Klevanski M, Kim H, Heilemann M, Kuner T, Bartenschlager R. Glycan-directed SARS-CoV-2 inhibition by leek extract and lectins with insights into the mode-of-action of Concanavalin A. Antiviral Res 2024; 225:105856. [PMID: 38447646 DOI: 10.1016/j.antiviral.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Four years after its outbreak, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a global challenge for human health. At its surface, SARS-CoV-2 features numerous extensively glycosylated spike proteins. This glycan coat supports virion docking and entry into host cells and at the same time renders the virus less susceptible to neutralizing antibodies. Given the high genetic plasticity of SARS-CoV-2 and the rapid emergence of immune escape variants, targeting the glycan shield by carbohydrate-binding agents emerges as a promising strategy. However, the potential of carbohydrate-targeting reagents as viral inhibitors remains underexplored. Here, we tested seven plant-derived carbohydrate-binding proteins, called lectins, and one crude plant extract for their antiviral activity against SARS-CoV-2 in two types of human lung cells: A549 cells ectopically expressing the ACE2 receptor and Calu-3 cells. We identified three lectins and an Allium porrum (leek) extract inhibiting SARS-CoV-2 infection in both cell systems with selectivity indices (SI) ranging between >2 and >299. Amongst these, the lectin Concanavalin A (Con A) exerted the most potent and broad activity against a panel of SARS-CoV-2 variants. We used multiplex super-resolution microscopy to address lectin interactions with SARS-CoV-2 and its host cells. Notably, we discovered that Con A not only binds to SARS-CoV-2 virions and their host cells, but also causes SARS-CoV-2 aggregation. Thus, Con A exerts a dual mode-of-action comprising both, antiviral and virucidal, mechanisms. These results establish Con A and other plant lectins as candidates for COVID-19 prevention and basis for further drug development.
Collapse
Affiliation(s)
- Maja Klevanski
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| | - Heeyoung Kim
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120, Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120, Heidelberg, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany; German Center for Lung Research (DZL), Partner Site Heidelberg (TLRC), Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120, Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120, Heidelberg, Germany; Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Schwarze M, Volke D, Rojas Echeverri JC, Schick R, Lakowa N, Grünewald T, Wolf J, Borte S, Scholz M, Krizsan A, Hoffmann R. Influence of Mutations and N-Glycosylation Sites in the Receptor-Binding Domain (RBD) and the Membrane Protein of SARS-CoV-2 Variants of Concern on Antibody Binding in ELISA. BIOLOGY 2024; 13:207. [PMID: 38666819 PMCID: PMC11047955 DOI: 10.3390/biology13040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human cells by first attaching to the ACE-2 receptor via its receptor-binding domain (RBD) in the spike protein. Here, we report the influence of N-glycosylation sites of the RBD and the membrane (M) protein on IgG antibody binding in serum samples from patients infected with the original SARS-CoV-2 strain in Germany. The RBDs of the wildtype, alpha, beta, gamma, and kappa variants expressed in HEK293S GnTI- cells were all N-glycosylated at Asn331, Asn334, Asn343, and Asn360 or Asn370, whereas the M-protein was glycosylated at Asn5. An ELISA using a coated RBD and probed with anti-RBD IgG antibodies gave a sensitivity of 96.3% and a specificity of 100% for the wildtype RBD, while the sensitivity decreased by 5% to 10% for the variants of concern, essentially in the order of appearance. Deglycosylation of the wildtype RBD strongly reduced antibody recognition by ~20%, considering the mean of the absorbances recorded for the ELISA. This effect was even stronger for the unglycosylated RBD expressed in Escherichia coli, suggesting structural changes affecting epitope recognition. Interestingly, the N-glycosylated M-protein expressed in HEK293S GnTI- cells gave good sensitivity (95%), which also decreased to 65% after deglycosylation, and selectivity (100%). In conclusion, N-glycosylation of the M-protein, the RBD, and most likely the spike protein are important for proper antibody binding and immunological assays, whereas the type of N-glycosylation is less relevant.
