1
|
Sangkuanun T, Tipbunjong C, Yasuhiko K, Watanabe H, Peerakietkhajorn S. Dragon fruit-derived oligosaccharides alter hemocyte-mediated immunity and expression of genes related to innate immunity and oxidative stress in Daphnia magna. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105251. [PMID: 39168396 DOI: 10.1016/j.dci.2024.105251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/06/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Dragon fruit oligosaccharide (DFO) is an indigestible prebiotic that enhances the growth and reproduction of Daphnia magna, increases the expression of genes involved in immunity, and reduces oxidative stress. This study investigated the effects of DFO on the expression of innate immunity- (Toll, Pelle, proPO, A2M, and CTL), oxidative stress- (Mn-SOD), and nitric oxide (NO) synthesis-related genes (NOS1, NOS2, and arginase) as well as NO localization and number of hemocytes in D. magna. For this ten-day-old D. magna were treated with 0 or 9 mg l-1 of DFO for 24 and 85 h. Gene expression levels, NO intensity and localization, and total hemocytes were evaluated. After 24 h, the expression of Toll and proPO increased significantly (p < 0.05), while that of C-type lectins (CTL) was reduced (p < 0.05). At 85 h, Mn-SOD and CTL expressions were markedly suppressed (p < 0.05). NO was mostly localized in the foregut, midgut, hindgut, and carapace. The expression of NOS1 was reduced after 24 h (p < 0.05). In addition, NO intensity at 24 h was insignificantly lower than the control (p > 0.05). At 85 h, the expression of NOS1, NOS2, and arginase was higher than control, but NO intensity did not differ significantly (p > 0.05). Furthermore, the total hemocyte count elevated remarkably at 85 h (p < 0.05). Our study suggested that 9 mg l-1 of DFO could alter the expression of the genes related to innate immunity, oxidative stress, and NO synthesis in D. magna and significantly stimulate hemocyte production.
Collapse
Affiliation(s)
- Thanwarat Sangkuanun
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kato Yasuhiko
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 562-0082, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 562-0082, Japan
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
2
|
Yuan C, Wang S, Gebeyew K, Yang X, Tang S, Zhou C, Khan NA, Tan Z, Liu Y. A low-carbon high inulin diet improves intestinal mucosal barrier function and immunity against infectious diseases in goats. Front Vet Sci 2023; 9:1098651. [PMID: 36713857 PMCID: PMC9874328 DOI: 10.3389/fvets.2022.1098651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Abrupt weaning is a major stressful event, contributing to intestinal abnormalities and immune system dysfunction in weaned kids. Inulin is a prebiotic fiber with many positive functions, including promoting intestinal fermentation and enhancing host immunity in monogastric animals. However, the effects of a high-inulin, energy-rich diet on ruminal fermentation characteristics, methane emission, growth performance, and immune systems of weaned kids have not been investigated. Methods A fully automated in vitro fermentation system was used to investigate ruminal fermentation characteristics and methane emission of a mixed substrate of inulin and fat powder (1.31: 1) in comparison with maize grain-based starter concentrate. During a 1-week adaptation and 4-week trial phase, 18 weaned kids (8.97 ± 0.19 kg) were randomly assigned to two groups, one with a conventional diet (83% maize grain; CON) and the other with a low-carbon, high-inulin diet (41.5% maize grain, 14.4% fat powder, 18.9% inulin; INU). Results In the in vitro rumen fermentation experiment, the total gas production was not different (p > 0.05); however, a lower (p < 0.05) methane production was observed for INU as compared to CON. The average daily gain and the ratio of feed intake and growth performance of kids fed with INU were higher (p < 0.05) than those fed with CON. Serum concentrations of alanine transaminase (ALT) and lactate dehydrogenase (LDH) were lower (p < 0.05), whereas the concentration of high-density lipoprotein (HDL) and cholesterol (CHOL) were higher (p < 0.05) in kids fed with the INU diet as compared CON. Dietary inulin significantly increased (p < 0.05) the secretion of immunoglobulins (IgA, IgG, and IgM) and inflammatory cytokines (IFN-γ and IL-10) in ileum tissue. Although no differences (p > 0.05) were observed in mRNA expression of tight junction markers, the INU diet tended to increase (p = 0.09) gene expression of ribosomal protein S6 kinase beta-1 (P70S6K) in the mammalian target of rapamycin (mTOR) pathway of longissimus dorsi muscle. Conclusion Our findings highlighted that a low-carbon high-inulin energy-rich diet could be used as a promising strategy to improve gut immunity and growth performance of weaned kids under abrupt weaning stress and reduce methane production.
Collapse
Affiliation(s)
- Chunmei Yuan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,University of the Chinese Academy of Sciences, Beijing, China
| | - Shuiping Wang
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, China,Shuiping Wang ✉
| | - Kefyalew Gebeyew
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xin Yang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Shaoxun Tang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Chuanshe Zhou
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,University of the Chinese Academy of Sciences, Beijing, China
| | - Nazir Ahmad Khan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,Department of Animal Nutrition, The University of Agriculture, Peshawar, KP, Pakistan
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yong Liu
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,*Correspondence: Yong Liu ✉
| |
Collapse
|
3
|
de Abreu Ribeiro Pereira J, de Fátima Píccolo Barcelos M, Valério Villas Boas E, Hilsdorf Píccoli R, de Sales Guilarducci J, Corrêa Pereira R, Pauli JR, Batista Ferreira E, Cardoso de Angelis-Pereira M, Esper Cintra D. Combined effects of yacon flour and probiotic yogurt on the metabolic parameters and inflammatory and insulin signaling proteins in high-fat-diet-induced obese mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7293-7300. [PMID: 35758165 DOI: 10.1002/jsfa.12095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 01/16/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Prebiotics and probiotics may be effective dietary components that can alter the gut microbiota of the host and, consequently, overcome imbalances associated with obesity. This work aimed to evaluate the synergistic and isolated effects and mechanisms by which probiotic yogurt containing Bifidobacterium animalis and/or Lactobacillus acidophilus and yacon flour alter metabolic parameters and inflammatory and insulin signaling proteins in diet-induced obese mice. Swiss mice were fed a high-fat diet (n = 48) or a standard diet (control; n = 6) for 56 days. The 42 mice that gained the most weight were selected and divided into seven groups that received different combinations of probiotic yogurt and yacon flour. After 30 days, biochemical parameters (blood glucose, serum total cholesterol, and triacylglycerols), crude fat excretion in feces, and periepididymal fat were assessed and an immunoblotting analysis of insulin signaling proteins and interleukin-1β was conducted. RESULTS The combination of yacon flour and a yogurt with two strains of probiotics exerted positive effects on the parameters evaluated, such as decreased body weight (-6.5%; P < 0.05), fasting glucose (-23.1%; P < 0.05), and triacylglycerol levels (-21.4%; P < 0.05) and decreased periepididymal fat accumulation (-44.2%; P < 0.05). There was a decrease in inflammatory markers (P < 0.001) and an improvement in insulin signaling (P < 0.001). CONCLUSIONS The combination of a prebiotic with two strains of probiotics in a food matrix may exert a protective effect against obesity-associated inflammation, improving insulin resistance, even in the short term. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Rafaela Corrêa Pereira
- Department of Nutrition, Federal University of Lavras, Lavras, Brazil
- Department of Agricultural Sciences, Federal Institute of Minas Gerais, Bambuí, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, Limeira, Brazil
| | | | | | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LABGeN), School of Applied Science, University of Campinas, