1
|
Jebessa E, Bello SF, Xu Y, Cai B, Tuli MD, Girma M, Bordbar F, Hanotte O, Nie Q. Comprehensive analysis of differentially expressed mRNA profiles in chicken jejunum and cecum following Eimeria maxima infection. Poult Sci 2024; 103:103716. [PMID: 38703453 PMCID: PMC11087723 DOI: 10.1016/j.psj.2024.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/16/2024] [Accepted: 03/31/2024] [Indexed: 05/06/2024] Open
Abstract
Coccidiosis, a protozoan disease that substantially impacts poultry production, is characterized by an intracellular parasite. The study utilized 48 one-day-old Horro chickens, randomly divided into the infected (I) and control (C) groups. The challenge group of chickens were administered Eimeria maxima oocysts via oral gavage at 21-days-old, and each chicken received 2 mL containing 7×104 sporulated oocysts. The total RNAs of chicken jejunum and cecum tissues were isolated from three samples, each from I and C groups. Our study aimed to understand the host immune-parasite interactions and compare immune response mRNA profiles in chicken jejunum and cecum tissues at 4 and 7 days postinfection with Eimeria maxima. The results showed that 823 up- and 737 down-regulated differentially expressed mRNAs (DEmRNAs) in jejunum at 4 d infection and control (J4I vs. J4C), and 710 up- and 368 down-regulated DEmRNAs in jejunum at 7 days infection and control (J7I vs. J7C) were identified. In addition, DEmRNAs in cecum tissue, 1424 up- and 1930 down-regulated genes in cecum at 4 days infection and control (C4I vs. C4C), and 77 up- and 191 down-regulated genes in cecum at 7 days infection and control (C7I vs. C7C) were detected. The crucial DEmRNAs, including SLC7A5, IL1R2, GLDC, ITGB6, ADAMTS4, IL1RAP, TNFRSF11B, IMPG2, WNT9A, and FOXF1, played pivotal roles in the immune response during Eimeria maxima infection of chicken jejunum. In addition, the potential detection of FSTL3, RBP7, CCL20, DPP4, PRKG2, TFPI2, and CDKN1A in the cecum during the host immune response against Eimeria maxima infection is particularly noteworthy. Furthermore, our functional enrichment analysis revealed the primary involvement of DEmRNAs in small molecule metabolic process, immune response function, inflammatory response, and toll-like receptor 10 signaling pathway in the jejunum at 4 and 7 days postinfection. Similarly, in the cecum, DEmRNAs at 4 and 7 days postinfection were enriched in processes related to oxidative stress response and immune responses. Our findings provide new insights and contribute significantly to the field of poultry production and parasitology.
Collapse
Affiliation(s)
- Endashaw Jebessa
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China; LiveGene-Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Yibin Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Bolin Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Merga Daba Tuli
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Mekonnen Girma
- LiveGene-Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Farhad Bordbar
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Olivier Hanotte
- LiveGene-Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia; School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
2
|
Majeed S, Hamad SK, Shah BR, Bielke L, Nazmi A. Natural intraepithelial lymphocyte populations rise during necrotic enteritis in chickens. Front Immunol 2024; 15:1354701. [PMID: 38455042 PMCID: PMC10917894 DOI: 10.3389/fimmu.2024.1354701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Intraepithelial lymphocytes (IEL) reside in the epithelium at the interface between the contents of the intestinal lumen and the sterile environment of the lamina propria. Because of this strategic location, IEL play a crucial role in various immunological processes, ranging from pathogen control to tissue stability. In mice and humans, IEL exhibit high diversity, categorized into induced IEL (conventional CD4 and CD8αβ T cells) and natural IEL (TCRαβCD8αα, TCRγδ, and TCRneg IEL). In chickens, however, the subpopulations of IEL and their functions in enteric diseases remain unclear. Thus, we conducted this study to investigate the role of IEL populations during necrotic enteritis (NE) in chickens. At 14 