1
|
Ye Z, Zhu Z, Yu L, Zhang Z, Li X. Enhanced Porcine Reproductive and Respiratory Syndrome Virus Replication in Nsp4- or Nsp2-Overexpressed Marc-145 Cell Lines. Vet Sci 2025; 12:52. [PMID: 39852927 PMCID: PMC11768971 DOI: 10.3390/vetsci12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses to the swine industry. The killed PRRSV vaccine has been reported to be safe and could elicit humoral responses. The killed PRRSV vaccine with a high viral antigen load combined with robust adjuvants could provide good protection against the infection. However, the high virus titer of PRRSV on the successive production cell lines is the prerequisite for this strategy. In this study, we explored PRRSV production in two recombinant Marc-145 cell lines expressing Nsp2 or Nsp4 through a lentivirus system. The results demonstrated that either Nsp2 or Nsp4 expressing Marc-145 cells did not affect cell morphology and growth kinetics but significantly enhanced PRRSV replication. Overall, our exploration may enable the production of high-yield PRRSV and offer a potential tool for developing safer and more effective PRRSV vaccines.
Collapse
Affiliation(s)
- Zhengqin Ye
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China; (Z.Y.); (Z.Z.); (L.Y.); (Z.Z.)
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China; (Z.Y.); (Z.Z.); (L.Y.); (Z.Z.)
| | - Liangzheng Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China; (Z.Y.); (Z.Z.); (L.Y.); (Z.Z.)
| | - Zhendong Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China; (Z.Y.); (Z.Z.); (L.Y.); (Z.Z.)
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China; (Z.Y.); (Z.Z.); (L.Y.); (Z.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
2
|
Wu Y, Lin L, Gao X, Zheng J, Yin L, Zhao H, Ren B, Wang L, Li Q. Evaluation of the cross-protective effect of VR2332 modified live virus vaccine against a recombinant NADC34-like porcine reproductive and respiratory syndrome virus. Front Vet Sci 2024; 11:1472960. [PMID: 39641098 PMCID: PMC11618057 DOI: 10.3389/fvets.2024.1472960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
In recent years, NADC34-like strains of porcine reproductive and respiratory syndrome virus have gradually emerged as mainstream strains on Chinese pig farms. These strains have high mutation rates and can recombine with local strains, representing great challenges to prevention and control efforts. Previously, a new recombinant NADC34-like subtype strain was isolated in our laboratory. Herein, we evaluated the cross-protective effect of the VR2332 modified live virus (MLV) against the novel NADC34-like recombinant strain using the immune challenge protection test in piglets and sows. The results revealed that immunization with the vaccine in piglets significantly reduced viremia, lung damage and stimulated the production of PRRSV-N antibodies. In the sow challenge experiment, one abortion and one death were recorded in the positive control group, and the survival rate of offspring was only 25%. However, there were no sow deaths or abortions in the immunization group during the experiment, and the average piglet survival rate was high at 76.5%. In general, the VR2332 MLV confers a certain extent of cross-protection against the NADC34-like recombinant strain, providing an effective reference and guidance for prevention and control efforts and clinical vaccine use.
Collapse
Affiliation(s)
- Yu Wu
- Wen's Food Group, Yunfu, China
- State Key Laboratory of Biocontrol, Guangzhou Higher Education Mega Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Xiaopeng Gao
- College of Animal Science, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Jiaying Zheng
- College of Animal Science, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
3
|
Fiers J, Cay AB, Maes D, Tignon M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines (Basel) 2024; 12:942. [PMID: 39204065 PMCID: PMC11359659 DOI: 10.3390/vaccines12080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pig production worldwide and responsible for enormous production and economic losses. PRRSV infection in gestating gilts and sows induces important reproductive failure. Additionally, respiratory distress is observed in infected piglets and fattening pigs, resulting in growth retardation and increased mortality. Importantly, PRRSV infection interferes with immunity in the respiratory tract, making PRRSV-infected pigs more susceptible to opportunistic secondary pathogens. Despite the availability of commercial PRRSV vaccines for more than three decades, control of the disease remains a frustrating and challenging task. This paper provides a comprehensive overview of PRRSV, covering its history, economic and scientific importance, and description of the viral structure and genetic diversity. It explores the virus's pathogenesis, including cell tropism, viral entry, replication, stages of infection and epidemiology. It reviews the porcine innate and adaptative immune responses to comprehend the modulation mechanisms employed by PRRS for immune evasion.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
4
|
Plaza-Soriano Á, Martínez-Lobo FJ, Garza-Moreno L, Castillo-Pérez J, Caballero E, Castro JM, Simarro I, Prieto C. Determination of the frequency of individuals with broadly cross-reactive neutralizing antibodies against PRRSV in the sow population under field conditions. Porcine Health Manag 2024; 10:26. [PMID: 38978128 PMCID: PMC11229297 DOI: 10.1186/s40813-024-00372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/20/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is a significant swine pathogen, yet the immune response components contributing to protection remain incompletely understood. Broadly reactive neutralizing antibodies (bNAs) may play a crucial role in preventing reinfections by heterologous viruses, although their occurrence is considered low under both field and experimental conditions. This study aimed to assess the frequency of sows exhibiting bNAs against PRRSV under field conditions and to analyze the epidemiological factors influencing the occurrence of these elite neutralizers. Blood samples were collected from breeding sows across eleven unrelated pig farms, with samples categorized by parity. Serum obtained was utilized in virus neutralization assays (VNs) against six PRRSV field isolates and two MLV strains. RESULTS Approximately 7% of the sows exhibited neutralization activity against all viruses in the panel, with a geometric mean of the titer (GMT) of NAs at or exceeding 4 log2. Exclusion of the PRRSV-2 isolate from the panel increased the proportion of elite neutralizers to around 15%. Farm-specific analysis revealed significant variations in both GMT of NAs and proportion of elite neutralizers. PRRSV unstable farms and those with a PRRS outbreak in the last 12 months displayed higher GMT of NAs compared to stable farms without recent outbreaks. The GMT of NAs showed a gradual, albeit moderate, increase with the parity of the sows. Parity's impact on bNA response was consistently observed in stable farms but not necessarily in unstable farms or those with recent outbreaks. Finally, the results indicated that vaccinated animals had higher NA titers against the vaccine virus used in the farm than against field viruses. CONCLUSION bNAs against heterologous isolates induced by PRRSV infection under field conditions are generally low, often falling below titers necessary for protection against reproductive failure. However, a subset of sows (approximately 15%) can be considered elite neutralizers, efficiently recognizing various PRRSV strains. Repeated exposures to PRRSV play a crucial role in eliciting these bNAs, with a higher frequency observed in unstable farms and those with recent outbreaks. In stable farms, parity only marginally influences bNA titers, highlighting its limited role compared to the impact of PRRSV exposure history.
Collapse
Affiliation(s)
- Ángeles Plaza-Soriano
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Javier Martínez-Lobo
- Animal Science Department, School of Agrifood and Forestry Engineering and Veterinary Medicine, University of Lleida, Lleida, Spain.
| | - Laura Garza-Moreno
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Jaime Castillo-Pérez
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Elki Caballero
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Castro
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Simarro
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Cinta Prieto
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Perez-Duran F, Calderon-Rico F, Franco-Correa LE, Zamora-Aviles AG, Ortega-Flores R, Durand-Herrera D, Bravo-Patiño A, Cortes-Vieyra R, Hernandez-Morales I, Nuñez-Anita RE. Synthetic Peptides Elicit Humoral Response against Porcine Reproductive and Respiratory Syndrome Virus in Swine. Vaccines (Basel) 2024; 12:652. [PMID: 38932381 PMCID: PMC11209519 DOI: 10.3390/vaccines12060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study was to analyze the immunogenic response elicited in swine by two synthetic peptides derived from GP5 to understand the role of lineal B epitopes in the humoral and B-cell-mediated response against the porcine reproductive and respiratory syndrome virus (PRRSV). For inoculation, twenty-one-day-old pigs were allocated into six groups: control, vehicle, vaccinated (Ingelvac-PRRSV, MLV®), non-vaccinated and naturally infected, GP5-B and GP5-B3. At 2 days post-immunization (dpi), the GP5-B3 peptide increased the serum concentrations of cytokines associated with activate adaptive cellular immunity, IL-1β (1.15 ± 1.15 to 10.17 ± 0.94 pg/mL) and IL-12 (323.8 ± 23.3 to 778.5 ± 58.11 pg/mL), compared to the control group. The concentration of IgGs anti-GP5-B increased in both cases at 21 and 42 dpi compared to that at 0 days (128.3 ± 8.34 ng/mL to 231.9 ± 17.82 and 331 ± 14.86 ng/mL), while IgGs anti-GP5-B3 increased at 21 dpi (105.1 ± 19.06 to 178 ± 15.09 ng/mL) and remained at the same level until 42 dpi. Also, antibody-forming/Plasma B cells (CD2+/CD21-) increased in both cases (9.85 ± 0.7% to 13.67 ± 0.44 for GP5-B and 15.72 ± 1.27% for GP5-B3). Furthermore, primed B cells (CD2-/CD21+) from immunized pigs showed an increase in both cases (9.62 ± 1.5% to 24.51 ± 1.3 for GP5-B and 34 ± 2.39% for GP5-B3) at 42 dpi. Conversely the naïve B cells from immunized pigs decreased compared with the control group (8.84 ± 0.63% to 6.25 ± 0.66 for GP5-B and 5.78 ± 0.48% for GP5-B3). Importantly, both GP5-B and GP5-B3 peptides exhibited immunoreactivity against serum antibodies from the vaccinated group, as well as the non-vaccinated and naturally infected group. In conclusion, GP5-B and GP5-B3 peptides elicited immunogenicity mediated by antigen-specific IgGs and B cell activation.
Collapse
Affiliation(s)
- Francisco Perez-Duran
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Fernando Calderon-Rico
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Luis Enrique Franco-Correa
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Alicia Gabriela Zamora-Aviles
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Roberto Ortega-Flores
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Daniel Durand-Herrera
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Alejandro Bravo-Patiño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Ricarda Cortes-Vieyra
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Ilane Hernandez-Morales
- Laboratorio de Investigacion Interdisciplinaria, Escuela Nacional de Estudios Superiores Unidad Leon, Universidad Nacional Autonoma de Mexico, Blv. UNAM No. 2011, Leon CP 37684, Mexico;
| | - Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| |
Collapse
|
6
|
Li J, Miller LC, Sang Y. Current Status of Vaccines for Porcine Reproductive and Respiratory Syndrome: Interferon Response, Immunological Overview, and Future Prospects. Vaccines (Basel) 2024; 12:606. [PMID: 38932335 PMCID: PMC11209547 DOI: 10.3390/vaccines12060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) remains a formidable challenge for the global pig industry. Caused by PRRS virus (PRRSV), this disease primarily affects porcine reproductive and respiratory systems, undermining effective host interferon and other immune responses, resulting in vaccine ineffectiveness. In the absence of specific antiviral treatments for PRRSV, vaccines play a crucial role in managing the disease. The current market features a range of vaccine technologies, including live, inactivated, subunit, DNA, and vector vaccines, but only modified live virus (MLV) and killed virus (KV) vaccines are commercially available for PRRS control. Live vaccines are promoted for their enhanced protective effectiveness, although their ability to provide cross-protection is modest. On the other hand, inactivated vaccines are emphasized for their safety profile but are limited in their protective efficacy. This review updates the current knowledge on PRRS vaccines' interactions with the host interferon system, and other immunological aspects, to assess their current status and evaluate advents in PRRSV vaccine development. It presents the strengths and weaknesses of both live attenuated and inactivated vaccines in the prevention and management of PRRS, aiming to inspire the development of innovative strategies and technologies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Jiuyi Li
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA;
| | - Laura C. Miller
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA;
| | - Yongming Sang
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA;
| |
Collapse
|
7
|
Yang R, Ru Y, Wang H, Hao R, Li Y, Zhang T, Zheng H, Zhang Y, Zhao X. Quantum dot fluorescent microsphere-based immunochromatographic strip for detecting PRRSV antibodies. Appl Microbiol Biotechnol 2024; 108:283. [PMID: 38573435 PMCID: PMC10995003 DOI: 10.1007/s00253-024-13125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). Current vaccine prevention and treatment approaches for PRRS are not adequate, and commercial vaccines do not provide sufficient cross-immune protection. Therefore, establishing a precise, sensitive, simple, and rapid serological diagnostic approach for detecting PRRSV antibodies is crucial. The present study used quantum dot fluorescent microspheres (QDFM) as tracers, covalently linked to the PRRSV N protein, to develop an immunochromatography strip (ICS) for detecting PRRSV antibodies. Monoclonal antibodies against PRRSV nucleocapsid (N) and membrane (M) proteins were both coated on nitrocellulose membranes as control (C) and test (T) lines, respectively. QDFM ICS identified PRRSV antibodies under 10 min with high sensitivity and specificity. The specificity assay revealed no cross-reactivity with the other tested viruses. The sensitivity assay revealed that the minimum detection limit was 1.2 ng/mL when the maximum dilution was 1:2,048, comparable to the sensitivity of enzyme-linked immunosorbent assay (ELISA) kits. Moreover, compared to PRRSV ELISA antibody detection kits, the sensitivity, specificity, and accuracy of QDFM ICS after analyzing 189 clinical samples were 96.7%, 97.9%, and 97.4%, respectively. Notably, the test strips can be stored for up to 6 months at 4 °C and up to 4 months at room temperature (18-25 °C). In conclusion, QDFM ICS offers the advantages of rapid detection time, high specificity and sensitivity, and affordability, indicating its potential for on-site PRRS screening. KEY POINTS: • QDFM ICS is a novel method for on-site and in-lab detection of PRRSV antibodies • Its sensitivity, specificity, and accuracy are on par with commercial ELISA kits • QDFM ICS rapidly identifies PRRSV, aiding the swine industry address the evolving virus.