Collapse
Affiliation(s)
- Mandy Schwarze
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany; (M.S.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| | - Daniela Volke
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany; (M.S.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| | - Juan Camilo Rojas Echeverri
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany; (M.S.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| | - Robin Schick
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany; (M.S.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| | - Nicole Lakowa
- Klinik für Infektions- und Tropenmedizin, Klinikum Chemnitz gGmbH, 09113 Chemnitz, Germany (T.G.)
| | - Thomas Grünewald
- Klinik für Infektions- und Tropenmedizin, Klinikum Chemnitz gGmbH, 09113 Chemnitz, Germany (T.G.)
| | - Johannes Wolf
- Department of Laboratory Medicine, Hospital St. Georg gGmbH, 04129 Leipzig, Germany
- Immuno Deficiency Center Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg gGmbH, 04129 Leipzig, Germany
| | - Stephan Borte
- Department of Laboratory Medicine, Hospital St. Georg gGmbH, 04129 Leipzig, Germany
- Immuno Deficiency Center Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg gGmbH, 04129 Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Universität Leipzig, 04107 Leipzig, Germany
- LIFE Research Center of Civilization Diseases, Universität Leipzig, 04103 Leipzig, Germany
| | - Andor Krizsan
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany; (M.S.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany; (M.S.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. MASS SPECTROMETRY REVIEWS 2024; 43:193-229. [PMID: 36177493 PMCID: PMC9538640 DOI: 10.1002/mas.21813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host-pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.
Collapse
Affiliation(s)
- Sayantani Chatterjee
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
- Bioinformatics ProgramBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
4
|
Arakawa K, Ono T, Aoki-Kinoshita KF, Yamamoto Y. Development of an integrated and inferenceable RDF database of glycan, pathogen and disease resources. Sci Data 2023; 10:582. [PMID: 37673902 PMCID: PMC10482848 DOI: 10.1038/s41597-023-02442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Glycans are known to play extremely important roles in infections by viruses and pathogens. In fact, the SARS-CoV-2 virus has been shown to have evolved due to a single change in glycosylation. However, data resources on glycans, pathogens and diseases are not well organized. To accurately obtain such information from these various resources, we have constructed a foundation for discovering glycan and virus interaction data using Semantic Web technologies to be able to semantically integrate such heterogeneous data. Here, we created an ontology to encapsulate the semantics of virus-glycan interactions, and used Resource Description Framework (RDF) to represent the data we obtained from non-RDF related databases and data associated with literature. These databases include PubChem, SugarBind, and PSICQUIC, which made it possible to refer to other RDF resources such as UniProt and GlyTouCan. We made these data publicly available as open data and provided a service that allows anyone to freely perform searches using SPARQL. In addition, the RDF resources created in this study are available at the GlyCosmos Portal.
Collapse
Affiliation(s)
- Koichi Arakawa
- Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji City, Tokyo, 192-8577, Japan
| | - Tamiko Ono
- Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji City, Tokyo, 192-8577, Japan
| | - Kiyoko F Aoki-Kinoshita
- Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji City, Tokyo, 192-8577, Japan.
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, 1-236 Tangi-machi, Hachioji City, Tokyo, 192-8577, Japan.
| | - Yasunori Yamamoto
- Database Center for Life Science, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871, Japan.
| |
Collapse
|
5
|
Tripathi N, Goel B, Bhardwaj N, Vishwakarma RA, Jain SK. Exploring the Potential of Chemical Inhibitors for Targeting Post-translational Glycosylation of Coronavirus (SARS-CoV-2). ACS OMEGA 2022; 7:27038-27051. [PMID: 35937682 PMCID: PMC9344791 DOI: 10.1021/acsomega.2c02345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/08/2022] [Indexed: 06/09/2023]
Abstract
The Spike (S) protein of SARS-CoV-2 expressed on the viral cell surface is of particular importance as it facilitates viral entry into the host cells. The S protein is heavily glycosylated with 22 N-glycosylation sites and a few N-glycosylation sites. During the viral surface protein synthesis via the host ribosomal machinery, glycosylation is an essential step in post-translational modifications (PTMs) and consequently vital for its life cycle, structure, immune evasion, and cell infection. Interestingly, the S protein of SARS-CoV-2 and the host receptor protein, ACE2, are also extensively glycosylated and these surface glycans are critical for the viral-host cell interaction for viral entry. The glycosylation pathway of both virus (hijacked from the host biosynthetic machinery) and target cells crucially affect SARS-CoV-2 infection at different levels. For example, the glycosaminoglycans (GAGs) of host cells serve as a cofactor as they interact with the receptor-binding domain (RBD) of S-glycoprotein and play a protective role in host immune evasion via masking the viral peptide epitopes. Hence, the post-translational glycan biosynthesis, processing, and transport events could be potential targets for developing therapeutic drugs and vaccines. Especially, inhibition of the N-glycan biosynthesis pathway amplifies S protein proteolysis and, thus, blocks viral entry. The chemical inhibitors of SARS-CoV-2 glycosylation could be evaluated for Covid-19. In this review, we discuss the current status of the chemical inhibitors (both natural and synthetically designed inhibitors) of viral glycosylation for Covid-19 and provide a future perspective. It could be an important strategy in targeting the various emerging SARS-CoV-2 variants of concern (VOCs), as these inhibitors are postulated to aid in reducing the viral load as well as infectivity.
Collapse
Affiliation(s)
- Nancy Tripathi
- Department
of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Bharat Goel
- Department
of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Nivedita Bhardwaj
- Department
of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Ram A. Vishwakarma
- Council
of Scientific and Industrial Research, Anusandhan
Bhavan, Rafi Marg, New Delhi 110001, India
| | - Shreyans K. Jain
- Department
of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
6
|
Yang Y, Wu Y, Meng X, Wang Z, Younis M, Liu Y, Wang P, Huang X. SARS-CoV-2 membrane protein causes the mitochondrial apoptosis and pulmonary edema via targeting BOK. Cell Death Differ 2022; 29:1395-1408. [PMID: 35022571 PMCID: PMC8752586 DOI: 10.1038/s41418-022-00928-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Deaths caused by coronavirus disease 2019 (COVID-19) are largely due to the lungs edema resulting from the disruption of the lung alveolo-capillary barrier, induced by SARS-CoV-2-triggered pulmonary cell apoptosis. However, the molecular mechanism underlying the proapoptotic role of SARS-CoV-2 is still unclear. Here, we revealed that SARS-CoV-2 membrane (M) protein could induce lung epithelial cells mitochondrial apoptosis. Notably, M protein stabilized B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) via inhibiting its ubiquitination and promoted BOK mitochondria translocation. The endodomain of M protein was required for its interaction with BOK. Knockout of BOK by CRISPR/Cas9 increased cellular resistance to M protein-induced apoptosis. BOK was rescued in the BOK-knockout cells, which led to apoptosis induced by M protein. M protein induced BOK to trigger apoptosis in the absence of BAX and BAK. Furthermore, the BH2 domain of BOK was required for interaction with M protein and proapoptosis. In vivo M protein recombinant lentivirus infection induced caspase-associated apoptosis and increased alveolar-capillary permeability in the mouse lungs. BOK knockdown improved the lung edema due to lentivirus-M protein infection. Overall, M protein activated the BOK-dependent apoptotic pathway and thus exacerbated SARS-CoV-2 associated lung injury in vivo. These findings proposed a proapoptotic role for M protein in SARS-CoV-2 pathogenesis, which may provide potential targets for COVID-19 treatments.
Collapse
Affiliation(s)
- Yang Yang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaojun Meng
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Zhiying Wang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Muhammad Younis
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Ye Liu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Peihui Wang
- Cheeloo College of Medicine, Advanced Medical Research Institute, Shandong University, Jinan, Shandong Province, 250012, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China.
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
7
|
Increasing the frequency of omicron variant mutations boosts the immune response and may reduce the virus virulence. Microb Pathog 2022; 164:105400. [PMID: 35077833 PMCID: PMC8783435 DOI: 10.1016/j.micpath.2022.105400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/09/2023]
Abstract
The coronavirus has posed a serious threat to the world since its discovery in Wuhan in 2019. Beta, gamma, delta, and the final omicron variants have emerged as a result of several mutations in the virion structure. The Australian Omicron S protein variant contains 37 mutations out of a total of 67 mutations. According to preliminary data from South Africa, Omicron variant infection is not associated with any particular symptoms. The purpose of this research was to determine how changes in the structure of the S protein alter the protein's interaction with the ACE2 receptor. The Omicron variant stimulates the immune response more than the wild strain.
Collapse
|
8
|
Shajahan A, Pepi LE, Rouhani DS, Heiss C, Azadi P. Glycosylation of SARS-CoV-2: structural and functional insights. Anal Bioanal Chem 2021; 413:7179-7193. [PMID: 34235568 PMCID: PMC8262766 DOI: 10.1007/s00216-021-03499-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Similar to other coronaviruses, its particles are composed of four structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. S, E, and M proteins are glycosylated, and the N protein is phosphorylated. The S protein is involved in the interaction with the host receptor human angiotensin-converting enzyme 2 (hACE2), which is also heavily glycosylated. Recent studies have revealed several other potential host receptors or factors that can increase or modulate the SARS-CoV-2 infection. Interestingly, most of these molecules bear carbohydrate residues. While glycans acquired by the viruses through the hijacking of the host machinery help the viruses in their infectivity, they also play roles in immune evasion or modulation. Glycans play complex roles in viral pathobiology, both on their own and in association with carrier biomolecules, such as proteins or glycosaminoglycans (GAGs). Understanding these roles in detail can help in developing suitable strategies for prevention and therapy of COVID-19. In this review, we sought to emphasize the interplay of SARS-CoV-2 glycosylated proteins and their host receptors in viral attachment, entry, replication, and infection. Moreover, the implications for future therapeutic interventions targeting these glycosylated biomolecules are also discussed in detail.
