1
|
Lessiak U, Melchert M, Walter I, Kummer S, Nell B, Tschulenk W, Pratscher B. Isolation-protocol, characterization, and in-vitro performance of equine umbilical vein endothelial cells. Front Vet Sci 2024; 11:1421946. [PMID: 39411390 PMCID: PMC11473255 DOI: 10.3389/fvets.2024.1421946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Angiogenesis plays a crucial role in various physiological and pathological conditions. However, research in equine angiogenesis is relative limited, necessitating the development of suitable in-vitro models. To effectively analyze angiogenesis in-vitro, it is essential to target the specific cells responsible for this process, namely endothelial cells. Human umbilical vein endothelial cells (HUVECs) are one of the most used in vitro models for studying angiogenesis in humans. Serving as an equivalent to HUVECs, we present a comprehensive isolation protocol for equine umbilical vein endothelial cells (EqUVECs) with relatively minimal requirements, thereby enhancing accessibility for researchers. Umbilical cords obtained from five foals were used to isolate endothelial cells, followed by morphological and immunohistochemical identification. Performance of the cells in various assays commonly used in angiogenesis research was studied. Additionally, EqUVEC expression of vascular endothelial growth factor (VEGF) was assessed using ELISA. EqUVECs exhibited endothelial characteristics, forming a homogeneous monolayer with distinctive morphology. Immunohistochemical staining confirmed positive expression of key endothelial markers including von Willebrand factor (vWF), CD31, and vascular endothelial growth factor receptor-2 (VEGFR-2). Furthermore, performance assessments in in-vitro assays demonstrated the viability, proliferation, migration, tube formation and VEGF-expression capabilities of EqUVECs. The findings suggest that EqUVECs are a promising in-vitro model for studying equine angiogenesis, offering a foundation for further investigations into equine-specific vascular processes and therapeutic interventions.
Collapse
Affiliation(s)
- Ulrike Lessiak
- Ophthalmology Unit, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria Melchert
- Centre for Animal Reproduction, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ingrid Walter
- Department of Biomedical Science and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stefan Kummer
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Nell
- Ophthalmology Unit, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Waltraud Tschulenk
- Department of Biomedical Science and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Pratscher
- Research Unit Internal Medicine, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
2
|
Finding EJT, Faulkner A, Nash L, Wheeler-Jones CPD. Equine Endothelial Cells Show Pro-Angiogenic Behaviours in Response to Fibroblast Growth Factor 2 but Not Vascular Endothelial Growth Factor A. Int J Mol Sci 2024; 25:6017. [PMID: 38892205 PMCID: PMC11172845 DOI: 10.3390/ijms25116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Understanding the factors which control endothelial cell (EC) function and angiogenesis is crucial for developing the horse as a disease model, but equine ECs remain poorly studied. In this study, we have optimised methods for the isolation and culture of equine aortic endothelial cells (EAoECs) and characterised their angiogenic functions in vitro. Mechanical dissociation, followed by magnetic purification using an anti-VE-cadherin antibody, resulted in EC-enriched cultures suitable for further study. Fibroblast growth factor 2 (FGF2) increased the EAoEC proliferation rate and stimulated scratch wound closure and tube formation by EAoECs on the extracellular matrix. Pharmacological inhibitors of FGF receptor 1 (FGFR1) (SU5402) or mitogen-activated protein kinase (MEK) (PD184352) blocked FGF2-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and functional responses, suggesting that these are dependent on FGFR1/MEK-ERK signalling. In marked contrast, vascular endothelial growth factor-A (VEGF-A) had no effect on EAoEC proliferation, migration, or tubulogenesis and did not promote ERK1/2 phosphorylation, indicating a lack of sensitivity to this classical pro-angiogenic growth factor. Gene expression analysis showed that unlike human ECs, FGFR1 is expressed by EAoECs at a much higher level than both VEGF receptor (VEGFR)1 and VEGFR2. These results suggest a predominant role for FGF2 versus VEGF-A in controlling the angiogenic functions of equine ECs. Collectively, our novel data provide a sound basis for studying angiogenic processes in horses and lay the foundations for comparative studies of EC biology in horses versus humans.