Collapse
Affiliation(s)
- Rui Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu, China.
- China Agricultural Veterinarian Biology Science and Technology Co. Ltd, Lanzhou, 730046, Gansu, China.
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu, China
| | - Huibao Wang
- College of Modern Agricultural Engineering, Gansu Forestry Technological College, Tianshui, 741020, Gansu, China
| | - Rongzeng Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu, China
| | - Yajun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu, China
| | - Tao Zhang
- College of Modern Agricultural Engineering, Gansu Forestry Technological College, Tianshui, 741020, Gansu, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
8
|
Li S, Qiu M, Li S, Li C, Lin H, Qiu Y, Qi W, Feng B, Cui M, Yang S, Zheng W, Shang S, Tian K, Zhu J, Lu Y, Chen N. A chimeric porcine reproductive and respiratory syndrome virus 1 strain containing synthetic ORF2-6 genes can trigger T follicular helper cell and heterologous neutralizing antibody responses and confer enhanced cross-protection. Vet Res 2024; 55:28. [PMID: 38449049 PMCID: PMC10918997 DOI: 10.1186/s13567-024-01280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024] Open
Abstract
The prevalence of porcine reproductive and respiratory syndrome virus 1 (PRRSV1) isolates has continued to increase in Chinese swine herds in recent years. However, no effective control strategy is available for PRRSV1 infection in China. In this study, we generated the first infectious cDNA clone (rHLJB1) of a Chinese PRRSV1 isolate and subsequently used it as a backbone to construct an ORF2-6 chimeric virus (ORF2-6-CON). This virus contained a synthesized consensus sequence of the PRRSV1 ORF2-6 gene encoding all the envelope proteins. The ORF2-6 consensus sequence shared > 90% nucleotide similarity with four representative strains (Amervac, BJEU06-1, HKEU16 and NMEU09-1) of PRRSV1 in China. ORF2-6-CON had replication efficacy similar to that of the backbone rHLJB1 virus in primary alveolar macrophages (PAMs) and exhibited cell tropism in Marc-145 cells. Piglet inoculation and challenge studies indicated that ORF2-6-CON is not pathogenic to piglets and can induce enhanced cross-protection against a heterologous SD1291 isolate. Notably, ORF2-6-CON inoculation induced higher levels of heterologous neutralizing antibodies (nAbs) against SD1291 than rHLJB1 inoculation, which was concurrent with a higher percentage of T follicular helper (Tfh) cells in tracheobronchial lymph nodes (TBLNs), providing the first clue that porcine Tfh cells are correlated with heterologous PRRSV nAb responses. The number of SD1291-strain-specific IFNγ-secreting cells was similar in ORF2-6-CON-inoculated and rHLJB1-inoculated pigs. Overall, our findings support that the Marc-145-adapted ORF2-6-CON can trigger Tfh cell and heterologous nAb responses to confer improved cross-protection and may serve as a candidate strain for the development of a cross-protective PRRSV1 vaccine.
Collapse
Affiliation(s)
- Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Wenhao Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Meng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shuai Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, 471000, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China.
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China.
| | - Yu Lu
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou, 225009, China.
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Li P, Silva APSP, Moraes DCDA, Yeske P, Osemeke OH, Magalhães ES, De Sousa E Silva G, Linhares DCL. Comparison of a novel rapid sampling method to serum and tonsil scraping to detect PRRSV in acutely infected sows. Prev Vet Med 2024; 223:106082. [PMID: 38176150 DOI: 10.1016/j.prevetmed.2023.106082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 01/06/2024]
Abstract
Few practical methods are available to monitor the PRRSV status of the sows. Common sampling methods for sows like serum sampling, and tonsil scraping involve restraining individual sows and are labor-intensive, time-consuming, relatively invasive, and therefore, have limited use in large-scale production settings. Thus, a practical and rapid method of sampling large numbers of sows is needed. This study aimed to develop a new sampling method, named tonsil-oral scraping (TOSc) and compare TOSc to serum and tonsil scraping in terms of PRRSV qPCR detection rate and Ct values in thirty matched sows, thirty days after PRRSV outbreak. TOSc recovered a mixture of oral fluids and tonsil exudates from the sow oral cavity within seconds without restraining the animals. Results showed that, numerically, the TOSc samples had higher PRRSV qPCR detection rate (100 %) compared to serum (16.8 %) and tonsil scraping (73.1 %). Moreover, TOSc samples had lower average Ct values (29.7) than tonsil scraping (30.7) and serum (35.2). There was no significant difference in the detection rate between TOSc and tonsil scraping (Tukey test, p = 0.992), while there was a significant difference between serum and tonsil scraping (Tukey test, p < 0.001), as well as between serum and TOSc (Tukey test, p < 0.001). In terms of Ct values, there was no statistically significant difference between TOSc and tonsil scrapings (Dunn Test, p > 0.05), while there was a significant difference between tonsil scraping with serum (Dunn Test, p < 0.01), and TOSc with serum (Dunn Test, p < 0.01). Our results suggest great potential of the TOSc as a novel, practical, and rapid tool for PRRSV RNA detection in sows to assess sow herd status.
Collapse
Affiliation(s)
- Peng Li
- Department of Veterinary Diagnostic and Production Animal Medicine, Ames, IA 50010, United States
| | | | | | - Paul Yeske
- Swine Vet Center, Saint Peter, MN 56082, United States
| | | | - Edison Souza Magalhães
- Department of Veterinary Diagnostic and Production Animal Medicine, Ames, IA 50010, United States
| | - Gustavo De Sousa E Silva
- Department of Veterinary Diagnostic and Production Animal Medicine, Ames, IA 50010, United States
| | | |
Collapse
|
10
|
Wang J, Yan J, Wang S, Chen R, Xing Y, Liu Q, Gao S, Zhu Y, Li J, Zhou Y, Shan T, Tong W, Zheng H, Kong N, Jiang Y, Liu C, Tong G, Yu H. An Expeditious Neutralization Assay for Porcine Reproductive and Respiratory Syndrome Virus Based on a Recombinant Virus Expressing Green Fluorescent Protein. Curr Issues Mol Biol 2024; 46:1047-1063. [PMID: 38392184 PMCID: PMC10887926 DOI: 10.3390/cimb46020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Due to the extensive genetic and antigenic variation in Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), as well as its rapid mutability and evolution, PRRS prevention and control can be challenging. An expeditious and sensitive neutralization assay for PRRSV is presented to monitor neutralizing antibodies (NAbs) in serum during vaccine research. Here, a PRRSV expressing eGFP was successfully rescued with reverse genetics based on the infectious clone HuN4-F112-eGFP which we constructed. The fluorescent protein expressions of the reporter viruses remained stable for at least five passages. Based on this reporter virus, the neutralization assay can be easily used to evaluate the level of NAbs by counting cells with green fluorescence. Compared with the classical CPE assay, the newly developed assay increases sensitivity by one- to four-fold at the early antibody response stage, thus saving 2 days of assay waiting time. By using this assay to unveil the dynamics of neutralizing antibodies against PRRSV, priming immunity through either a single virulent challenge or only vaccination could produce limited NAbs, but re-infection with PRRSV would induce a faster and stronger NAb response. Overall, the novel HuN4-F112-eGFP-based neutralization assay holds the potential to provide a highly efficient platform for evaluating the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Juan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jiecong Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuaiyong Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ronglin Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanru Xing
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Qingyan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuolei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yuxiang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jiannan Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
11
|
Stepanova K, Toman M, Sinkorova J, Sinkora S, Pfeiferova S, Kupcova Skalnikova H, Abuhajiar S, Moutelikova R, Salat J, Stepanova H, Nechvatalova K, Leva L, Hermanova P, Kratochvilova M, Dusankova B, Sinkora M, Horak V, Hudcovic T, Butler JE, Sinkora M. Modified live vaccine strains of porcine reproductive and respiratory syndrome virus cause immune system dysregulation similar to wild strains. Front Immunol 2024; 14:1292381. [PMID: 38283357 PMCID: PMC10811158 DOI: 10.3389/fimmu.2023.1292381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) emerged about 30 years ago and continues to cause major economic losses in the pork industry. The lack of effective modified live vaccines (MLV) allows the pandemic to continue. Background and objective We have previously shown that wild strains of PRRSV affect the nascent T cell repertoire in the thymus, deplete T cell clones recognizing viral epitopes essential for neutralization, while triggering a chronic, robust, but ineffective antibody response. Therefore, we hypothesized that the current MLV are inappropriate because they cause similar damage and fail to prevent viral-induced dysregulation of adaptive immunity. Methods We tested three MLV strains to demonstrate that all have a comparable negative effect on thymocytes in vitro. Further in vivo studies compared the development of T cells in the thymus, peripheral lymphocytes, and antibody production in young piglets. These three MLV strains were used in a mixture to determine whether at least some of them behave similarly to the wild virus type 1 or type 2. Results Both the wild and MLV strains cause the same immune dysregulations. These include depletion of T-cell precursors, alteration of the TCR repertoire, necrobiosis at corticomedullary junctions, low body weight gain, decreased thymic cellularity, lack of virus-neutralizing antibodies, and production of non-neutralizing anti-PRRSV antibodies of different isotypes. Discussion and conclusion The results may explain why the use of current MLV in young animals may be ineffective and why their use may be potentially dangerous. Therefore, alternative vaccines, such as subunit or mRNA vaccines or improved MLV, are needed to control the PRRSV pandemic.
Collapse
Affiliation(s)
- Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Miroslav Toman
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Sarka Pfeiferova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Salim Abuhajiar
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Romana Moutelikova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Hana Stepanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Katerina Nechvatalova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Mirka Kratochvilova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Blanka Dusankova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Vratislav Horak
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - John E. Butler
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
12
|
Balestreri C, Schroeder DC, Sampedro F, Marqués G, Palowski A, Urriola PE, van de Ligt JLG, Yancy HF, Shurson GC. Unexpected thermal stability of two enveloped megaviruses, Emiliania huxleyi virus and African swine fever virus, as measured by viability PCR. Virol J 2024; 21:1. [PMID: 38172919 PMCID: PMC10765680 DOI: 10.1186/s12985-023-02272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The particle structure of Emiliania huxleyi virus (EhV), an algal infecting member of nucleocytoplasmic large DNA viruses (NCLDVs), contains an outer lipid membrane envelope similar to that found in animal viruses such as African swine fever virus (ASFV). Despite both being enveloped NCLDVs, EhV and ASFV are known for their stability outside their host environment. METHOD Here we report for the first time, the application of a viability qPCR (V-qPCR) method to describe the unprecedented and similar virion thermal stability of both EhV and ASFV. This result contradicts the cell culture-based assay method that suggests that virus "infectivity" is lost in a matter of seconds (for EhV) and minutes (for ASFV) at temperature greater than 50 °C. Confocal microscopy and analytical flow cytometry methods was used to validate the V-qPCR data for EhV. RESULTS We observed that both EhV and ASFV particles has unprecedented thermal tolerances. These two NCLDVs are exceptions to the rule that having an enveloped virion anatomy is a predicted weakness, as is often observed in enveloped RNA viruses (i.e., the viruses causing Porcine Reproductive and Respiratory Syndrome (PRRS), COVID-19, Ebola, or seasonal influenza). Using the V-qPCR method, we confirm that no PRRSV particles were detectable after 20 min of exposure to temperatures up to 100 °C. We also show that the EhV particles that remain after 50 °C 20 min exposure was in fact still infectious only after the three blind passages in bioassay experiments. CONCLUSIONS This study raises the possibility that ASFV is not always eliminated or contained after applying time and temperature inactivation treatments in current decontamination or biosecurity protocols. This observation has practical implications for industries involved in animal health and food security. Finally, we propose that EhV could be used as a surrogate for ASFV under certain circumstances.
Collapse
Affiliation(s)
- Cecilia Balestreri
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Fernando Sampedro
- Environmental Health Sciences Division, University of Minnesota, St. Paul, MN, 55455, USA
| | - Guillermo Marqués
- Department of Neuroscience, University Imaging Centers, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Amanda Palowski
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Pedro E Urriola
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Animal Science, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Haile F Yancy
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD, 20708, USA
| | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
13
|
Li C, Li S, Li S, Qiu M, Lin H, Sun Z, Qiu Y, Qi W, Feng B, Li J, Zheng W, Yu X, Tian K, Shang S, Fan K, Zhu J, Chen N. Efficacy of a porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) natural recombinant against a heterologous PRRSV-1 isolate both clustered within the subgroup of BJEU06-1-like isolates. Vet Microbiol 2023; 285:109847. [PMID: 37625255 DOI: 10.1016/j.vetmic.2023.109847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) has been prevalent in more than 20 provinces of China. However, no PRRSV-1-specific vaccine is commercially available in China. To evaluate the feasibility of using a low virulent PRRSV-1 isolate against potential outbreaks caused by virulent Chinese PRRSV-1 isolates, here we evaluated the efficacy of a low virulent PRRSV-1 HLJB1 strain isolated in 2014 as live vaccine against a virulent PRRSV-1 SD1291 strain isolated in 2022. Genome-based phylogenetic analysis showed that both HLJB1 and SD1291 were grouped within BJEU06-1-like isolates. However, they shared only 85.27% genomic similarity. Piglet inoculation and challenge study showed that HLJB1 inoculation could reduce viremia but did not significantly alleviate clinical signs and tissue lesions. Virus neutralization test indicated that HLJB1 inoculation could induce homologous neutralizing antibodies (NAbs) but no heterologous NAbs at 42 dpi. In addition, flow cytometric analyses showed that no memory T follicular helper (Tfh) cells against SD1291 and SD1291-specific IFN-γ secreting cells were induced by HLJB1 pre-inoculation. These results supported that HLJB1 inoculation only provides partial cross-protection against SD1291 infection even though they are clustered within the same PRRSV-1 subgroup, which is closely related to the failure in conferring cross-protective adaptive immune responses.
Collapse
Affiliation(s)
- Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wenhao Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kewei Fan
- Longyan University and Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of animal pathogen infection and Immunology of Fujian Province, Fuzhou 350002, China.
| |
Collapse
|
14
|
Miranda J, Romero S, de Lucas L, Saito F, Fenech M, Díaz I. Protection provided by a commercial modified-live porcine reproductive and respiratory syndrome virus (PRRSV) 1 vaccine (PRRSV1-MLV) against a Japanese PRRSV2 field strain. J Vet Sci 2023; 24:e54. [PMID: 37638707 PMCID: PMC10556292 DOI: 10.4142/jvs.23025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) vaccines do not provide full cross-protection, mainly due to the virus genetic variability. Despite this, vaccines based on modified-live PRRSV (PRRSV-MLV) reduce the disease impact. OBJECTIVES To assess the efficacy of two commercial vaccines-one based on PRRSV1 (PRRSV1-MLV) and another on PRRSV2 (PRRSV2-MLV)-against a Japanese PRRSV2 field strain. METHODS Two groups of three-week-old piglets were vaccinated (G1: PRRSV1-MLV; G2: PRRSV2-MLV) and two were kept as non-vaccinated (INF and CTRL). One month later, G1, G2, and INF were challenged with a PRRSV2 field strain. RESULTS After the challenge, clinical signs were only observed in INF. Moreover, the highest rectal temperatures and values for the area under the curve (AUC) were observed in INF. Regarding viral detection, both AUC and the proportion of positive samples in blood were higher in INF. In G1, viremic animals never reached 100%. At necropsy (21 d after the challenge), differences for titers among groups were only found in tonsils (G1 < G2 and INF). One animal (belonging to G1) was negative in all tissues. Regarding humoral responses, G1 and G2 seroconverted after vaccination, as detected in the corresponding enzyme-linked immunosorbent assay. Specific neutralizing antibodies (NA) against PRRSV1-MLV were already detected at 14 d after vaccination in G1, showing a significant booster after the challenge, while PRRSV2-MLV NA were detected in G2 at the end of the experiment. CONCLUSIONS Despite genetic differences, PRRSV1-MLV has been demonstrated to confer partial protection against a Japanese PRRSV2 strain, at least as good as PRRSV2-MLV.
Collapse
Affiliation(s)
- Joel Miranda
- Laboratorios Hipra S.A., 17170 Amer, Girona, Spain
| | | | | | | | - Mar Fenech
- R&D, Hipra Scientific, S.L.U., 17170 Amer, Girona, Spain
| | - Ivan Díaz
- Unitat Mixta d'Investigació Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Universitat Autònoma de Barcelona (UAB) en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- World Organisation for Animal Health (WOAH) Reference Laboratory for Classical Swine Fever, Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
15
|
Cai H, Zhang H, Cheng H, Liu M, Wen S, Ren J. Progress in PRRSV Infection and Adaptive Immune Response Mechanisms. Viruses 2023; 15:1442. [PMID: 37515130 PMCID: PMC10385784 DOI: 10.3390/v15071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Since its discovery, Porcine reproductive and respiratory syndrome (PRRS) has had a huge impact on the farming industry. The virus that causes PRRS is Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), and because of its genetic diversity and the complexity of the immune response, the eradication of PRRS has been a challenge. To provide scientific references for PRRSV control and vaccine development, this study describes the processes of PRRSV-induced infection and escape, as well as the host adaptive immune response to PRRSV. It also discusses the relationship between PRRSV and the adaptive immune response.
Collapse
Affiliation(s)
- Huanchang Cai
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Hewei Zhang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang 471099, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang 471000, China
| | - Huai Cheng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Min Liu
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jingqiang Ren
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang 471000, China
| |
Collapse
|
16
|
Li S, Li J, Tian Y, Liu J, Zhu J, Chen N, Shang S. A potent CD8 T-cell response may be associated with partial cross-protection conferred by an attenuated Chinese HP-PRRSV vaccine against NADC30-like PRRSV challenge. J Gen Virol 2023; 104. [PMID: 37159409 DOI: 10.1099/jgv.0.001850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating pathogens to the global swine industry. Many commercial PRRSV vaccines, originally designed to provide homologous protection, have shown partial protection against heterologous strains. However, the protective immune mechanisms mediated by these PRRSV vaccines are not fully understood. In this study, we investigated the factors responsible for partial protection conferred by an attenuated Chinese HP-PRRSV vaccine (TJM-F92) against heterologous NADC30-like PRRSV. By analysing peripheral T-cell responses induced by the TJM-F92 vaccine and local and systemic memory responses following challenge with NADC30-like PRRSV (SD17-38 strains) as well as neutralizing antibody response, we found that the TJM-F92 vaccine induced a significant expansion of CD8 T cells but not CD4 T cells or γδ T cells. The expanded CD8 T cells exhibited a phenotype of effector memory T cells and secreted IFN-γ upon restimulation with SD17-38 strains in vitro. In addition, only CD8 T cells in the prior immunized pigs rapidly expanded in the blood and spleen after heterologous challenge, with higher magnitude, compared to the unvaccinated pigs, showing a remarkable memory response. In contrast, no obvious humoral immune response was enhanced in the vaccinated and challenged pigs, and no heterologous neutralizing antibodies were detected throughout the experiment. Our results suggested that CD8 T cells elicited by the TJM-F92 vaccine may be responsible for partial heterologous protection against NADC30-like PRRSV strains and potentially recognize the conserved antigens among PRRSV strains.
Collapse
Affiliation(s)
- Shuai Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jiaqi Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Yunfei Tian
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jiawei Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Nanhua Chen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Shaobin Shang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| |
Collapse
|
17
|
Trevisan G, Magstadt D, Woods A, Sparks J, Zeller M, Li G, Krueger KM, Saxena A, Zhang J, Gauger PC. A recombinant porcine reproductive and respiratory syndrome virus type 2 field strain derived from two PRRSV-2-modified live virus vaccines. Front Vet Sci 2023; 10:1149293. [PMID: 37056231 PMCID: PMC10086154 DOI: 10.3389/fvets.2023.1149293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
A porcine reproductive and respiratory syndrome virus (PRRSV) type 2 (PRRSV-2) isolate was obtained from lung samples collected from a 4.5-month-old pig at a wean-to-finish site in Indiana, USA, although no gross or microscopic lesions suggestive of PRRSV infection were observed in the lung tissue. Phylogenetic and molecular evolutionary analyses based on the obtained virus sequences indicated that PRRSV USA/IN105404/2021 was a natural recombinant isolate from Ingelvac PRRS® MLV and Prevacent® PRRS, which are PRRSV-2-modified live virus vaccines commercially available in the United States. This study is the first to report the detection of a PRRSV-2 recombinant strain consisting entirely of two modified live virus vaccine strains under field conditions. Based on clinical data and the absence of lung lesions, this PRRSV-2 recombinant strain was not virulent in swine, although its pathogenicity needs to be confirmed by clinical trials.
Collapse
Affiliation(s)
- Giovani Trevisan
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Giovani Trevisan
| | - Drew Magstadt
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | | | | | - Michael Zeller
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ganwu Li
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Karen M. Krueger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Anugrah Saxena
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Phillip C. Gauger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
18
|
Kick AR, Grete AF, Crisci E, Almond GW, Käser T. Testable Candidate Immune Correlates of Protection for Porcine Reproductive and Respiratory Syndrome Virus Vaccination. Vaccines (Basel) 2023; 11:vaccines11030594. [PMID: 36992179 DOI: 10.3390/vaccines11030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an on-going problem for the worldwide pig industry. Commercial and experimental vaccinations often demonstrate reduced pathology and improved growth performance; however, specific immune correlates of protection (CoP) for PRRSV vaccination have not been quantified or even definitively postulated: proposing CoP for evaluation during vaccination and challenge studies will benefit our collective efforts towards achieving protective immunity. Applying the breadth of work on human diseases and CoP to PRRSV research, we advocate four hypotheses for peer review and evaluation as appropriate testable CoP: (i) effective class-switching to systemic IgG and mucosal IgA neutralizing antibodies is required for protective immunity; (ii) vaccination should induce virus-specific peripheral blood CD4+ T-cell proliferation and IFN-γ production with central memory and effector memory phenotypes; cytotoxic T-lymphocytes (CTL) proliferation and IFN-γ production with a CCR7- phenotype that should migrate to the lung; (iii) nursery, finishing, and adult pigs will have different CoP; (iv) neutralizing antibodies provide protection and are rather strain specific; T cells confer disease prevention/reduction and possess greater heterologous recognition. We believe proposing these four CoP for PRRSV can direct future vaccine design and improve vaccine candidate evaluation.
Collapse
Affiliation(s)
- Andrew R Kick
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Alicyn F Grete
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Glen W Almond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
19
|
Cheng Y, Wu M, Xiao L, Zhang M, Huang B, Cong F, Yi L. Identificationof a novel linear epitope on the porcine reproductive and respiratory syndrome virus nucleocapsid protein, as recognized by a specific monoclonal antibody. Front Immunol 2023; 14:1165396. [PMID: 37143683 PMCID: PMC10151797 DOI: 10.3389/fimmu.2023.1165396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/20/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) remains one of the most threatening pathogens of swine. The nucleocapsid (N) protein is the major structural protein of the virus and has been used as a PRRSV diagnostic antigen due to its high level of inherent immunogenicity. Methods The recombinant PRRSV N protein was generated by the prokaryotic expressing system and used to immunized mice. Monoclonal antibodies against PRRSV were produced and validated by western blot analysis and indirect immunofluorescence analysis. In this study, the linear epitope of a specific monoclonal antibody mAb (N06) was subsequently identified by enzyme-linked immunosorbent assays (ELISA) using the synthesized overlapping peptides as antigens. Results According to the results of western blot analysis and indirect immunofluorescence analysis, mAb (N06) was capable of recognizing the native form as well as the denatured form of PRRSV N protein. The results of ELISA showed that mAb N06 recognized the epitope NRKKNPEKPHFPLATE, which was consistent with BCPREDS predictions of antigenicity. Conclusion All the data suggested that the mAb (N06) can be used as diagnostic reagents for PRRSV detection, while the recognized linear epitope can be useful in epitope-based vaccines development, which is helpful for the control of local PRRSV infections in swine.
Collapse
Affiliation(s)
- Yuening Cheng
- Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Miaoli Wu
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Li Xiao
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Mengdi Zhang
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Bihong Huang
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
- *Correspondence: Feng Cong, ; Li Yi,
| | - Li Yi
- Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Feng Cong, ; Li Yi,
| |
Collapse
|
20
|
Using Alphafold2 to Predict the Structure of the Gp5/M Dimer of Porcine Respiratory and Reproductive Syndrome Virus. Int J Mol Sci 2022; 23:ijms232113209. [DOI: 10.3390/ijms232113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus is a positive-stranded RNA virus of the family Arteriviridae. The Gp5/M dimer, the major component of the viral envelope, is required for virus budding and is an antibody target. We used alphafold2, an artificial-intelligence-based system, to predict a credible structure of Gp5/M. The short disulfide-linked ectodomains lie flat on the membrane, with the exception of the erected N-terminal helix of Gp5, which contains the antibody epitopes and a hypervariable region with a changing number of carbohydrates. The core of the dimer consists of six curved and tilted transmembrane helices, and three are from each protein. The third transmembrane regions extend into the cytoplasm as amphiphilic helices containing the acylation sites. The endodomains of Gp5 and M are composed of seven β-strands from each protein, which interact via β-strand seven. The area under the membrane forms an open cavity with a positive surface charge. The M and Orf3a proteins of coronaviruses have a similar structure, suggesting that all four proteins are derived from the same ancestral gene. Orf3a, like Gp5/M, is acylated at membrane-proximal cysteines. The role of Gp5/M during virus replication is discussed, in particular the mechanisms of virus budding and models of antibody-dependent virus neutralization.
Collapse
|
21
|
Liu X, Zhou X, Noor AU, Zhang X, Song C, Sun H. Enhancing half-life and cytotoxicity of porcine respiratory and reproductive syndrome virus soluble receptors by taming their Fc domains. Vet Microbiol 2022; 273:109526. [PMID: 35988378 DOI: 10.1016/j.vetmic.2022.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen. Although tremendous effort has been made for the vaccine development, only modified live vaccines are widely used with arguably limited efficacy. Our previous study showed that the Fc-fused first four Ig-like domains of Sn (Sn4D-Fc) and the SRCR domains 5-9 of CD163 (SRCR59-Fc) can act as PRRSV soluble receptors (VSRs). In this study, we improved the VSR-based anti-PRRSV strategy by taming their Fc domains. Sequence alignment showed that the CH3 domain of pig IgG1 contained five putative amino acids involved in the interaction with the neonatal Fc receptor (FcRn). The M455L/N461S variant of SRCR59-Fc/Sn4D-Fc was created for the higher affinity of FcRn binding. Both rBac-SRCR59-lsFc/Sn4D-lsFc and rBac-SRCR59-Fc/Sn4D-Fc expressing the mutated or wild-type VSRs were generated for conceptual validation. Both immunofluorescence and Western blotting analysis showed that the two rBac vectors could express the encoded VSRs in cells with similar expression levels and anti-PRRSV effects. In the rBac-injected mice, the expression of SRCR59-lsFc/Sn4D-lsFc was significantly prolonged than that of SRCR59-Fc/Sn4D-Fc. Both plasma stability and serum half-life of the purified SRCR59-lsFc/Sn4D-lsFc were significantly improved than that of SRCR59-Fc/Sn4D-Fc. SRCR59-lsFc/Sn4D-lsFc-treated peripheral blood mononuclear cells showed significantly stronger cytotoxicity on PRRSV-infected primary alveolar macrophages than SRCR59-Fc/Sn4D-Fc-treated cells. For the first time, we demonstrated that both half-life and effector function of pig IgG Fc-fused proteins could be significantly improved by taming their CH3 domains. The rBac-SRCR59-lsFc/Sn4D-lsFc could be further developed as a novel anti-PRRSV reagent.