Collapse
Affiliation(s)
- Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Lauren E. Pepi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Daniel S. Rouhani
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
9
|
Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther 2021; 6:396. [PMID: 34782609 PMCID: PMC8591162 DOI: 10.1038/s41392-021-00809-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/10/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Suideng Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
10
|
Gleinich AS, Pepi LE, Shajahan A, Heiss C, Azadi P. Vaccines and Therapeutics for COVID-19 - How Can Understanding SARS-CoV-2 Glycosylation Lead to Pharmaceutical Advances? AMERICAN PHARMACEUTICAL REVIEW 2021; 24:14-21. [PMID: 38099300 PMCID: PMC10721230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 160 million people worldwide. Researchers have targeted the SARS-CoV-2 structural proteins to better combat the pandemic. Of the four structural proteins, spike (S), membrane (M), envelope (E) and nucleocapsid (N), the S, M and E proteins are glycosylated whereas the N protein is phosphorylated. The glycosylation of the S protein has been reported previously by multiple research groups, and this knowledge has assisted the pharmaceutical industry in developing vaccines and treatment options. In the United States, there are currently three approved COVID-19 vaccines. All three of these vaccines use the S protein to teach host cells how to react when SARS-CoV-2 particles are present. Treatment options utilizing antivirals and immunosuppressants are being developed in addition to vaccines. Different treatment approaches are needed based on the severity of COVID-19 infection. The therapeutic options currently available are not derived through the direct knowledge on SARS-CoV-2 glycosylation. However, more research on the glycosylation of the structural proteins and how this effects SARS-CoV-2 and host cell binding could lead to new and more effective therapeutics. Herein we outline the current vaccine and therapeutic options against COVID-19 available to the public, as well as those still in development.
Collapse
Affiliation(s)
- Anne S Gleinich
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Lauren E Pepi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| |
Collapse
|
11
|
Javier Silva L, Rosario Pacahuala E. Governments and vaccination against COVID-19. VACUNAS (ENGLISH EDITION) 2021. [PMCID: PMC8188549 DOI: 10.1016/j.vacune.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Javier Silva LA, Rosario Pacahuala EA. [Governments and vaccination against COVID-19]. VACUNAS 2021; 22:125-126. [PMID: 33875919 PMCID: PMC8045421 DOI: 10.1016/j.vacun.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Alvarez-Munoz S, Upegui-Porras N, Gomez AP, Ramirez-Nieto G. Key Factors That Enable the Pandemic Potential of RNA Viruses and Inter-Species Transmission: A Systematic Review. Viruses 2021; 13:537. [PMID: 33804942 PMCID: PMC8063802 DOI: 10.3390/v13040537] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/27/2022] Open
Abstract
Viruses play a primary role as etiological agents of pandemics worldwide. Although there has been progress in identifying the molecular features of both viruses and hosts, the extent of the impact these and other factors have that contribute to interspecies transmission and their relationship with the emergence of diseases are poorly understood. The objective of this review was to analyze the factors related to the characteristics inherent to RNA viruses accountable for pandemics in the last 20 years which facilitate infection, promote interspecies jump, and assist in the generation of zoonotic infections with pandemic potential. The search resulted in 48 research articles that met the inclusion criteria. Changes adopted by RNA viruses are influenced by environmental and host-related factors, which define their ability to adapt. Population density, host distribution, migration patterns, and the loss of natural habitats, among others, have been associated as factors in the virus-host interaction. This review also included a critical analysis of the Latin American context, considering its diverse and unique social, cultural, and biodiversity characteristics. The scarcity of scientific information is striking, thus, a call to local institutions and governments to invest more resources and efforts to the study of these factors in the region is key.
Collapse
Affiliation(s)
| | | | | | - Gloria Ramirez-Nieto
- Microbiology and Epidemiology Research Group, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (S.A.-M.); (N.U.-P.); (A.P.G.)
| |
Collapse
|