days of age, sixty-three Specific-pathogen-free (SPF) birds were randomly assigned to three treatments: Control (sham challenge), Eimeria maxima challenge (EM), and Eimeria maxima + Clostridium Perfringens (C. Perfringens) co-challenge (EM/CP). The EM and EM/CP birds were infected with Eimeria maxima at day 14 of age, and EM/CP birds were additionally orally inoculated with C. perfringens at days 18 and 19 of age. Birds were weighed at days 18, 20, and 26 of age to assess body weight gain (BWG). At 20 days of age (1 day-post C. perfringens infection; dpi), and 26 days of age (7 dpi), 7 birds per treatment were euthanized, and jejunum was harvested for gross lesion scores, IEL isolation, and gene expression. The EM/CP birds exhibited subclinical NE disease, lower BWG and shorter colon length. The Most changes in the IEL populations were observed at 1 dpi. The EM/CP group showed substantial increases in the total number of natural IEL subsets, including TCRαβ+CD4-CD8-, TCRαβ+CD8αα+, TCRγδ+, TCRneg and innate CD8α (iCD8α) cells by at least two-fold. However, by 7 dpi, only the number of TCRαβ+CD4-CD8- and TCRαβ+CD8αα+ IEL maintained their increase in the EM/CP group. The EM/CP group had significantly higher expression of proinflammatory cytokines (IL-1β and IFN-γ) and Osteopontin (OPN) in the jejunum at 1 dpi. These findings suggest that natural IEL with innate and innate-like functions might play a critical role in the host response during subclinical NE, potentially conferring protection against C. perfringens infection.
Collapse
Affiliation(s)
- Shuja Majeed
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Shaimaa K. Hamad
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Bikas R. Shah
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Lisa Bielke
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Ali Nazmi
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Food For Health Discovery Theme, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Sandholt AKS, Wattrang E, Lilja T, Ahola H, Lundén A, Troell K, Svärd SG, Söderlund R. Dual RNA-seq transcriptome analysis of caecal tissue during primary Eimeria tenella infection in chickens. BMC Genomics 2021; 22:660. [PMID: 34521339 PMCID: PMC8438895 DOI: 10.1186/s12864-021-07959-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/29/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Coccidiosis is an infectious disease with large negative impact on the poultry industry worldwide. It is an enteric infection caused by unicellular Apicomplexan parasites of the genus Eimeria. The present study aimed to gain more knowledge about interactions between parasites and the host immune system during the early asexual replication phase of E. tenella in chicken caeca. For this purpose, chickens were experimentally infected with E. tenella oocysts, sacrificed on days 1-4 and 10 after infection and mRNA from caecal tissues was extracted and sequenced. RESULTS Dual RNA-seq analysis revealed time-dependent changes in both host and parasite gene expression during the course of the infection. Chicken immune activation was detected from day 3 and onwards with the highest number of differentially expressed immune genes recorded on day 10. Among early (days 3-4) responses up-regulation of genes for matrix metalloproteinases, several chemokines, interferon (IFN)-γ along with IFN-stimulated genes GBP, IRF1 and RSAD2 were noted. Increased expression of genes with immune suppressive/regulatory effects, e.g. IL10, SOCS1, SOCS3, was also observed among early responses. For E. tenella a general up-regulation of genes involved in protein expression and energy metabolism as well as a general down-regulation genes for DNA and RNA processing were observed during the infection. Specific E. tenella genes with altered expression during the experiment include those for proteins in rhoptry and microneme organelles. CONCLUSIONS The present study provides novel information on both the transcriptional activity of E. tenella during schizogony in ceacal tissue and of the local host responses to parasite invasion during this phase of infection. Results indicate a role for IFN-γ and IFN-stimulated genes in the innate defence against Eimeria replication.