Collapse
Affiliation(s)
- Xiaoming Liu
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaohui Zhou
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Aziz Ullah Noor
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Zhang
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chengyi Song
- The College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huaichang Sun
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
22
|
Proctor J, Wolf I, Brodsky D, Cortes LM, Frias-De-Diego A, Almond GW, Crisci E, Negrão Watanabe TT, Hammer JM, Käser T. Heterologous vaccine immunogenicity, efficacy, and immune correlates of protection of a modified-live virus porcine reproductive and respiratory syndrome virus vaccine. Front Microbiol 2022; 13:977796. [PMID: 36212883 PMCID: PMC9537733 DOI: 10.3389/fmicb.2022.977796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Although porcine reproductive and respiratory syndrome virus (PRRSV) vaccines have been available in North America for almost 30 years, many vaccines face a significant hurdle: they must provide cross-protection against the highly diverse PRRSV strains. This cross-protection, or heterologous vaccine efficacy, relies greatly on the vaccine’s ability to induce a strong immune response against various strains—heterologous immunogenicity. Thus, this study investigated vaccine efficacy and immunogenicity of a modified live virus (MLV) against four heterologous type 2 PRRSV (PRRSV-2) strains. In this study, 60 pigs were divided into 10 groups. Half were MOCK-vaccinated, and the other half vaccinated with the Prevacent® PRRS MLV vaccine. Four weeks after vaccination, groups were challenged with either MOCK, or four PRRSV-2 strains from three different lineages—NC174 or NADC30 (both lineage 1), VR2332 (lineage 5), or NADC20 (lineage 8). Pre-and post-challenge, lung pathology, viral loads in both nasal swabs and sera, anti-PRRSV IgA/G, neutralizing antibodies, and the PRRSV-2 strain-specific T-cell response were evaluated. At necropsy, the lung samples were collected to assess viral loads, macroscopical and histopathological findings, and IgA levels in bronchoalveolar lavage. Lung lesions were only induced by NC174, NADC20, and NADC30; within these, vaccination resulted in lower gross and microscopic lung lesion scores of the NADC20 and NADC30 strains. All pigs became viremic and vaccinated pigs had decreased viremia upon challenge with NADC20, NADC30, and VR2332. Regarding vaccine immunogenicity, vaccination induced a strong systemic IgG response and boosted the post-challenge serum IgG levels for all strains. Furthermore, vaccination increased the number of animals with neutralizing antibodies against three of the four challenge strains—NADC20, NADC30, and VR2332. The heterologous T-cell response was also improved by vaccination: Not only did vaccination increase the induction of heterologous effector/memory CD4 T cells, but it also improved the heterologous CD4 and CD8 proliferative and/or IFN-γ response against all strains. Importantly, correlation analyses revealed that the (non-PRRSV strain-specific) serum IgG levels and the PRRSV strain-specific CD4 T-cell response were the best immune correlates of protection. Overall, the Prevacent elicited various degrees of efficacy and immunogenicity against four heterologous and phylogenetically distant strains of PRRSV-2.
Collapse
Affiliation(s)
- Jessica Proctor
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Iman Wolf
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - David Brodsky
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Lizette M. Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Alba Frias-De-Diego
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Glen W. Almond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Tatiane Terumi Negrão Watanabe
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | | | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Tobias Käser,
| |
Collapse
|
23
|
Chen R, Liu B, Zhang X, Qin M, Dong J, Gu G, Wu C, Wang J, Nan Y. A porcine reproductive and respiratory syndrome virus (PRRSV)-specific IgM as a novel adjuvant for an inactivated PRRSV vaccine improves protection efficiency and enhances cell-mediated immunity against heterologous PRRSV challenge. Vet Res 2022; 53:65. [PMID: 35986391 PMCID: PMC9389807 DOI: 10.1186/s13567-022-01082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Current strategies for porcine reproductive and respiratory syndrome (PRRS) control are inadequate and mainly restricted to immunization using different PRRS virus (PPRSV) vaccines. Although there are no safety concerns, the poor performance of inactivated PRRSV vaccines has restricted their practical application. In this research, we employed the novel PRRSV-specific IgM monoclonal antibody (Mab)-PR5nf1 as a vaccine adjuvant for the formulation of a cocktail composed of inactivated PRRSV (KIV) and Mab-PR5nf1 along with a normal adjuvant to enhance PRRSV-KIV vaccine-mediated protection and further compared it with a normal KIV vaccine and modified live virus vaccine (MLV). After challenge with highly pathogenic (HP)-PRRSV, our results suggested that the overall survival rate (OSR) and cell-mediated immunity (CMI), as determined by serum IFN-γ quantification and IFN-γ ELISpot assay, were significantly improved by adding PRRSV-specific IgM to the PRRSV-KIV vaccine. It was also notable that both the OSR and CMI in the Mab-PR5nf1-adjuvanted KIV group were even higher than those in the MLV group, whereas the CMI response is normally poorly evoked by KIV vaccines or subunit vaccines. Compared with those in piglets immunized with the normal KIV vaccine, viral shedding and serum neutralizing antibody levels were also improved, and reduced viral shedding appeared to be a result of enhanced CMI caused by the inclusion of IgM as an adjuvant. In conclusion, our data provide not only a new formula for the development of an effective PRRSV-KIV vaccine for practical use but also a novel method for improving antigen-specific CMI induction by inactivated vaccines and subunit vaccines.
Collapse
|
24
|
Li W, Sun Y, Zhao S, Cui Z, Chen Y, Xu P, Chen J, Zhang Y, Xia P. Differences in Humoral Immune Response against the Type 2 Porcine Reproductive and Respiratory Syndrome Virus via Different Immune Pathways. Viruses 2022; 14:v14071435. [PMID: 35891415 PMCID: PMC9316826 DOI: 10.3390/v14071435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The intramuscular vaccine is the principal strategy to protect pigs from porcine reproductive and respiratory syndrome virus (PRRSV), However, it is still difficult to control PRRSV effectively. This study infected piglets with PRRSV through intramuscular and intranasal inoculation. Subsequently, viral loads, anti-PRRSV antibody levels, and neutralizing antibodies (NAs) titers in both serum and saliva were monitored for 43 days. Meanwhile, tissues were obtained through necropsy at 43 days post-inoculation (dpi) to detect viral loads. The results indicated that viremia lasted from 3 to 31 dpi in both the inoculation groups, but the viruses survived in the lungs and lymph nodes after viremia clearance. The antibody response was detected from 11 dpi, but the response of NAs was delayed until 3–4 weeks. Furthermore, intranasal inoculation induced lower viral load levels than injection inoculation. In addition, positive SIgA and NAs levels were produced early, with higher levels through intranasal inoculation. Therefore, our data indicated that a more robust antibody response and lower virus loads could be induced by intranasal inoculation, and mucosal inoculation could be a suitable pathway for PRRSV vaccines.
Collapse
Affiliation(s)
- Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Yangyang Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Zhiying Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Yu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Pengli Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Jinshui District, Zhengzhou 450002, China
- Correspondence: (J.C.); (Y.Z.)
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
- Correspondence: (J.C.); (Y.Z.)
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| |
Collapse
|
25
|
Rupasinghe R, Lee K, Liu X, Gauger PC, Zhang J, Martínez-López B. Molecular Evolution of Porcine Reproductive and Respiratory Syndrome Virus Field Strains from Two Swine Production Systems in the Midwestern United States from 2001 to 2020. Microbiol Spectr 2022; 10:e0263421. [PMID: 35499352 PMCID: PMC9241855 DOI: 10.1128/spectrum.02634-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/05/2022] [Indexed: 12/03/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses an extensive economic threat to the United States swine industry. The high degree of PRRSV genetic and antigenic variability challenges existing vaccination programs. We evaluated the ORF5 sequence of 1,931 PRRSV-2 strains detected from >300 farms managed by two pork production systems in the midwestern United States from 2001 to 2020 to assess the genetic diversity and molecular characteristics of heterologous PRRSV-2 strains. Phylogenetic analysis was performed on ORF5 sequences and classified using the global PRRSV classification system. N-glycosylation and the global and local selection pressure in the putative GP5 encoded by ORF5 were estimated. The PRRSV-2 sequences were classified into lineage 5 (L5; n = 438[22.7%]) or lineage 1 (L1; n = 1,493[77.3%]). The L1 strains belonged to one of three subclades: L1A (n = 1,225[63.4%]), L1B (n = 69[3.6%]), and L1C/D (n = 199[10.3%]). 10 N-glycosylation sites were predicted, and positions N44 and N51 were detected in most GP5 sequences (n = 1,801[93.3%]). Clade-specific N-glycosylation sites were observed: 57th in L1A, 33rd in L1B, 30th and 34th in L1C/D, and 30th and 33rd in L5. We identified nine and 19 sites in GP5 under significant positive selection in L5 and L1, respectively. The 13th, 151st, and 200th positive selection sites were exclusive to L5. Heterogeneity of N-glycosylation and positive selection sites may contribute to varying the evolutionary processes of PRRSV-2 strains circulating in these swine production systems. L1A and L5 strains denoted excellence in adaptation to the current swine population by their extensive positive selection sites with higher site-specific selection pressure. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is known for its high genetic and antigenic variability. In this study, we evaluated the ORF5 sequences of PRRSV-2 strains circulating in two swine production systems in the midwestern United States from 2001 to 2020. All the field strains were classified into four major groups based on genetic relatedness, where one group is closely related to the Ingelvac PRRS MLV strain. Here, we systematically compared differences in the ORF5 polymorphisms, N-glycosylation sites, and local and global evolutionary dynamics between different groups. Sites 44 and 51 were common for N-glycosylation in most amino acid sequences (n = 1,801, 93.3%). We identified that the L5 sequences had more positive selection pressure compared to the L1 strains. Our findings will provide valuable insights into the evolutionary mechanisms of PRRSV-2 and these molecular changes may lead to suboptimal effectiveness of Ingelvac PRRS MLV vaccine.
Collapse
Affiliation(s)
- Ruwini Rupasinghe
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Kyuyoung Lee
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Xin Liu
- Department of Computer Science, University of California, Davis, California, USA
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
26
|
Qiu M, Li S, Ye M, Li J, Sun Z, Li X, Xu Y, Xiao Y, Li C, Feng B, Lin H, Zheng W, Yu X, Tian K, Zhu J, Chen N. Systemic Homologous Neutralizing Antibodies Are Inadequate for the Evaluation of Vaccine Protective Efficacy against Coinfection by High Virulent PEDV and PRRSV. Microbiol Spectr 2022; 10:e0257421. [PMID: 35315711 PMCID: PMC9045284 DOI: 10.1128/spectrum.02574-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
G2 porcine epidemic diarrhea virus (G2 PEDV) and highly pathogenic porcine reproductive and respiratory syndrome virus 2 (HP-PRRSV2) are two of the most prevalent swine pathogens in China's swine herds, and their coinfection occurs commonly. Several PED and PRRS vaccines have been utilized in China for decades, and systemic homologous neutralizing antibodies (shnAbs) in serum are frequently used to evaluate the protective efficacy of PED and PRRS vaccines. To develop a vaccine candidate against G2 PEDV and HP-PRRSV2 coinfection, in this study, we generated a chimeric virus (rJSTZ1712-12-S) expressing S protein of G2 PEDV using an avirulent HP-PRRSV2 rJSTZ1712-12 infectious clone as the viral vector. The rJSTZ1712-12-S strain has similar replication efficacies as the parental rJSTZ1712-12 virus. In addition, animal inoculation indicated that rJSTZ1712-12-S is not pathogenic to piglets and can induce shnAbs against both G2 PEDV and HP-PRRSV2 isolates after prime-boost immunization. However, passive transfer study in neonatal piglets deprived of sow colostrum showed that rJSTZ1712-12-S-induced shnAbs may only decrease PEDV and PRRSV viremia but cannot confer sufficient protection against dual challenge of high virulent G2 PEDV XJ1904-34 strain and HP-PRRSV2 XJ17-5 isolate. Overall, this study provides the first evidence that shnAbs confer insufficient protection against PEDV and PRRSV coinfection and are inadequate for the evaluation of protective efficacy of PED and PRRS bivalent vaccine (especially for the PED vaccine). IMPORTANCE Porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) coinfection occurs commonly and can synergistically reduce feed intake and pig growth. Vaccination is an effective strategy utilized for PED and PRRS control, and systemic homologous neutralizing antibodies (shnAbs) in serum are commonly used for protective efficacy evaluation of PED and PRRS vaccines. Currently, no commercial vaccine is available against PEDV and PRRSV coinfection. This study generated a chimeric vaccine candidate against the coinfection of prevalent PEDV and PRRSV in China. The chimeric strain can induce satisfied shnAbs against both PEDV and PRRSV after prime-boost inoculation in pigs. But the shnAbs cannot confer sufficient protection against PEDV and PRRSV coinfection in neonatal piglets. To the best of our knowledge, these findings provide the first evidence that shnAbs confer insufficient protection against PEDV and PRRSV coinfection and are inadequate for evaluating PED and PRRS bivalent vaccine protective efficacy.