Collapse
Affiliation(s)
- Elizabeth J. T. Finding
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK; (A.F.); (L.N.); (C.P.D.W.-J.)
| | | | | | | |
Collapse
|
3
|
Yun Y, Wang X, Xu J, Chen J, Wang X, Yang P, Qin L. Optogenetic stimulation of basal forebrain cholinergic neurons prevents neuroinflammation and neuropsychiatric manifestations in pristane induced lupus mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:11. [PMID: 37322485 DOI: 10.1186/s12993-023-00213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Neuroinflammation has been identified as one of the primary pathogenic factors of neuropsychiatric systemic lupus erythematosus (NPSLE). However, there are no dedicated treatments available in clinics to alleviate neuroinflammation in NPSLE. It has been proposed that stimulating basal forebrain (BF) cholinergic neurons may provide potent anti-inflammatory effects in several inflammatory diseases, but its potential role in NPSLE remains unexplored. This study aims to investigate whether and how stimulating BF cholinergic neurons has a protective effect on NPSLE. RESULTS Optogenetic stimulation of BF cholinergic neurons significantly ameliorated olfactory dysfunction and anxiety- and depression-like phenotype in pristane induced lupus (PIL) mice. The increased expression of adhesion molecules (P-selectin and vascular cell adhesion molecule-1 (VCAM-1)), leukocyte recruitment, blood-brain barrier (BBB) leakage were significantly decreased. Notably, the brain histopathological changes, including the elevated levels of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), IgG deposition in the choroid plexus and lateral ventricle wall and lipofuscin accumulation in the cortical and hippocampal neurons, were also significantly attenuated. Furthermore, we confirmed the colocalization between the BF cholinergic projections and the cerebral vessels, and the expression of α7-nicotinic acetylcholine receptor (α7nAChR) on the cerebral vessels. CONCLUSION Our data indicate that stimulation of BF cholinergic neurons could play a neuroprotective role in the brain through its cholinergic anti-inflammatory effects on cerebral vessels. Therefore, this may be a promising preventive target for NPSLE.
Collapse
Affiliation(s)
- Yang Yun
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuejiao Wang
- Department of Physiology, China Medical University, Shenyang, China
| | - Jingyi Xu
- Department of Rheumatology and Immunology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingyu Chen
- Department of Physiology, China Medical University, Shenyang, China
| | - Xueru Wang
- Department of Physiology, China Medical University, Shenyang, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling Qin
- Department of Physiology, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Rieger J, Kaessmeyer S, Al Masri S, Hünigen H, Plendl J. Endothelial cells and angiogenesis in the horse in health and disease-A review. Anat Histol Embryol 2020; 49:656-678. [PMID: 32639627 DOI: 10.1111/ahe.12588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/04/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
The cardiovascular system is the first functional organ in the embryo, and its blood vessels form a widespread conductive network within the organism. Blood vessels develop de novo, by the differentiation of endothelial progenitor cells (vasculogenesis) or by angiogenesis, which is the formation of new blood vessels from existing ones. This review presents an overview of the current knowledge on physiological and pathological angiogenesis in the horse including studies on equine endothelial cells. Principal study fields in equine angiogenesis research were identified: equine endothelial progenitor cells; equine endothelial cells and angiogenesis (heterogeneity, markers and assessment); endothelial regulatory molecules in equine angiogenesis; angiogenesis research in equine reproduction (ovary, uterus, placenta and conceptus, testis); angiogenesis research in pathological conditions (tumours, ocular pathologies, equine wound healing, musculoskeletal system and laminitis). The review also includes a table that summarizes in vitro studies on equine endothelial cells, either describing the isolation procedure or using previously isolated endothelial cells. A particular challenge of the review was that results published are fragmentary and sometimes even contradictory, raising more questions than they answer. In conclusion, angiogenesis is a major factor in several diseases frequently occurring in horses, but relatively few studies focus on angiogenesis in the horse. The challenge for the future is therefore to continue exploring new therapeutic angiogenesis strategies for horses to fill in the missing pieces of the puzzle.
Collapse
Affiliation(s)
- Juliane Rieger
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Sabine Kaessmeyer
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Salah Al Masri
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Hana Hünigen
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Zhu Z, Zhang L, Cui Y, Li M, Ren R, Li G, Sun X, Li Q. Functional Compensation and Mechanism of Choline Acetyltransferase in the Treatment of Cognitive Deficits in Aged Dementia Mice. Neuroscience 2020; 442:41-53. [PMID: 32497760 DOI: 10.1016/j.neuroscience.2020.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
Choline acetyltransferase (ChAT) synthesizes the neurotransmitter acetylcholine (Ach). Exogenous supplementation with ChAT can functionally compensate for decreased Ach levels and ameliorate memory and cognitive deficits. In this paper, the treatment efficacy of recombinant ChAT (peptide transduction domain (PTD)-ChAT) and donepezil were compared in aged dementia mice, and their mechanisms were explored by performing the gene function annotation and enrichment analysis of differentially expressed genes. The Morris water maze test showed that the swimming times of PTD-ChAT-treated (4 mg/kg) and donepezil-treated (0.5 mg/kg) mice with mild and moderate dementia were significantly shortened (P < 0.01 vs aged dementia mice), and no significant changes were observed between the PTD-ChAT- and donepezil-treated groups. In contrast, the swimming times of PTD-ChAT-treated mice with severe dementia were noticeably shorter than those of donepezil-treated mice with severe dementia (P < 0.01), indicating that the treatment efficacy of PTD-ChAT is superior to that of donepezil. The effect of PTD-ChAT was further confirmed in transgenic dementia mice (C57BL/6J-TgN (APP/PS1) ZLFILAS). Gene function annotation and enrichment analysis showed that PTD-ChAT improved cognitive deficits through Ach and was implicated in neuroprotection, synaptic plasticity, neuronal survival, and cerebrovascular remodeling through ACh and vascular endothelial growth factor (VEGF) pathway activation. Donepezil was significantly correlated with the immune inflammatory response and the insulin and IGF-1 signaling pathways. Therefore, although PTD-ChAT and donepezil were both effective in the treatment of aged dementia mice, their mechanisms were significantly different. Our research indicated that PTD-ChAT has potential promise for research on new drugs for AD treatment.