Collapse
Affiliation(s)
- Arnar K S Sandholt
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Eva Wattrang
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.
| | - Tobias Lilja
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Harri Ahola
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Anna Lundén
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Karin Troell
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Robert Söderlund
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
4
|
Dual RNA-Seq transcriptome analysis of chicken macrophage-like cells (HD11) infected in vitro with Eimeria tenella. Parasitology 2021; 148:712-725. [PMID: 33536090 PMCID: PMC8056837 DOI: 10.1017/s0031182021000111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study aimed to monitor parasite and host gene expression during the early stages of Eimeria tenella infection of chicken cells using dual RNA-Seq analysis. For this, we used chicken macrophage-like cell line HD11 cultures infected in vitro with purified E. tenella sporozoites. Cultures were harvested between 2 and 72 h post-infection and mRNA was extracted and sequenced. Dual RNA-Seq analysis showed clear patterns of altered expression for both parasite and host genes during infection. For example, genes in the chicken immune system showed upregulation early (2–4 h), a strong downregulation of genes across the immune system at 24 h and a repetition of early patterns at 72 h, indicating that invasion by a second generation of parasites was occurring. The observed downregulation may be due to immune self-regulation or to immune evasive mechanisms exerted by E. tenella. Results also suggested pathogen recognition receptors involved in E. tenella innate recognition, MRC2, TLR15 and NLRC5 and showed distinct chemokine and cytokine induction patterns. Moreover, the expression of several functional categories of Eimeria genes, such as rhoptry kinase genes and microneme genes, were also examined, showing distinctive differences which were expressed in sporozoites and merozoites.
Collapse
|
5
|
Fan XC, Liu TL, Wang Y, Wu XM, Wang YX, Lai P, Song JK, Zhao GH. Genome-wide analysis of differentially expressed profiles of mRNAs, lncRNAs and circRNAs in chickens during Eimeria necatrix infection. Parasit Vectors 2020; 13:167. [PMID: 32245514 PMCID: PMC7118956 DOI: 10.1186/s13071-020-04047-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Eimeria necatrix, the most highly pathogenic coccidian in chicken small intestines, can cause high morbidity and mortality in susceptible birds and devastating economic losses in poultry production, but the underlying molecular mechanisms in interaction between chicken and E. necatrix are not entirely revealed. Accumulating evidence shows that the long-non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are key regulators in various infectious diseases. However, the expression profiles and roles of these two non-coding RNAs (ncRNAs) during E. necatrix infection are still unclear. METHODS The expression profiles of mRNAs, lncRNAs and circRNAs in mid-segments of chicken small intestines at 108 h post-infection (pi) with E. necatrix were analyzed by using the RNA-seq technique. RESULTS After strict filtering of raw data, we putatively identified 49,183 mRNAs, 818 lncRNAs and 4153 circRNAs. The obtained lncRNAs were classified into four types, including 228 (27.87%) intergenic, 67 (8.19%) intronic, 166 (20.29%) anti-sense and 357 (43.64%) sense-overlapping lncRNAs; of these, 571 were found to be novel. Five types were also predicted for putative circRNAs, including 180 exonic, 54 intronic, 113 antisense, 109 intergenic and 3697 sense-overlapping circRNAs. Eimeria necatrix infection significantly altered the expression of 1543 mRNAs (707 upregulated and 836 downregulated), 95 lncRNAs (49 upregulated and 46 downregulated) and 13 circRNAs (9 upregulated and 4 downregulated). Target predictions revealed that 38 aberrantly expressed lncRNAs would cis-regulate 73 mRNAs, and 1453 mRNAs could be trans-regulated by 87 differentially regulated lncRNAs. Additionally, 109 potential sponging miRNAs were also identified for 9 circRNAs. GO and KEGG enrichment analysis of target mRNAs for lncRNAs, and sponging miRNA targets and source genes for circRNAs identified associations of both lncRNAs and circRNAs with host immune defense and pathogenesis during E. necatrix infection. CONCLUSIONS To the best of our knowledge, the present study provides the first genome-wide analysis of mRNAs, lncRNAs and circRNAs in chicken small intestines infected with E. necatrix. The obtained data will offer novel clues for exploring the interaction mechanisms between chickens and Eimeria spp.
Collapse
Affiliation(s)
- Xian-Cheng Fan
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.,Center of Animal Disease Prevention and Control of Huyi District, Xi'an, 710300, China
| | - Ting-Li Liu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yi Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xue-Mei Wu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yu-Xin Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Peng Lai
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Jun-Ke Song
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
6
|
Li C, Yan X, Lillehoj HS, Oh S, Liu L, Sun Z, Gu C, Lee Y, Xianyu Z, Zhao H. Eimeria maxima-induced transcriptional changes in the cecal mucosa of broiler chickens. Parasit Vectors 2019; 12:285. [PMID: 31164143 PMCID: PMC6549307 DOI: 10.1186/s13071-019-3534-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
Background Apicomplexan protozoans of the genus Eimeria cause coccidiosis, one of the most economically relevant parasitic diseases in chickens. The lack of a complete understanding of molecular mechanisms in the host-parasite interaction limits the development of effective control measures. In the present study, RNA sequencing (RNA-Seq) was applied to investigate the host mRNA profiles of the cecal mucosa collected at day 5 post-infection with Eimeria maxima (EM). Results Total RNA from cecal samples of the uninfected naïve control and the EM groups was used to make libraries, generating 354,924,372 and 356,229,250 usable reads, respectively, which were assembled into a total of 386,088 high-quality unigenes (transcripts) in Trinity software. RNA-Seq analysis of cecal samples in the two groups revealed 332 upregulated and 363 downregulated genes with significant differences (P ≤ 0.05), including several significant immune-related gene families, such as the major histocompatibility complex (MHC) class I alpha chain, granzyme A and immunoglobulin subtype genes among upregulated differentially expressed genes. In addition, a total of 60 clusters of differentiation (CD) molecular genes and 570 novel genes were found. The completeness of the assembled transcriptome was further assessed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, Gene ontology (GO), eggNOG and CAZy for gene annotation. The broad gene categories represented by the highly differentiated host genes suggested enrichment in immune responses, and downregulation in the metabolic pathway, MARK signaling pathway, vascular smooth muscle contraction, and proteins processing in endoplasmic reticulum after EM infection. Conclusions Eimeria maxima induced statistically significant differences in the cecal mucosal gene expression of infected chickens. These findings provide new insights into the host-parasite interaction and enhance our understanding of the molecular mechanism of avian coccidiosis. Electronic supplementary material The online version of this article (10.1186/s13071-019-3534-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA.
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Sungtaek Oh
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Liheng Liu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA.,College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Zhifeng Sun
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Changqin Gu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Zhezi Xianyu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Hongyan Zhao
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA.,College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
CHOI SOYOUNG, SINGH NARESHKUMAR, YANG SONGYI, HONG MINWOOK, JEONG DONGKEE, LEE KYUNGBAEK, HONG YEONGHO, LEE SUNGJIN. Genetic analysis of SNPs in the MLF2 and TCR-β genes for growth traits in Korean native chickens. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i12.85766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The myeloid leukemia factor 2 (MLF2) and T-cell receptor β (TCR-β) genes are associated the development of resistance towards coccidiosis infection. Five single-nucleotide polymorphisms (SNPs) located on these genes (SNP_892 and intron 7 (10) of MLF2 and SNP_88, 434, and 561 of TCR-β) were identified and considered to be the genetic markers for resistance to coccidiosis. In this study, we investigated the association between these SNPs and the body weight of Korean native chicken (KNC) and the possibility of using these SNPs as genetic markers for improving growth in KNCs. KNC specimens (798) were genotyped using high-resolution melting analysis, and single-marker association tests were performed; body weights of KNC were also measured every 2 weeks. Three SNPs [892 and intron 7 (10) of MLF2 and 88 of TCR-β] had significant associations with body weight in some period of growth of KNC. Further, 2 SNPs (434 and 561) of TCR-β were linked and significantly associated with the overall growth of KNCs. Conclusively, the findings of the present study suggested that SNPs in the MLF2 and TCR-β genes could be used as combinations of genetic markers for selecting high growth performance specimens of KNCs.