Collapse
Affiliation(s)
- Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yulin Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
27
|
Li J, Li S, Qiu M, Li X, Li C, Feng B, Lin H, Zheng W, Zhu J, Chen N. Minor and major envelope proteins of PRRSV play synergistic roles in inducing heterologous neutralizing antibodies and conferring cross protection. Virus Res 2022; 315:198789. [PMID: 35487365 DOI: 10.1016/j.virusres.2022.198789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 11/28/2022]
Abstract
High genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) isolates is a major obstacle for the development of effective PRRS vaccines. A chimeric highly pathogenic PRRSV2 (HP-PRRSV2) strain containing the consensus sequence of ORF2-6 genes was constructed in our previous study, which could induce broadly neutralizing antibodies (bnAbs) and confer satisfied cross protection against virulent NADC30-like isolate. To further elucidate the roles of minor and major envelope proteins encoded by ORF2-4 and ORF5-6 genes in conferring cross protection, two chimeric HP-PRRSV2 strains (rJS-ORF2-4-CON and rJS-ORF5-6-CON) containing consensus sequences of ORF2-4 or ORF5-6 were constructed and rescued in this study. The rJS-ORF5-6-CON strain has similar replication efficiency as the backbone HP-PRRSV2 rJSTZ1712-12 virus, while rJS-ORF2-4-CON has significantly lower in vitro and in vivo replication efficiency comparing to rJS-ORF5-6-CON. Animal inoculation indicated that both rJS-ORF2-4-CON and rJS-ORF5-6-CON did not cause obvious clinical signs in piglets and could induce heterologous nAbs after immunization. Challenge with a virulent heterologous NADC30-like SD17-38 isolate showed that even though both immunized groups presented lower viremia, faster virus elimination, less fever and alleviated lung gross lesions when compared with the only challenged pigs, rJS-ORF2-4-CON and rJS-ORF5-6-CON could not confer enough cross protection. Considering the bnAbs and satisfied cross protection induced by the chimeric virus containing ORF2-6 consensus sequence, our results support that minor and major envelope proteins play synergistic roles in inducing broader nAbs and conferring better cross protection.
Collapse
Affiliation(s)
- Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratories of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratories of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratories of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
28
|
Fragoso-Saavedra M, Ramírez-Estudillo C, Peláez-González DL, Ramos-Flores JO, Torres-Franco G, Núñez-Muñoz L, Marcelino-Pérez G, Segura-Covarrubias MG, González-González R, Ruiz-Medrano R, Xoconostle-Cázares B, Gayosso-Vázquez A, Reyes-Maya S, Ramírez-Andoney V, Alonso-Morales RA, Vega-López MA. Combined Subcutaneous-Intranasal Immunization With Epitope-Based Antigens Elicits Binding and Neutralizing Antibody Responses in Serum and Mucosae Against PRRSV-2 and SARS-CoV-2. Front Immunol 2022; 13:848054. [PMID: 35432364 PMCID: PMC9008747 DOI: 10.3389/fimmu.2022.848054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
New vaccine design approaches, platforms, and immunization strategies might foster antiviral mucosal effector and memory responses to reduce asymptomatic infection and transmission in vaccinated individuals. Here, we investigated a combined parenteral and mucosal immunization scheme to induce local and serum antibody responses, employing the epitope-based antigens 3BT and NG19m. These antigens target the important emerging and re-emerging viruses PRRSV-2 and SARS-CoV-2, respectively. We assessed two versions of the 3BT protein, which contains conserved epitopes from the GP5 envelope protein of PRRSV-2: soluble and expressed by the recombinant baculovirus BacDual-3BT. On the other hand, NG19m, comprising the receptor-binding motif of the S protein of SARS-CoV-2, was evaluated as a soluble recombinant protein only. Vietnamese mini-pigs were immunized employing different inoculation routes: subcutaneous, intranasal, or a combination of both (s.c.-i.n.). Animals produced antigen-binding and neut1ralizing antibodies in serum and mucosal fluids, with varying patterns of concentration and activity, depending on the antigen and the immunization schedule. Soluble 3BT was a potent immunogen to elicit binding and neutralizing antibodies in serum, nasal mucus, and vaginal swabs. The vectored immunogen BacDual-3BT induced binding antibodies in serum and mucosae, but PRRSV-2 neutralizing activity was found in nasal mucus exclusively when administered intranasally. NG19m promoted serum and mucosal binding antibodies, which showed differing neutralizing activity. Only serum samples from subcutaneously immunized animals inhibited RBD-ACE2 interaction, while mini-pigs inoculated intranasally or via the combined s.c.-i.n. scheme produced subtle neutralizing humoral responses in the upper and lower respiratory mucosae. Our results show that intranasal immunization, alone or combined with subcutaneous delivery of epitope-based antigens, generates local and systemic binding and neutralizing antibodies. Further investigation is needed to evaluate the capability of the induced responses to prevent infection and reduce transmission.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Carmen Ramírez-Estudillo
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Diana L. Peláez-González
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jorge O. Ramos-Flores
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gustavo Torres-Franco
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leandro Núñez-Muñoz
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriel Marcelino-Pérez
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María G. Segura-Covarrubias
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rogelio González-González
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Roberto Ruiz-Medrano
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Beatriz Xoconostle-Cázares
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Amanda Gayosso-Vázquez
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Silvia Reyes-Maya
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Vianey Ramírez-Andoney
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rogelio A. Alonso-Morales
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marco A. Vega-López
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
29
|
Choi HY, Kim MS, Kang YL, Choi JC, Choi IY, Jung SW, Jeong JY, Kim MC, Hwang SS, Lee SW, Park SY, Song CS, Choi IS, Lee JB. Development of a Chimeric Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)-2 Vaccine Candidate Expressing Hypo-Glycosylated Glycoprotein-5 Ectodomain of Korean Lineage-1 Strain. Vet Sci 2022; 9:vetsci9040165. [PMID: 35448663 PMCID: PMC9028511 DOI: 10.3390/vetsci9040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/20/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022] Open
Abstract
Vaccination is a practical method to provide protection against porcine reproductive and respiratory syndrome virus (PRRSV), but current PRRSV vaccines show limited efficacy against divergent field strains. Lineage 1 PRRSV includes virulent strains such as NADC30 and MN184 and now has become one of the most prevalent viruses in Korea. Accordingly, there is an urgent need to develop a new vaccine for Korean lineage-1 strains. In this study, a vaccine candidate against Korean lineage-1 PRRSV, vCSL1-GP5-N33D, was developed by reverse genetics technology. vCSL1-GP5-N33D was designed as a hypo-glycosylated chimeric virus containing the glycoprotein 5 ectodomain region of the Korean lineage-1 wild-type strain. An inactivated vaccine of vCSL1-GP5-N33D was applied to a PRRS-endemic farm and elicited high serum virus neutralization (SVN) antibody titers. The vaccinated group induced SVN antibody titers of 4.40 (log2) ± 2.46, which were approximately 2-fold higher than those of the negative control at 8-weeks post-vaccination. Moreover, 60% of pigs in the vaccinated group displayed SVN antibody titers of ≥5 (log2), while none of the pigs in the negative control exhibited SVN antibody titers of ≥5 (log2). The overall results of the animal experiment suggest that the vCSL1-GP5-N33D inactivated vaccine is a promising vaccine candidate.
Collapse
Affiliation(s)
- Hwi-Yeon Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.C.); (M.-S.K.); (Y.-L.K.); (J.-C.C.); (I.-Y.C.); (S.-W.J.); (J.-Y.J.); (S.-W.L.); (S.-Y.P.); (C.-S.S.); (I.-S.C.)
| | - Min-Sik Kim
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.C.); (M.-S.K.); (Y.-L.K.); (J.-C.C.); (I.-Y.C.); (S.-W.J.); (J.-Y.J.); (S.-W.L.); (S.-Y.P.); (C.-S.S.); (I.-S.C.)
| | - Yeong-Lim Kang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.C.); (M.-S.K.); (Y.-L.K.); (J.-C.C.); (I.-Y.C.); (S.-W.J.); (J.-Y.J.); (S.-W.L.); (S.-Y.P.); (C.-S.S.); (I.-S.C.)
| | - Jong-Chul Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.C.); (M.-S.K.); (Y.-L.K.); (J.-C.C.); (I.-Y.C.); (S.-W.J.); (J.-Y.J.); (S.-W.L.); (S.-Y.P.); (C.-S.S.); (I.-S.C.)
| | - In-Yeong Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.C.); (M.-S.K.); (Y.-L.K.); (J.-C.C.); (I.-Y.C.); (S.-W.J.); (J.-Y.J.); (S.-W.L.); (S.-Y.P.); (C.-S.S.); (I.-S.C.)
| | - Sung-Won Jung
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.C.); (M.-S.K.); (Y.-L.K.); (J.-C.C.); (I.-Y.C.); (S.-W.J.); (J.-Y.J.); (S.-W.L.); (S.-Y.P.); (C.-S.S.); (I.-S.C.)
| | - Ji-Yun Jeong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.C.); (M.-S.K.); (Y.-L.K.); (J.-C.C.); (I.-Y.C.); (S.-W.J.); (J.-Y.J.); (S.-W.L.); (S.-Y.P.); (C.-S.S.); (I.-S.C.)
- Careside Co. Ltd., Woolim Lions Valley A-B210, #146-8, Sangdaewon-dong, Jungwon-gu, Seongnam 13209, Gyeonggi-do, Korea;
| | - Min-Chul Kim
- Careside Co. Ltd., Woolim Lions Valley A-B210, #146-8, Sangdaewon-dong, Jungwon-gu, Seongnam 13209, Gyeonggi-do, Korea;
| | - Seong-Soo Hwang
- Samhwa Breedings Agri. Inc., 435, Sinjin-ri, Gwangcheon-eup, Hongseong-gun 35090, Chungcheongnam-do, Korea;
| | - Sang-Won Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.C.); (M.-S.K.); (Y.-L.K.); (J.-C.C.); (I.-Y.C.); (S.-W.J.); (J.-Y.J.); (S.-W.L.); (S.-Y.P.); (C.-S.S.); (I.-S.C.)
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Seung-Yong Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.C.); (M.-S.K.); (Y.-L.K.); (J.-C.C.); (I.-Y.C.); (S.-W.J.); (J.-Y.J.); (S.-W.L.); (S.-Y.P.); (C.-S.S.); (I.-S.C.)
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Chang-Seon Song
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.C.); (M.-S.K.); (Y.-L.K.); (J.-C.C.); (I.-Y.C.); (S.-W.J.); (J.-Y.J.); (S.-W.L.); (S.-Y.P.); (C.-S.S.); (I.-S.C.)
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - In-Soo Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.C.); (M.-S.K.); (Y.-L.K.); (J.-C.C.); (I.-Y.C.); (S.-W.J.); (J.-Y.J.); (S.-W.L.); (S.-Y.P.); (C.-S.S.); (I.-S.C.)
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Joong-Bok Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.-Y.C.); (M.-S.K.); (Y.-L.K.); (J.-C.C.); (I.-Y.C.); (S.-W.J.); (J.-Y.J.); (S.-W.L.); (S.-Y.P.); (C.-S.S.); (I.-S.C.)
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence:
| |
Collapse
|
30
|
Contreras-Luna MJ, Fragoso-Gonzalez G, Segura-Velázquez RA, Cervantes-Torres JB, Alonso-Morales R, Ramírez-Martínez LA, Ayón-Núñez DA, Bobes RJ, Sánchez-Betancourt JI. Immunogenic and antigenic analysis of recombinant NSP1 and NSP11 of PRRS virus. Vet Med Sci 2022; 8:610-618. [PMID: 35023299 PMCID: PMC8959261 DOI: 10.1002/vms3.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped RNA virus in the order Nidovirales, family Arteriviridae, genus Betaarterivirus. Antibodies against nonstructural proteins (NSPs) from this virus can be found in pigs starting 4 days postinfection and they remain detectable for several months. Objective The goal of this study was to evaluate the immunogenicity and antigenic properties of recombinant proteins NSP1 and NSP11 expressed in Escherichia coli cells, as well as to assess the neutralization activity that they elicit. Methods We obtained the complete ORF‐1 genes coding for NSP1 and NSP11 from PRRSV using the VR‐2332 strain. Cloning was performed with the pET23a(+) vector with a histidine tag (His6), linearized by restriction enzyme digestion; the expression of the NSP1 and NSP11 clones was induced in OverExpress C41(DE3) chemically competent cells. Recombinant proteins were used to generate hyperimmune sera and we perform serological assays to confirm neutralizing antibodies. Results The expressed recombinant NSP1 and NSP11 were found to be immunogenic when injected in pigs, as well as demonstrated higher specificity in recognition of antigen in field sera from pigs positive infected with PRRSV. Furthermore, both NSP1 and NSP11 recombinant proteins elicited PRRSV neutralizing antibodies. Conclusions In this study, we demonstrated the immune humoral response to NSP 1 and NSP11, and neutralizing‐antibody response to PRRSV VR2332 strain in sera from hyperimmunized pigs.
Collapse
Affiliation(s)
- María Josefina Contreras-Luna
- Laboratorio de Investigación del Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Gladis Fragoso-Gonzalez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - René Alvaro Segura-Velázquez
- Unidad de Investigación, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Jacquelynne Brenda Cervantes-Torres
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rogelio Alonso-Morales
- Facultad de Medicina Veterinaria y Zootecnia, Laboratorio de Genética Molecular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Alfonso Ramírez-Martínez
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Dolores Adriana Ayón-Núñez
- Unidad de Investigación, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Raúl José Bobes
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - José Ivan Sánchez-Betancourt
- Laboratorio de Investigación del Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
31
|
Zhu Z, Yuan L, Hu D, Lian Z, Yao X, Liu P, Li X. Isolation and genomic characterization of a Chinese NADC34-like PRRSV isolated from Jiangsu province. Transbound Emerg Dis 2021; 69:e1015-e1027. [PMID: 34786872 DOI: 10.1111/tbed.14392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 11/30/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important causative agents to swine industry, which has been epidemic more than 30 years. The emergence and recombination of new virus strains bring great challenges to the prevention and control of PRRSV. In the present study, we reported and characterized a novel PRRSV strain, designated as JS2021NADC34, which was for the first time isolated from clinical samples in Jiangsu province, China. Phylogenetic analysis demonstrated that JS2021NADC34 belonging to sublineage 1.5 of PRRSV-2 and was highly related to NADC34-like strains. Genetically, JS2021NADC34 strain had a continuous 100 aa depletion in NSP2, as compared to VR-2332 strain, which was consistent with most reported NADC34-like strains. Moreover, there were several amino acid substitutions occurred in the antigenic regions of GP2-GP5. Similar to other reported NADC34-like PRRSV in China, JS2021NADC34 had no recombination with other domestic strains, which indicates this sublineage of PRRSV may be directly transported from the United States and have not undergone extensive mutation and recombination with local strains yet.
Collapse
Affiliation(s)
- Zhenbang Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lili Yuan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Danhe Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhengmin Lian
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaohui Yao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Panrao Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiangdong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Kreutzmann H, Dürlinger S, Knecht C, Koch M, Cabana M, Torrent G, Balasch M, Taylor LP, Balka G, Gerner W, Ladinig A. Efficacy of a Modified Live Virus Vaccine against Porcine Reproductive and Respiratory Syndrome Virus 1 (PRRSV-1) Administered to 1-Day-Old Piglets in Front of Heterologous PRRSV-1 Challenge. Pathogens 2021; 10:1342. [PMID: 34684293 PMCID: PMC8537468 DOI: 10.3390/pathogens10101342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
PRRSV is one of the most important viruses in the global swine industry and is often controlled by the use of modified live virus (MLV) vaccines. This study assessed the impact of a PRRSV-1 MLV vaccine applied to 1-day-old piglets challenged on day 28 of life with a PRRSV-1 field isolate (AUT15-33). Twenty-one piglets were vaccinated within 24 h of birth (T02), whereas 20 piglets were left unvaccinated (T01). Necropsy was performed two weeks post-challenge. Comparing the two groups, T02 piglets showed significantly higher (p = 0.017) average daily weight gain. In addition, significantly lower (p < 0.0001) PRRSV RNA loads were measured in serum of T02 piglets at all investigated time points. All T01 piglets were viremic and shed virus in nasal swabs, whereas only 71.4% and 38.1% of the T02 group were viremic or shed virus, respectively. Piglets from T02 had significantly higher numbers (p < 0.0001) of IFN-γ producing lymphocytes compared to T01. At necropsy, differences in gross and histologic lung lesions were statistically significant (p = 0.012 and p < 0.0001, respectively) between the two groups. Hence, this MLV vaccine administered to 1-day-old piglets was able to protect piglets against PRRSV infection at weaning.
Collapse
Affiliation(s)
- Heinrich Kreutzmann
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (H.K.); (S.D.); (C.K.); (M.K.)
| | - Sophie Dürlinger
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (H.K.); (S.D.); (C.K.); (M.K.)
| | - Christian Knecht
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (H.K.); (S.D.); (C.K.); (M.K.)
| | - Michaela Koch
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (H.K.); (S.D.); (C.K.); (M.K.)
| | - Marta Cabana
- Zoetis Manufacturing and Research Spain S.L., Ctra. Camprodon s/n Finca La Riba, 17813 Girona, Spain; (M.C.); (G.T.); (M.B.)
| | - Gerard Torrent
- Zoetis Manufacturing and Research Spain S.L., Ctra. Camprodon s/n Finca La Riba, 17813 Girona, Spain; (M.C.); (G.T.); (M.B.)
| | - Mònica Balasch
- Zoetis Manufacturing and Research Spain S.L., Ctra. Camprodon s/n Finca La Riba, 17813 Girona, Spain; (M.C.); (G.T.); (M.B.)
| | - Lucas P. Taylor
- Global Development & Operations, Zoetis, Kalamazoo, MI 49007, USA;
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- The Pirbright Institute, Biotechnology and Biological Sciences Research Council (BBSRC), Woking GU24 0NF, UK
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (H.K.); (S.D.); (C.K.); (M.K.)
| |
Collapse
|
33
|
Wang TY, Sun MX, Zhang HL, Wang G, Zhan G, Tian ZJ, Cai XH, Su C, Tang YD. Evasion of Antiviral Innate Immunity by Porcine Reproductive and Respiratory Syndrome Virus. Front Microbiol 2021; 12:693799. [PMID: 34512570 PMCID: PMC8430839 DOI: 10.3389/fmicb.2021.693799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is the front line for antiviral immune responses and bridges adaptive immunity against viral infections. However, various viruses have evolved many strategies to evade host innate immunity. A typical virus is the porcine reproductive and respiratory syndrome virus (PRRSV), one of the most globally devastating viruses threatening the swine industry worldwide. PRRSV engages several strategies to evade the porcine innate immune responses. This review focus on the underlying mechanisms employed by PRRSV to evade pattern recognition receptors signaling pathways, type I interferon (IFN-α/β) receptor (IFNAR)-JAK-STAT signaling pathway, and interferon-stimulated genes. Deciphering the antiviral immune evasion mechanisms by PRRSV will enhance our understanding of PRRSV’s pathogenesis and help us to develop more effective methods to control and eliminate PRRSV.
Collapse
Affiliation(s)
- Tong-Yun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ming-Xia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hong-Liang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guoqing Zhan
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chenhe Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
34
|
Meléndez R, Guzmán M, Jiménez C, Piche M, Jiménez E, León B, Cordero JM, Ramirez-Carvajal L, Uribe A, Van Nes A, Stegeman A, Vernooij H, Romero-Zúñiga JJ. Seroprevalence of porcine reproductive and respiratory syndrome virus on swine farms in a tropical country of the Middle Americas: the case of Costa Rica. Trop Anim Health Prod 2021; 53:441. [PMID: 34406521 PMCID: PMC8373727 DOI: 10.1007/s11250-021-02799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/30/2021] [Indexed: 10/26/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Little is known regarding the epidemiology of this infection in tropical countries. To address this problem in Costa Rica, a seroepidemiological study was carried out in two phases. In the first phase, a pilot study was conducted in nine farms with the clinical diagnosis of PRRSV. In total, 265 pig serum samples were collected from animals ranging in age from 1 to 15 weeks of age. This study aimed to establish the duration of maternal immunity in piglets, to identify the period of viremia, and to determine when seroconversion occurs. In the second phase, a cross-sectional serology study was performed on a representative sample of the Costa Rican national herds in the second phase. The twenty-five selected farms represent all provinces and were classified according to herd size (100 to 2000 sows). In each farm, pigs aged 8, 10, and 12 weeks were sampled, as well as gilts based on the pilot study. In total 1281 pigs were sampled across all 25 farms. The aim of the cross-sectional study was to quantify the seroprevalence of PRRSV in Costa Rican pig farms and to describe its geographical distribution in this tropical country. The prevalence of positive farms was 44% (11/25), and these farms were located in six of the seven provinces of Costa Rica. Overall, 58% (344/596) of the pigs were seropositive to PRRSV. The age of the pigs and the ecozone where farms were located were significantly related with PRRSV seroprevalence in animals and herds, respectively.
Collapse
Affiliation(s)
- Ronald Meléndez
- Department of Farm Animal Health, University of Utrecht, Utrecht, the Netherlands. .,School of Veterinary Medicine (EMV), Universidad Nacional, Heredia, Costa Rica.
| | - Mónica Guzmán
- Ministry of Livestock and Agriculture, Heredia, Costa Rica
| | - Carlos Jiménez
- Department of Virology, School of Veterinary Medicine, Universidad Nacional, Heredia, Costa Rica
| | - Marta Piche
- Department of Virology, School of Veterinary Medicine, Universidad Nacional, Heredia, Costa Rica
| | | | - Bernal León
- Ministry of Livestock and Agriculture, Heredia, Costa Rica
| | - Juan M Cordero
- Ministry of Livestock and Agriculture, Heredia, Costa Rica
| | | | | | - Arie Van Nes
- Department of Farm Animal Health, University of Utrecht, Utrecht, the Netherlands
| | - Arjan Stegeman
- Department of Farm Animal Health, University of Utrecht, Utrecht, the Netherlands
| | - Hans Vernooij
- Department of Farm Animal Health, University of Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
35
|
Guzmán M, Meléndez R, Jiménez C, Piche M, Jiménez E, León B, Cordero JM, Ramirez-Carvajal L, Uribe A, Van Nes A, Stegeman A, Romero JJ. Analysis of ORF5 sequences of Porcine Reproductive and Respiratory Syndrome virus (PRRSV) circulating within swine farms in Costa Rica. BMC Vet Res 2021; 17:217. [PMID: 34118903 PMCID: PMC8196928 DOI: 10.1186/s12917-021-02925-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/04/2021] [Indexed: 11/30/2022] Open
Abstract
Background Worldwide, Porcine Reproductive and Respiratory Syndrome (PRRS) is among the diseases that cause the highest economic impact in modern pig production. PRRS was first detected in Costa Rica in 1996 and has since then severely affected the local swine industry. Studies of the molecular characterization of circulating strains, correlation with clinical records, and associations with pathogens associated with Porcine Respiratory Disease Complex (PRDC) have not been done in Costa Rica. Results Sequencing and phylogenetic analysis of ORF5 proved that PRRSV-2 was the only species detected in all locations analyzed. These sequences were grouped into three clusters. When comparing samples from San Jose, Alejuela, and Puntarenas to historical isolates of the previously described lineages (1 to 9), it has been shown that these were closely related to each other and belonged to Lineage 5, along with the samples from Heredia. Intriguingly, samples from Cartago clustered in a separate clade, phylogenetically related to Lineage 1. Epitope analysis conducted on the GP5 sequence of field isolates from Costa Rica revealed seven peptides with at least 80% amino acid sequence identity with previously described and experimentally validated immunogenic regions. Previously described epitopes A, B, and C, were detected in the Santa Barbara-Heredia isolate. Conclusions Our data suggest that the virus has three distinct origins or introductions to the country. Future studies will elucidate how recently introduced vaccines will shape the evolutionary change of circulating field strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02925-7.
Collapse
Affiliation(s)
- Mónica Guzmán
- Department of Veterinary Diagnostics (DDV), Veterinary Services National Laboratories (LANASEVE), Animal Health National Service (SENASA), Ministry of Livestock and Agriculture (MAG), Heredia, Costa Rica
| | - Ronald Meléndez
- Department of Population Health Sciences, University of Utrecht, Utrecht, The Netherlands. .,Consultoría Regional de Investigación en Producción Animal Sostenible (CRIPAS), School of Veterinary Medicine (EMV), Universidad Nacional (UNA), Heredia, Costa Rica.
| | - Carlos Jiménez
- Department of Virology, School of Veterinary Medicine (EMV), Universidad Nacional (UNA), Heredia, Costa Rica
| | - Marta Piche
- Department of Virology, School of Veterinary Medicine (EMV), Universidad Nacional (UNA), Heredia, Costa Rica
| | | | - Bernal León
- Department of Veterinary Diagnostics (DDV), Veterinary Services National Laboratories (LANASEVE), Animal Health National Service (SENASA), Ministry of Livestock and Agriculture (MAG), Heredia, Costa Rica
| | - Juan M Cordero
- Department of Veterinary Diagnostics (DDV), Veterinary Services National Laboratories (LANASEVE), Animal Health National Service (SENASA), Ministry of Livestock and Agriculture (MAG), Heredia, Costa Rica
| | - Lisbeth Ramirez-Carvajal
- Department of Veterinary Diagnostics (DDV), Veterinary Services National Laboratories (LANASEVE), Animal Health National Service (SENASA), Ministry of Livestock and Agriculture (MAG), Heredia, Costa Rica.
| | | | - Arie Van Nes
- Department of Population Health Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - Arjan Stegeman
- Department of Population Health Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Juan José Romero
- Consultoría Regional de Investigación en Producción Animal Sostenible (CRIPAS), School of Veterinary Medicine (EMV), Universidad Nacional (UNA), Heredia, Costa Rica
| |
Collapse
|
36
|
Correlation of Neutralizing Antibodies (NAbs) between Sows and Piglets and Evaluation of Protectability Associated with Maternally Derived NAbs in Pigs against Circulating Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) under Field Conditions. Vaccines (Basel) 2021; 9:vaccines9050414. [PMID: 33919161 PMCID: PMC8143086 DOI: 10.3390/vaccines9050414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), which is caused by a highly transmissible pathogen called porcine reproductive and respiratory syndrome virus (PRRSV), has caused severe problems, including reproductive disorders in sows and respiratory symptoms in nursery pigs worldwide, since the early 1990s. However, currently available PRRSV vaccines do not supply complete immunity to confront the viral infection. Elicitation of PRRSV-specific neutralizing antibodies (NAbs) during the preinfectious period has been deemed to be a feasible strategy to modulate this virus, especially in farms where nursery pigs are seized with PRRSVs. A total of 180 piglets in a farrow-to-finish farm that had a natural outbreak of PRRS were distributed into three groups based on the different PRRSV NAbs levels in their dams. In the present study, piglets that received superior maternal-transferred NAbs showed delayed and relatively slight viral loads in serum and, on the whole, higher survival rates against wild PRRSV infections. A positive correlation of maternal NAbs between sows and their piglets was identified; moreover, high NAbs titers in piglets can last for at least 4 weeks. These results provide updated information to develop an appropriate immune strategy for breeding and for future PRRSV control under field conditions.
Collapse
|
37
|
A broadly neutralizing monoclonal antibody induces broad protection against heterogeneous PRRSV strains in piglets. Vet Res 2021; 52:45. [PMID: 33726857 PMCID: PMC7962380 DOI: 10.1186/s13567-021-00914-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/21/2021] [Indexed: 11/10/2022] Open
Abstract
Neutralizing antibodies (NAbs) have attracted attention as tools for achieving PRRSV control and prevention, but viral antigenic variation undermines the abilities of NAbs elicited by attenuated PRRSV vaccines to confer full protection against heterogeneous PRRSV field isolates. As demonstrated in this study, the monoclonal antibody (mAb) mAb-PN9cx3 exhibited broad-spectrum recognition and neutralizing activities against PRRSV-1 and PRRSV-2 strains in vitro. Furthermore, in vivo experiments revealed that the administration of two 10-mg doses of mAb-PN9cx3 before and after the inoculation of piglets with heterologous PRRSV isolates (HP-PRRSV-JXA1 or PRRSV NADC30-like strain HNhx) resulted in significant reduction of the PRRSV-induced pulmonary pathological changes and virus loads in porcine alveolar macrophages (PAMs) compared with the results obtained with mAb-treated isotype controls. Moreover, minimal hilar lymph node PRRSV antigen levels were observed in mAb-PN9cx3-treated piglets. A transcriptome profile analysis of PAMs extracted from lung tissues of piglets belonging to different groups (except for antibody-isotype controls) indicated that mAb-PN9cx3 treatment reversed the PRRSV infection-induced alterations in expression profiles. A gene ontology (GO) enrichment analysis of these genes traced their functions to pathways that included the immune response, inflammatory response, and response to steroid hormone, and their functions in oogenesis and positive regulation of angiogenesis have been implicated in PRRSV pathogenesis. Overall, NADC30-like HNhx infection affected more gene pathways than HP-PRRSV infection. In conclusion, our research describes a novel immunologic approach involving the use of mAbs that confer cross-protection against serious illness resulting from infection with heterogeneous PRRSV-2 isolates, which is a feat that has not yet been achieved through vaccination. Ultimately, mAb-PN9cx3 will be a powerful addition to our current arsenal for achieving PRRSV prevention and eradication.
Collapse
|
38
|
Kick AR, Amaral AF, Frias-De-Diego A, Cortes LM, Fogle JE, Crisci E, Almond GW, Käser T. The Local and Systemic Humoral Immune Response Against Homologous and Heterologous Strains of the Type 2 Porcine Reproductive and Respiratory Syndrome Virus. Front Immunol 2021; 12:637613. [PMID: 33767705 PMCID: PMC7985350 DOI: 10.3389/fimmu.2021.637613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The humoral immune response plays a crucial role in the combat and protection against many pathogens including the economically most important, highly prevalent, and diverse pig pathogen PRRSV – the Porcine Reproductive and Respiratory Syndrome Virus. In addition to viremia and viral shedding analyses, this study followed the local and systemic humoral immune response of pigs for 63 days upon inoculation with one of three types of Type-2 PRRSV (PRRSV-2) strains – one modified live virus (MLV) vaccine strain, and two lineage 1 PRRSV-2 strains, NC134 and NC174. The local response was analyzed by quantifying immunoglobulin (Ig)A in nasal swabs. The systemic response was studied by the quantification of IgG with ELISA and homo- and heterologous neutralizing antibodies (NAs) utilizing a novel method of flow cytometry. In all PRRSV-2 inoculated groups, viral nasal shedding started at 3 dpi, peaked between 3 and 7 days post inoculation, and was cleared at 28–35 dpi with sporadic rebounds thereafter. The local IgA response started 4–7 days after viral shedding occurred and showed a bi-phasic course with peaks at 14 dpi and at 28–35 dpi. Of note, the NC134 and NC174 strains induced a much stronger local IgA response. As reported earlier, main viremia lasted from 7 dpi to 28 dpi (NC174), 42 dpi (NC134) or until the end of the study (MLV). Similar to the local IgA response, the systemic IgG response started 4–7 days after viremia; but in contrast to viremia, serum IgG levels stayed high for all PRRSV-2 inoculated groups until the end of the study. A significant finding was that while the serum NA response in the MLV group was delayed by 28 days, serum NAs in pigs infected with our two NC134 and NC174 strains could be detected as early as 7 dpi (NC134) and 14 dpi (NC174). Compared to homologous NA responses, the NA responses against heterologous strains was strong but slightly delayed between our lineage 1 one strains or non-existent between the MLV and lineage 1 strains. This study improves our understanding of the relationship between local and systemic infections and the humoral immune response induced by PRRSV-2 infection or MLV vaccination. Our data also provide novel insights into the timeline of the development of homologous and heterologous NA levels – by both MLV vaccination or infection with two strains from the currently prevalent PRRSV-2 lineage 1.
Collapse
Affiliation(s)
- Andrew R Kick
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Amanda F Amaral
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Alba Frias-De-Diego
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Lizette M Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Glen W Almond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
39
|
Commercial PRRS Modified-Live Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9020185. [PMID: 33671826 PMCID: PMC7926738 DOI: 10.3390/vaccines9020185] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) presents one of the challenging viral pathogens in the global pork industry. PRRS is characterized by two distinct clinical presentations; reproductive failure in breeding animals (gilts, sows, and boars), and respiratory disease in growing pigs. PRRSV is further divided into two species: PRRSV-1 (formerly known as the European genotype 1) and PRRSV-2 (formerly known as the North American genotype 2). A PRRSV-2 modified-live virus (MLV) vaccine was first introduced in North America in 1994, and, six years later, a PRRSV-1 MLV vaccine was also introduced in Europe. Since then, MLV vaccination is the principal strategy used to control PRRSV infection. Despite the fact that MLV vaccines have shown some efficacy, they were problematic as the efficacy of vaccine was often unpredictable and depended highly on the field virus. This paper focused on the efficacy of commercially available MLV vaccines at a global level based on respiratory disease in growing pigs, and maternal and paternal reproductive failure in breeding animals.
Collapse
|
40
|
Assessing the litter level agreement of RT-PCR results for porcine reproductive and respiratory syndrome virus in testicles, tails and udder wipes diagnostic samples relative to serum from piglets. Prev Vet Med 2020; 186:105211. [PMID: 33310196 DOI: 10.1016/j.prevetmed.2020.105211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 11/20/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is currently the most detrimental disease in the U.S swine industry. Clinical signs of PRRS virus (PRRSv) infection in breeding herds include reproductive failure with abortions, stillbirths, premature farrowings and increased pre-weaning mortality. Serum from due-to-wean piglets is considered the most suitable specimen to monitor PRRSv infection and stability in breeding herds. However, processing fluids (PF - the serosanguinous exudate resultant of the collection of tails and testicles during processing) are a new specimen proposed to monitor piglets at processing (3-5 days of age) and udder wipes (UW) of lactating sows is yet another specimen to monitor infection status of suckling piglets indirectly. Here, we assessed which specimen type (e.g. sera, testicles, tails or UW) should be used to accurately establish the PRRSv status of a litter. Twenty-four litters were conveniently selected on a farm at 10 weeks post PRRSv outbreak. Blood samples, tails and testicles from every piglet in a litter, and an udder skin wipe from the sow were collected at processing (3-5 days). Individual litter testicles and tails as well as the udder wipe were placed each in a reclosable bag to prevent cross-contamination. Sensitivity (Se), specificity (Sp), negative predictive value (NPV), positive predictive value (PPV) and global agreement at the litter level were calculated using the sera results of the litter as the gold standard. The optimum cycle threshold (Ct) value to classify a sample as negative was ≥35 for serum and ≥36 for the aggregated samples (testicles, tails, and UW) based on the ROC curve analysis. Using those thresholds, the fluid collected from the testicles showed the best overall performance (Se = 92 % [62-100]; Sp = 82 % [48-98], NPV = 90 % [55-100], PPV = 85 % [55-98], global agreement = 87 %) compared to tail fluid and UW. Sensitivity of the tail fluid was 62 % (32-86) and the UW was 23 % (5-54), both of which yielded a 100 % specificity and PPV. This study provides information on the contribution of each of the tissues collected at processing on the detection of PRRSv, which becomes relevant in countries were castration and/or tail docking is banned.
Collapse
|
41
|
Porcine Reproductive and Respiratory Syndrome Virus Promotes SLA-DR-Mediated Antigen Presentation of Nonstructural Proteins To Evoke a Nonneutralizing Antibody Response In Vivo. J Virol 2020; 94:JVI.01423-20. [PMID: 32796065 DOI: 10.1128/jvi.01423-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
The humoral immune response against porcine reproductive and respiratory syndrome virus (PRRSV) infection is characterized by a rapid induction of nonneutralizing antibodies (non-NAbs) against nonstructural proteins (NSPs). Here, we systematically investigated the potential mechanism for the induction of PRRSV NSP-specific non-NAbs. Our data suggested that PRRSV NSP-specific antibodies appeared within 10 days after PRRSV infection in vivo In the in vitro model, functional upregulation of swine leukocyte antigen (SLA)-DR was observed in bone marrow-derived dendritic cells (BMDCs) and porcine alveolar macrophages (PAMs), whereas remarkable inhibition at the mRNA level was observed after infection by both PRRSV-1 and PRRSV-2 isolates. Notably, the inconsistency in SLA-DR expression between the mRNA and protein levels resulted from deubiquitination of SLA-DR via the ovarian tumor (OTU) domain of PRRSV NSP2, which inhibited ubiquitin-mediated degradation. Moreover, mass spectrometry-based immunopeptidome analysis identified immunopeptides originating from multiple PRRSV NSPs within SLA-DR of PRRSV-infected BMDCs. Meanwhile, these PRRSV NSP-derived immunopeptides could be specifically recognized by serum from PRRSV-infected piglets. Notably, certain NSP-derived immunopeptides characterized in vitro could be identified from PAMs or hilar lymph nodes from PRRSV-infected piglets. More importantly, an in vitro neutralizing assay indicated that serum antibodies against NSP immunopeptides were unable to neutralize PRRSV in vitro Conversely, certain structural protein (SP)-derived immunopeptides were identified and could be recognize by pig hyperimmune serum against PRRSV, which further indicates that the NSP-derived antibody response is nonprotective in vivo In conclusion, our data suggested that PRRSV infection interferes with major histocompatibility complex class II (MHC-II) molecule-mediated antigen presentation in antigen-presenting cells (APCs) via promoting SLA-DR expression to present immunopeptides from PRRSV NSPs, which contributes to the induction of non-NAbs in vivo IMPORTANCE PRRSV has haunted the swine industry for over 30 years since its emergence. Besides the limited efficacy of PRRSV modified live vaccines (MLVs) against heterogeneous PRRSV isolates, rapid induction of nonneutralizing antibodies (non-NAbs) against PRRSV NSPs after MLV immunization or wild-strain infection is one of the reasons why development of an effective vaccine has been hampered. By using in vitro-generated BMDCs as models to understand the antigen presentation process of PRRSV, we obtained data indicating that PRRSV infection of BMDCs promotes functional SLA-DR upregulation to present PRRSV NSP-derived immunopeptides for evoking a non-NAb response in vivo Our work not only uncovered a novel mechanism for interference in host antigen presentation by PRRSV but also revealed a novel insight for understanding the rapid production of nonneutralizing antibodies against PRRSV NSPs, which may have benefit for developing an effective vaccine against PRRSV in the future.
Collapse
|
42
|
Lim B, Kim S, Lim KS, Jeong CG, Kim SC, Lee SM, Park CK, Te Pas MFW, Gho H, Kim TH, Lee KT, Kim WI, Kim JM. Integrated time-serial transcriptome networks reveal common innate and tissue-specific adaptive immune responses to PRRSV infection. Vet Res 2020; 51:128. [PMID: 33050948 PMCID: PMC7552595 DOI: 10.1186/s13567-020-00850-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection is the most important viral disease causing severe economic losses in the swine industry. However, mechanisms underlying gene expression control in immunity-responsible tissues at different time points during PRRSV infection are poorly understood. We constructed an integrated gene co-expression network and identified tissue- and time-dependent biological mechanisms of PRRSV infection through bioinformatics analysis using three tissues (lungs, bronchial lymph nodes [BLNs], and tonsils) via RNA-Seq. Three groups with specific expression patterns (i.e., the 3-dpi, lung, and BLN groups) were discovered. The 3 dpi-specific group showed antiviral and innate-immune signalling similar to the case for influenza A infection. Moreover, we observed adaptive immune responses in the lung-specific group based on various cytokines, while the BLN-specific group showed down-regulated AMPK signalling related to viral replication. Our study may provide comprehensive insights into PRRSV infection, as well as useful information for vaccine development.
Collapse
Affiliation(s)
- Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Sangwook Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungcheongbuk-do, 28644, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | | | - Haesu Gho
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Tae-Hun Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea.
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
43
|
Evaluation of Antibody Response Directed against Porcine Reproductive and Respiratory Syndrome Virus Structural Proteins. Vaccines (Basel) 2020; 8:vaccines8030533. [PMID: 32947931 PMCID: PMC7564207 DOI: 10.3390/vaccines8030533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
Luciferase-immunoprecipitation system (LIPS), a liquid phase immunoassay, was used to evaluate antibody responses directed against the structural proteins of PRRSV in pigs that were experimentally infected with virulent PRRSV strains. First, the viral N protein was used as a model antigen to validate the assay. The LIPS results were highly comparable to that of the commercial IDEXX PRRS X3 ELISA. Subsequently, the assay was applied to simultaneously measure antibody reactivity against all eight structural proteins of PRRSV. The highest immunoreactivities were detected against GP3, M, and N proteins while the lowest reactivity was detected against ORF5a protein. Comparative analysis of the kinetics of antibody appearance revealed that antibodies specific to N protein appeared earlier than antibodies against GP3. Finally, the assay was applied to measure immunoreactivities of clinical serum samples against N and GP3. The diagnostic sensitivity of the LIPS with N protein was superior to that of the LIPS with GP3. Collectively, the results provide additional information about the host antibody response to PRRSV infection.
Collapse
|
44
|
Sanglard LP, Fernando RL, Gray KA, Linhares DCL, Dekkers JCM, Niederwerder MC, Serão NVL. Genetic Analysis of Antibody Response to Porcine Reproductive and Respiratory Syndrome Vaccination as an Indicator Trait for Reproductive Performance in Commercial Sows. Front Genet 2020; 11:1011. [PMID: 33024439 PMCID: PMC7516203 DOI: 10.3389/fgene.2020.01011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
We proposed to investigate the genomic basis of antibody response to porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) vaccination and its relationship to reproductive performance in non-PRRSV-infected commercial sows. Nine hundred and six F1 replacement gilts (139 ± 17 days old) from two commercial farms were vaccinated with a commercial modified live PRRSV vaccine. Blood samples were collected about 52 days after vaccination to measure antibody response to PRRSV as sample-to-positive (S/P) ratio and for single-nucleotide polymorphism (SNP) genotyping. Reproductive performance was recorded for up to 807 sows for number born alive (NBA), number of piglets weaned, number born mummified (MUM), number of stillborn (NSB), and number of pre-weaning mortality (PWM) at parities (P) 1-3 and per sow per year (PSY). Fertility traits such as farrowing rate and age at first service were also analyzed. BayesC0 was used to estimate heritability and genetic correlations of S/P ratio with reproductive performance. Genome-wide association study (GWAS) and genomic prediction were performed using BayesB. The heritability estimate of S/P ratio was 0.34 ± 0.05. High genetic correlations (r g) of S/P ratio with farrowing performance were identified for NBA P1 (0.61), PWM P2 (-0.70), NSB P3 (-0.83), MUM P3 (-0.84), and NSB PSY (-0.90), indicating that genetic selection for increased S/P ratio would result in improved performance of these traits. A quantitative trait locus was identified on chromosome 7 (∼25 Mb), at the major histocompatibility complex (MHC) region, explaining ∼30% of the genetic variance for S/P ratio, mainly by SNPs ASGA0032113, H3GA0020505, and M1GA0009777. This same region was identified in the bivariate GWAS of S/P ratio and reproductive traits, with SNP H3GA0020505 explaining up to 10% (for NBA P1) of the genetic variance of reproductive performance. The heterozygote genotype at H3GA0020505 was associated with greater S/P ratio and NBA P1 (P = 0.06), and lower MUM P3 and NSB P3 (P = 0.07). Genomic prediction accuracy for S/P ratio was high when using all SNPs (0.67) and when using only those in the MHC region (0.59) and moderate to low when using all SNPs excluding those in the MHC region (0.39). These results suggest that there is great potential to use antibody response to PRRSV vaccination as an indicator trait to improve reproductive performance in commercial pigs.
Collapse
Affiliation(s)
- Leticia P. Sanglard
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Rohan L. Fernando
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Kent A. Gray
- Smithfield Premium Genetics, Rose Hill, NC, United States
| | - Daniel C. L. Linhares
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Jack C. M. Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Megan C. Niederwerder
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Nick V. L. Serão
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
45
|
Li Y, Li J, He S, Zhang W, Cao J, Pan X, Tang H, Zhou EM, Wu C, Nan Y. Interferon Inducing Porcine Reproductive and Respiratory Syndrome Virus Vaccine Candidate Protected Piglets from HP-PRRSV Challenge and Evoke a Higher Level of Neutralizing Antibodies Response. Vaccines (Basel) 2020; 8:vaccines8030490. [PMID: 32877992 PMCID: PMC7565719 DOI: 10.3390/vaccines8030490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
Although widespread administration of attenuated porcine reproductive and respiratory syndrome virus (PRRSV) vaccines has been implemented since they first became commercially available two decades ago, PRRSV infection prevalence in swine herds remains high. The limited success of PRRSV vaccines is partly due to the well-established fact that a given vaccine strain confers only partial or no protection against heterologous strains. In our past work, A2MC2-P90, a novel PRRSV vaccine candidate that induced a type I IFNs response in vitro, conferred complete protection against challenge with genetically heterologous PRRSV strains. Here we assessed the ability of the PRRSV vaccine candidate A2MC2-P90 to protect piglets against the HP-PRRSV challenge and compared its efficacy to that of a licensed HP-PRRSV-specific vaccine (TJM-F92) assessed in parallel. A2MC2-P90 provided vaccinated piglets with 100% protection from a lethal challenge with extremely virulent HP-PRRSV-XJA1, while 100% mortality was observed for unvaccinated piglets by day 21 post-challenge. Notably, comparison of partial sequence (GP5) of XJA1 to A2MC2-P90 suggested there was only 88.7% homology. When comparing post-HP-PRRSV challenge responses between piglets administered A2AMC2-P90 versus those immunized with licensed vaccine TJM-F92, A2MC2-P90-vaccinated piglets rapidly developed a stronger protective humoral immune response, as evidenced by much higher titers of neutralizing antibodies, more rapid clearance of viremia and less nasal virus shedding. In conclusion, our data suggest that this novel vaccine candidate A2MC2-P90 has improved protection spectrum against heterologous HP-PRRSV strains.
Collapse
Affiliation(s)
- Yafei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.L.)
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Junhui Li
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Sun He
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Wei Zhang
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Jian Cao
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Xiaomei Pan
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Huifen Tang
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.L.)
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling 712100, China
- Correspondence: (E.-M.Z.); (C.W.); (Y.N.)
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.L.)
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling 712100, China
- Correspondence: (E.-M.Z.); (C.W.); (Y.N.)
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.L.)
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling 712100, China
- Correspondence: (E.-M.Z.); (C.W.); (Y.N.)
| |
Collapse
|
46
|
Lu Y, Gillam F, Cao QM, Rizzo A, Meng XJ, Zhang C. Hepatitis B core antigen-based vaccine demonstrates cross-neutralization against heterologous North American Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-2) strains. J Virol Methods 2020; 285:113945. [PMID: 32735804 DOI: 10.1016/j.jviromet.2020.113945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 01/12/2023]
Abstract
The U.S. swine industry have been bearing the financial impact of Porcine Reproductive and Respiratory Syndrome (PRRS) for decades. Absent of a safe and efficacious vaccine to combat PRRS virus's genetic heterogeneity, it remains a costly disease on pig farms across the country. We have developed virus-like-particle (VLP) based vaccines that incorporate 4 PRRSV epitopes in the hepatitis B core antigen (HBcAg) backbone. Administration of the vaccines in female BALB/C mice resulted in extremely significant PRRSV epitope specific antibody response. One vaccine candidate GP3-4 was able to mount a significant viral neutralizing response against both parental PRRSV strain VR2385 and heterologous PRRSV strain NADC20, showing a promising potential for cross-protection against PRRSV.
Collapse
Affiliation(s)
- Yi Lu
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Frank Gillam
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Qian M Cao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Amy Rizzo
- University Veterinarian & Animal Resources, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - X J Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
47
|
van der Zande LE, Dunkelberger JR, Rodenburg TB, Bolhuis JE, Mathur PK, Cairns WJ, Keyes MC, Eggert JM, Little EA, Dee SA, Knol EF. Quantifying Individual Response to PRRSV Using Dynamic Indicators of Resilience Based on Activity. Front Vet Sci 2020; 7:325. [PMID: 32671109 PMCID: PMC7326935 DOI: 10.3389/fvets.2020.00325] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/11/2020] [Indexed: 11/13/2022] Open
Abstract
Pigs are faced with various perturbations throughout their lives, some of which are induced by management practices, others by natural causes. Resilience is described as the ability to recover from or cope with a perturbation. Using these data, activity patterns of an individual, as well as deviations from these patterns, can potentially be used to quantify resilience. Dynamic indicators of resilience (DIORs) may measure resilience on a different dimension by calculating variation, autocorrelation and skewness of activity from the absolute activity data. The aim of this study was to investigate the potential of using DIORs of activity, such as average, root mean square error (RMSE), autocorrelation or skewness as indicators of resilience to infection with the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). For this study, individual activity was obtained from 232 pigs equipped with ear tag accelerometers and inoculated with PRRSV between seven and 9 weeks of age. Clinical scores were assigned to each individual at 13 days post-challenge and used to distinguish between a resilient and non-resilient group. Mortality post-challenge was also recorded. Average, RMSE, autocorrelation and skewness of activity were calculated for the pre- and post-challenge phases, as well as the change in activity level pre- vs. post-challenge (i.e., delta). DIORs pre-challenge were expected to predict resilience to PRRSV in the absence of PRRSV infection, whereas DIORs post-challenge and delta were expected to reflect the effect of the PRRSV challenge. None of the pre-challenge DIORs predicted morbidity or mortality post-challenge. However, a higher RMSE in the 3 days post-challenge and larger change in level and RMSE of activity from pre- to post-challenge tended to increase the probability of clinical signs at day 13 post-infection (poor resilience). A higher skewness post-challenge (tendency) and a larger change in skewness from pre- to post-challenge increased the probability of mortality. A decrease in skewness post-challenge lowered the risk of mortality. The post-challenge DIOR autocorrelation was neither linked to morbidity nor to mortality. In conclusion, results from this study showed that post-challenge DIORs of activity can be used to quantify resilience to PRRSV challenge.
Collapse
Affiliation(s)
| | | | - T Bas Rodenburg
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands.,Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - J Elizabeth Bolhuis
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | | | | | | | | | - Erin A Little
- Pipestone Applied Research, Pipestone, MN, United States
| | - Scott A Dee
- Pipestone Applied Research, Pipestone, MN, United States
| | - Egbert F Knol
- Topigs Norsvin Research Center, Beuningen, Netherlands
| |
Collapse
|
48
|
Henao-Diaz A, Ji J, Giménez-Lirola L, Baum DH, Zimmerman J. Understanding and interpreting PRRSV diagnostics in the context of "disease transition stages". Res Vet Sci 2020; 131:173-176. [PMID: 32388019 DOI: 10.1016/j.rvsc.2020.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 01/22/2023]
Abstract
Herein we review broad issues that affect test performance for agents that produce persistent infections. Using PRRSV as an example, the relationship between "disease transition stages" and "diagnostic transition stages" is discussed using meta-analyses of diagnostic data (n = 4307 results) from the refereed literature to highlight the key issues. Although diagnostic technology will continue to improve, it may be concluded from the analysis that there can be no single best diagnostic approach; rather, the choice of specimen and test must be tailored to the specific testing objective. In most cases, meeting the testing objective(s) will require the use of more than one assay and/or specimen type.
Collapse
Affiliation(s)
- Alexandra Henao-Diaz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011. USA.
| | - Ju Ji
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, 50011. USA.
| | - Luis Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011. USA.
| | - David H Baum
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011. USA.
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011. USA.
| |
Collapse
|
49
|
Hou FH, Chia MY, Liao JW, Chung HP, Lee WC. Efficacy of fungal immunomodulatory protein to promote swine immune responses against porcine reproductive and respiratory syndrome virus infection. Vet Immunol Immunopathol 2020; 224:110056. [PMID: 32380309 DOI: 10.1016/j.vetimm.2020.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 11/27/2022]
Abstract
Fungal immunomodulatory protein (FIP) is one of the bioactive compounds of edible mushrooms, which has been shown to trigger type 1 T helper (Th1) pathway activation in research with mice. This study was designated to assess immunomodulatory effects of recombinant FIP-Flammulina velutipes (rFIP-fve) on swine and the protective efficacy against PRRSV infection. In the in vitro evaluations, rFIP-fve significantly triggered up-regulation of IL-2 and IFN-γ mRNA in porcine PBMCs and stimulated natural killer cytotoxicity. Porcine pulmonary alveolar macrophages (PAMs) treated with rFIP-fve showed prolonged life times, up-regulation of both MHC I and II molecules and enhanced abilities to present antigen. In the in vivo trial, two doses of 2 mg rFIP-fve significantly reduced drops in the CD4/CD8 ratio after PRRSV challenge, and the cytokine mRNA profile of PBMC revealed a tendency of IFN-γ up-regulation and a decrease in IL-10 in the rFIP-treated group. Moreover, administration of rFIP-fve also decreased the PRRSV viremia with 1 log10 in titer (p = 0.07) and alleviated the severity of clinical signs after PRRSV challenge. Conclusively, these results illustrate the in vitro and in vivo immunological changes of rFIP-fve administered to pigs and reveal its potential to be used as an immunomodulatory therapeutic against PRRSV infection.
Collapse
Affiliation(s)
- Fu-Hsiang Hou
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC
| | - Min-Yuan Chia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC
| | - Han-Ping Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC
| | - Wei-Cheng Lee
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC.
| |
Collapse
|
50
|
Tang T, Wang C, Pu Q, Peng J, Liu S, Ren C, Jiang M, Tian Z. Vaccination of Mice with Listeria ivanovii Expressing the Truncated M Protein of Porcine Reproductive and Respiratory Syndrome Virus Induces both Antigen-Specific CD4+ and CD8+ T Cell-Mediated Immunity. J Mol Microbiol Biotechnol 2020; 29:74-82. [PMID: 32289779 DOI: 10.1159/000506686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/18/2020] [Indexed: 11/19/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), a serious disease of swine caused by the PRRS virus (PRRSV), had a severe economic impact worldwide. As commonly used PRRS vaccines, the attenuated or inactivated vaccines, provide unsatisfactory immune protection, a new PRRS vaccine is urgently needed. In this study, a part of the PRRSV ORF6 gene (from 253 to 519 bp) encoding the hydrophilic domain of PRRSV M protein was integrated into two Listeria strains via homologous recombination to generate two PRRS vaccine candidates, namely LI-M' and LM-ΔactAplcB-M'. Both candidate vaccines showed similar growth rate as their parent strains in culture media, but presented different bacterial loads in target organs. As the integrated heterogenous gene was not expressed, LM-ΔactAplcB-M' was excluded from the immunological test. In a mouse model, LI-M' provoked both CD4+ and CD8+ T cell-mediated immunity. In addition, LI-M' boosting dramatically enhanced CD8+ T cell-mediated immunity without affecting the response intensity of CD4+ T cell-mediated immunity. All of these data suggest that LI-M' is a promising PRRS vaccine candidate.
Collapse
Affiliation(s)
- Tian Tang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China,
| | - Chuan Wang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Qikang Pu
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Sijing Liu
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Chenyan Ren
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Mingjuan Jiang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|