Collapse
Affiliation(s)
- Zhenxia Zhu
- Capital Medical University Electric Power Teaching Hospital, No 1 Taipingqiaoxili, Beijing 100073, China
| | - Lulu Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Yali Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Meng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Rutong Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Guoxing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Xin Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Qian Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| |
Collapse
|
6
|
PNU-282987 improves the hemodynamic parameters by alleviating vasopermeability and tissue edema in dogs subjected to a lethal burns shock. J Burn Care Res 2015; 35:e197-204. [PMID: 23877136 DOI: 10.1097/bcr.0b013e31829afe46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive inflammation and high vasopermeability can lead to blood volume loss and tissue edema, which can affect the resuscitation and prognosis for serious burn patients. In this experiment, we investigated the effect of PNU-282987, an α7 nicotine cholinergic receptor agonist on the hemodynamic parameters and survival rate by inhibiting vasopermeability and tissue edema during the fluid resuscitation for lethal burn shock. Forty Beagle dogs with intubation of the carotid artery and jugular vein 24 hours before the injury were subjected to 50% TBSA full-thickness burns, and were randomly divided into following four groups: no resuscitation group (group NR), venous fluid resuscitation group (group R), PNU-282987 treatment group (group P), and fluid resuscitation group plus PNU-282987 group (group RP), with 10 dogs in each group. Hemodynamic variables and biochemical parameters were determined with animals in a conscious and cooperative state. The plasma volume and the vasopermeability were determined by indocyanine green and fluorescein isothiocyanate-dextran, respectively. The level of tumor necrosis factor-α and interleukin-1β in plasma, and the water content of different organs were also determined. The mean arterial pressure, cardiac output, and plasma volume of all dogs decreased significantly, and the lung extravascular water index and pulmonary vascular permeability index increased remarkably after burn. The hemodynamic parameters deteriorated continually in group N dogs, and then anuria, hyperlactacidemia, and multiple organ dysfunctions developed. The mean arterial pressure and cardiac output of dogs in group R and group RP returned to preinjury levels at 48 hours postburn. The lung extravascular water index and pulmonary vascular permeability in group R were higher than those before preinjury. The dogs in group RP were found to have a significant increase in plasma volume and urine output, and a remarkable decrease in the levels of tumor necrosis factor-α, interleukin-1α, lactic acid, and organ functions compared with those of group R (P <.05). The survival rate of RP group (100%; 10/10) was significantly higher than that of group N (0; 0/10), group P (20%; 2/10), and group R (60%; 6/10). PNU-282987 combined with intravenous fluid resuscitation significantly improved hemodynamics and the survival rate in the early period after this lethal burn shock. The mechanism may be attributable to the lowering of the level of proinflammatory mediators, amelioration of vasopermeability-induced visceral edema, less of blood volume loss, and protection of vital organs through activation of cholinergic anti-inflammatory pathway.
Collapse
|
7
|
Yamakawa K, Matsumoto N, Imamura Y, Muroya T, Yamada T, Nakagawa J, Shimazaki J, Ogura H, Kuwagata Y, Shimazu T. Electrical vagus nerve stimulation attenuates systemic inflammation and improves survival in a rat heatstroke model. PLoS One 2013; 8:e56728. [PMID: 23424673 PMCID: PMC3570456 DOI: 10.1371/journal.pone.0056728] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/14/2013] [Indexed: 11/21/2022] Open
Abstract
This study was performed to gain insights into novel therapeutic approaches for the treatment of heatstroke. The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical vagus nerve stimulation (VNS) reportedly suppresses pro-inflammatory cytokine release in several models of inflammatory disease. Here, we evaluated whether electrical VNS attenuates severe heatstroke, which induces a systemic inflammatory response. Anesthetized rats were subjected to heat stress (41.5°C for 30 minutes) with/without electrical VNS. In the VNS-treated group, the cervical vagus nerve was stimulated with constant voltage (10 V, 2 ms, 5 Hz) for 20 minutes immediately after completion of heat stress. Sham-operated animals underwent the same procedure without stimulation under a normothermic condition. Seven-day mortality improved significantly in the VNS-treated group versus control group. Electrical VNS significantly suppressed induction of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 in the serum 6 hours after heat stress. Simultaneously, the increase of soluble thrombomodulin and E-selectin following heat stress was also suppressed by VNS treatment, suggesting its protective effect on endothelium. Immunohistochemical analysis using tissue preparations obtained 6 hours after heat stress revealed that VNS treatment attenuated infiltration of inflammatory (CD11b-positive) cells in lung and spleen. Interestingly, most cells with increased CD11b positivity in response to heat stress did not express α7 nicotinic acetylcholine receptor in the spleen. These data indicate that electrical VNS modulated cholinergic anti-inflammatory pathway abnormalities induced by heat stress, and this protective effect was associated with improved mortality. These findings may provide a novel therapeutic strategy to combat severe heatstroke in the critical care setting.
Collapse
Affiliation(s)
- Kazuma Yamakawa
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Animal models have been developed to investigate specific components of asthmatic airway inflammation, hyper-responsiveness or remodelling. However, all of these aspects are rarely observed in the same animal. Heaves is a naturally occurring disease of horses that combines these features. It is characterized by stable dust-induced inflammation, bronchospasm and remodelling. The evaluation of horses during well-controlled natural antigen exposure and avoidance in experimental settings allows the study of disease mechanisms in the asymptomatic and symptomatic stages, an approach rarely feasible in humans. Also, the disease can be followed over several years to observe the cumulative effect of repeated episodes of clinical exacerbation or to evaluate long-term treatment, contrasting most murine asthma models. This model has shown complex gene and environment interactions, the involvement of both innate and adaptive responses to inflammation, and the contribution of bronchospasm and tissue remodelling to airway obstruction, all occurring in a natural setting. Similarities with the human asthmatic airways are well described and the model is currently being used to evaluate airway remodelling and its reversibility in ways that are not possible in people for ethical reasons. Tools including antibodies, recombinant proteins or gene arrays, as well as methods for sampling tissues and assessing lung function in the horse are constantly evolving to facilitate the study of this animal model. Research perspectives that can be relevant to asthma include the role of neutrophils in airway inflammation and their response to corticosteroids, systemic response to pulmonary inflammation, and maintaining athletic capacities with early intervention.
Collapse
Affiliation(s)
- Mathilde Leclere
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Canada
| | | | | |
Collapse
|
9
|
Lee YW, Kim PH, Lee WH, Hirani AA. Interleukin-4, Oxidative Stress, Vascular Inflammation and Atherosclerosis. Biomol Ther (Seoul) 2010; 18:135-144. [PMID: 21072258 DOI: 10.4062/biomolther.2010.18.2.135] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The pro-oxidative and pro-inflammatory pathways in vascular endothelium have been implicated in the initiation and progression of atherosclerosis. In fact, inflammatory responses in vascular endothelium are primarily regulated through oxidative stress-mediated signaling pathways leading to overexpression of pro-inflammatory mediators. Enhanced expression of cytokines, chemokines and adhesion molecules in endothelial cells and their close interactions facilitate recruiting and adhering blood leukocytes to vessel wall, and subsequently stimulate transendothelial migration, which are thought to be critical early pathologic events in atherogenesis. Although interleukin-4 (IL-4) was traditionally considered as an anti-inflammatory cytokine, recent in vitro and in vivo studies have provided robust evidence that IL-4 exerts pro-inflammatory effects on vascular endothelium and may play a critical role in the development of atherosclerosis. The cellular and molecular mechanisms responsible for IL-4-induced atherosclerosis, however, remain largely unknown. The present review focuses on the distinct sources of IL-4-mediated reactive oxygen species (ROS) generation as well as the pivotal role of ROS in IL-4-induced vascular inflammation. These studies will provide novel insights into a clear delineation of the oxidative mechanisms of IL-4-mediated stimulation of vascular inflammation and subsequent development of atherosclerosis. It will also contribute to novel therapeutic approaches for atherosclerosis specifically targeted against pro-oxidative and pro-inflammatory pathways in vascular endothelium.
Collapse
Affiliation(s)
- Yong Woo Lee
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|