Collapse
|
8
|
The influence of dietary zinc source and coccidial vaccine exposure on intracellular zinc homeostasis and immune status in broiler chickens. Br J Nutr 2015; 114:202-12. [DOI: 10.1017/s0007114515001592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coccidia are protozoal parasites which compromise mucosal integrity of the intestine, potentiating poultry morbidity. The host's Zn status influences the course of infection. Therefore, two experiments were designed to determine how supplemental Zn regimens impacted jejunal and caecal immune status and Zn transporter expression. Coccivac®-B was administered weekly at ten times the recommended dose as a mild coccidial challenge (10CV). Zn was provided through a basal diet, supplemental zinc sulfate (ZnSO4), or a supplemental 1:1 blend of ZnSO4 and Availa®-Zn (Blend). Mucosal jejunum (Expt 1) and caecal tonsils (Expt 2) were evaluated for intracellular Zn concentrations and phagocytic capacity. Messenger expression of Zn transporters ZnT5, ZnT7, Zip9 and Zip13 were investigated to determine Zn trafficking. With 10CV, phagocytic capacity was decreased in jejunal cells by 2 %. In the caecal tonsils, however, phagocytic capacity increased with challenge, with the magnitude of increase being more pronounced with higher dietary Zn (10CV × Zn interaction; P= 0·04). Intracellular Zn within caecal tonsils was found significantly reduced with 10CV (27 %, P= 0·0001). 10CV also resulted in an overall increase in the ratio of Zip:ZnT transporters. With the exception of Zip13 transporter expression, dietary Zn source had little impact on any of the measured cellular parameters. Thus, intestinal mucosal tissues had reductions in intracellular free Zn during coccidial challenge, which was coupled with an upregulation of measured Zip transporters. This suggests that under coccidial challenge, intestinal cells attempt to compensate for the drop in intracellular Zn.
Collapse
|
9
|
Chapman HD, Barta JR, Blake D, Gruber A, Jenkins M, Smith NC, Suo X, Tomley FM. A selective review of advances in coccidiosis research. ADVANCES IN PARASITOLOGY 2014; 83:93-171. [PMID: 23876872 DOI: 10.1016/b978-0-12-407705-8.00002-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coccidiosis is a widespread and economically significant disease of livestock caused by protozoan parasites of the genus Eimeria. This disease is worldwide in occurrence and costs the animal agricultural industry many millions of dollars to control. In recent years, the modern tools of molecular biology, biochemistry, cell biology and immunology have been used to expand greatly our knowledge of these parasites and the disease they cause. Such studies are essential if we are to develop new means for the control of coccidiosis. In this chapter, selective aspects of the biology of these organisms, with emphasis on recent research in poultry, are reviewed. Topics considered include taxonomy, systematics, genetics, genomics, transcriptomics, proteomics, transfection, oocyst biogenesis, host cell invasion, immunobiology, diagnostics and control.
Collapse
Affiliation(s)
- H David Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Guo A, Cai J, Gong W, Yan H, Luo X, Tian G, Zhang S, Zhang H, Zhu G, Cai X. Transcriptome analysis in chicken cecal epithelia upon infection by Eimeria tenella in vivo. PLoS One 2013; 8:e64236. [PMID: 23737974 PMCID: PMC3667848 DOI: 10.1371/journal.pone.0064236] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/10/2013] [Indexed: 11/25/2022] Open
Abstract
Coccidiosis, caused by various Eimeria species, is a major parasitic disease in chickens. However, our understanding on how chickens respond to coccidian infection is highly limited at both molecular and cellular levels. The present study employed the Affymetrix chicken genome array and performed transcriptome analysis on chicken cecal epithelia in response to infection for 4.5 days in vivo by the cecal-specific species E. tenella. By Significance Analysis of Microarrays (SAM), we have identified 7,099 probe sets with q-values at <0.05, in which 4,033 and 3,066 genes were found to be up- or down-regulated in response to parasite infection. The reliability of the microarray data were validated by real-time qRT-PCR of 20 genes with varied fold changes in expression (i.e., correlation coefficient between microarray and qRT-PCR datasets: R (2) = 0.8773, p<0.0001). Gene ontology analysis, KEGG pathway mapping and manual annotations of regulated genes indicated that up-regulated genes were mainly involved in immunity/defense, responses to various stimuli, apoptosis/cell death and differentiation, signal transduction and extracellular matrix (ECM), whereas down-regulated genes were mainly encoding general metabolic enzymes, membrane components, and some transporters. Chickens mustered complex cecal eipthelia molecular and immunological responses in response to E. tenella infection, which included pathways involved in cytokine production and interactions, natural killer cell mediated cytotoxicity, and intestinal IgA production. In response to the pathogenesis and damage caused by infection, chicken cecal epithelia reduced general metabolism, DNA replication and repair, protein degradation, and mitochondrial functions.
Collapse
Affiliation(s)
- Aijiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| | - Wei Gong
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| | - Hongbin Yan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| | - Guangfu Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| | - Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- Adjunct Professorship, Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
11
|
Lillehoj HS, Lee SH, Jang SI, Kim DK, Lee KW. Recent Progress in Understanding Host Mucosal Response to Avian Coccidiosis and Development of Alternative Strategies to Mitigate the Use of Antibiotics in Poultry Production. ACTA ACUST UNITED AC 2011. [DOI: 10.5536/kjps.2011.38.4.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Comparative microarray analysis of intestinal lymphocytes following Eimeria acervulina, E. maxima, or E. tenella infection in the chicken. PLoS One 2011; 6:e27712. [PMID: 22140460 PMCID: PMC3225369 DOI: 10.1371/journal.pone.0027712] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/23/2011] [Indexed: 11/24/2022] Open
Abstract
Relative expression levels of immune- and non-immune-related mRNAs in chicken intestinal intraepithelial lymphocytes experimentally infected with Eimeria acervulina, E. maxima, or E. tenella were measured using a 10K cDNA microarray. Based on a cutoff of >2.0-fold differential expression compared with uninfected controls, relatively equal numbers of transcripts were altered by the three Eimeria infections at 1, 2, and 3 days post-primary infection. By contrast, E. tenella elicited the greatest number of altered transcripts at 4, 5, and 6 days post-primary infection, and at all time points following secondary infection. When analyzed on the basis of up- or down-regulated transcript levels over the entire 6 day infection periods, approximately equal numbers of up-regulated transcripts were detected following E. tenella primary (1,469) and secondary (1,459) infections, with a greater number of down-regulated mRNAs following secondary (1,063) vs. primary (890) infection. On the contrary, relatively few mRNA were modulated following primary infection with E. acervulina (35 up, 160 down) or E. maxima (65 up, 148 down) compared with secondary infection (E. acervulina, 1,142 up, 1,289 down; E. maxima, 368 up, 1,349 down). With all three coccidia, biological pathway analysis identified the altered transcripts as belonging to the categories of “Disease and Disorder” and “Physiological System Development and Function”. Sixteen intracellular signaling pathways were identified from the differentially expressed transcripts following Eimeria infection, with the greatest significance observed following E. acervulina infection. Taken together, this new information will expand our understanding of host-pathogen interactions in avian coccidiosis and contribute to the development of novel disease control strategies.
Collapse
|
13
|
Lillehoj HS, Kim DK, Bravo DM, Lee SH. Effects of dietary plant-derived phytonutrients on the genome-wide profiles and coccidiosis resistance in the broiler chickens. BMC Proc 2011; 5 Suppl 4:S34. [PMID: 21645315 PMCID: PMC3108230 DOI: 10.1186/1753-6561-5-s4-s34] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The present study was conducted to investigate the effects of dietary plant-derived phytonutrients, carvacrol, cinnamaldehyde and Capsicum oleoresin, on the translational regulation of genes associated with immunology, physiology and metabolism using high-throughput microarray analysis and in vivo disease challenge model of avian coccidiosis. METHODS In this study, we used nutrigenomics technology to investigate the molecular and genetic mechanisms of dietary modulation of host innate immunity and metabolism by three phytonutrients. To validate their immunomodulatory effects in a disease model, young broiler chickens fed a standard diet supplemented with three phytochemicals (carvacrol, cinnamaldehyde, and Capsicum oleoresin) from one day post-hatch were orally challenged with E. acervulina. The body weight gain and fecal oocyst production were used to evaluate coccidiosis disease parameters. RESULTS Analysis of global gene expression profiles of intestinal tissues from phytonutrient-fed birds indicated that Capsicum oleoresin induced the most gene changes compared to the control group where many of these genes were associated with those of metabolism and immunity. The most reliable network induced by dietary cinnamaldehyde treatment was related with the functions of antigen presentation, humoral immune response, and inflammatory disease. Furthermore, dietary supplementation with these phytonutrients significantly protected broiler chickens against live coccidiosis challenge infection based on body weight and parasite fecundity. CONCLUSIONS The results of this study provide clear evidence to support the idea that plant-derived phytochemicals possess immune-enhancing properties in chickens and these new findings create a new possibility to develop effective drug-free alternative strategies for disease control for poultry infectious diseases.
Collapse
Affiliation(s)
- Hyun S Lillehoj
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
14
|
Kim CH, Lillehoj HS, Hong YH, Keeler CL, Lillehoj EP. Analysis of global transcriptional responses of chicken following primary and secondary Eimeria acervulina infections. BMC Proc 2011; 5 Suppl 4:S12. [PMID: 21645291 PMCID: PMC3108206 DOI: 10.1186/1753-6561-5-s4-s12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Characterization of host transcriptional responses during coccidia infections can provide new clues for the development of alternative disease control strategies against these complex protozoan pathogens. Methods In the current study, we compared chicken duodenal transcriptome profiles following primary and secondary infections with Eimeria acervulina using a 9.6K avian intestinal intraepithelial lymphocyte cDNA microarray (AVIELA). Results Gene Ontology analysis showed that primary infection significantly modulated the levels of mRNAs for genes involved in the metabolism of lipids and carbohydrates as well as those for innate immune-related genes. By contrast, secondary infection increased the levels of transcripts encoded by genes related to humoral immunity and reduced the levels of transcripts for the innate immune-related genes. The observed modulation in transcript levels for gene related to energy metabolism and immunity occurred concurrent with the clinical signs of coccidiosis. Conclusions Our results suggest that altered expression of a specific set of host genes induced by Eimeria infection may be responsible, in part, for the observed reduction in body weight gain and inflammatory gut damage that characterizes avian coccidiosis.
Collapse
Affiliation(s)
- Chul-Hong Kim
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|
15
|
Wallach M. Role of antibody in immunity and control of chicken coccidiosis. Trends Parasitol 2010; 26:382-7. [PMID: 20452286 DOI: 10.1016/j.pt.2010.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 01/20/2023]
Abstract
Research has been carried out worldwide to try to elucidate the mechanism of protective immunity against coccidiosis. It was concluded from early studies that cellular immunity is the key to protection against Eimeria, whereas humoral immunity plays a very minor role in resistance against infection. By contrast, other studies have pointed towards the ability of antibody to block parasite invasion, development and transmission and to provide passive and maternal immunity against challenge infection. Herein, recent results demonstrate the ability of antibodies (raised by live immunization or against purified stage-specific Eimeria antigens) to inhibit parasite development in vitro and in vivo and readdress the question of the role of antibody in protection against coccidiosis.
Collapse
Affiliation(s)
- Michael Wallach
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, PO Box 123, Broadway, Sydney, New South Wales, 2007, Australia.
| |
Collapse
|
16
|
Recognition by toll‐like receptor 2 induces antigen‐presenting cell activation and Th1 programming during infection by
Neospora caninum. Immunol Cell Biol 2010; 88:825-33. [DOI: 10.1038/icb.2010.52] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Kim CH, Lillehoj HS, Hong YH, Keeler CL, Lillehoj EP. Comparison of global transcriptional responses to primary and secondary Eimeria acervulina infections in chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:344-351. [PMID: 19941894 DOI: 10.1016/j.dci.2009.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 11/14/2009] [Accepted: 11/17/2009] [Indexed: 05/28/2023]
Abstract
In the current study, we compared chicken gene transcriptional profiles following primary and secondary infections with Eimeria acervulina using a 9.6K avian intestinal intraepithelial lymphocyte cDNA microarray (AVIELA). Gene Ontology analysis showed that primary infection significantly modulated the levels of mRNAs for genes involved in the metabolism of lipids and carbohydrates as well as those for innate immune-related genes. By contrast, secondary infection increased the levels of transcripts encoded by genes related to humoral immunity and reduced the levels of transcripts for the innate immune-related genes. Because the observed modulation in transcript levels for gene related to energy metabolism and immunity occurred concurrent with the clinical signs of coccidiosis, these results suggest that altered expression of a specific set of host genes induced by Eimeria infection may be responsible, in part, for the observed reduction in body weight gain and inflammatory gut damage that characterizes avian coccidiosis.
Collapse
Affiliation(s)
- Chul-Hong Kim
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | | | | | | | | |
Collapse
|
18
|
Kim ES, Hong YH, Lillehoj HS. Genetic effects analysis of myeloid leukemia factor 2 and T cell receptor-β on resistance to coccidiosis in chickens. Poult Sci 2010; 89:20-7. [PMID: 20008798 DOI: 10.3382/ps.2009-00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- E-S Kim
- Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, USDA, Beltsville, MD 20705, USA
| | | | | |
Collapse
|
19
|
Kim D, Lillehoj H, Lee S, Jang S, Bravo D. High-throughput gene expression analysis of intestinal intraepithelial lymphocytes after oral feeding of carvacrol, cinnamaldehyde, or Capsicum oleoresin. Poult Sci 2010; 89:68-81. [DOI: 10.3382/ps.2009-00275] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Kim D, Kim C, Lamont S, Keeler C, Lillehoj H. Gene expression profiles of two B-complex disparate, genetically inbred Fayoumi chicken lines that differ in susceptibility to Eimeria maxima. Poult Sci 2009; 88:1565-79. [DOI: 10.3382/ps.2009-00012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Hong YH, Kim ES, Lillehoj HS, Lillehoj EP, Song KD. Association of resistance to avian coccidiosis with single nucleotide polymorphisms in the zyxin gene. Poult Sci 2009; 88:511-8. [PMID: 19211519 DOI: 10.3382/ps.2008-00344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our previous genetic studies demonstrated that resistance to avian coccidiosis is linked with microsatellite markers LEI0071 and LEI0101 on chromosome 1. In this study, the associations between parameters of resistance to coccidiosis and single nucleotide polymorphisms (SNP) in 3 candidate genes located between LEI0071 and LEI0101 [zyxin, CD4, and tumor necrosis factor receptor super family 1A (TNFRSF1A)] were determined. The SNP were genotyped in 24 F(1) generation and 290 F(2) generation animals. No SNP were identified in the TNFRSF1A gene, whereas 10 were located in the zyxin gene and 4 in the CD4 gene. At various times following experimental infection of the F(2) generation with Eimeria maxima, BW, fecal oocyst shedding, and plasma levels of carotenoid, nitrite plus nitrate (NO(2)(-) + NO(3)(-)), and interferon-gamma (IFN-gamma) were measured as parameters of resistance. Single marker and haplotype-based tests were applied to determine the associations between the 14 SNP and the parameters of coccidiosis resistance. None of the CD4 SNP were correlated with disease resistance. However, by single marker association, several of the zyxin SNP were significantly associated with carotenoid or NO(2)(-) + NO(3)(-) concentrations. These were the SNP at nucleotide 149 associated with carotenoid at d 3 postinfection (PI), nucleotide 187 with carotenoid at d 6 and 9 PI, and nucleotide 159 with carotenoid between d 3 and 9 PI. In addition, the zyxin SNP at nucleotide 191 was significantly associated with increased levels of NO(2)(-) + NO(3)(-) at d 3 PI. By haplotype association, the zyxin SNP also were found to be highly associated with NO(2)(-) + NO(3)(-) at d 3 PI and increased IFN-gamma at d 6 PI. These results suggest that zyxin is a candidate gene potentially associated with increased resistance to experimental avian coccidiosis.
Collapse
Affiliation(s)
- Y H Hong
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, USDA, Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|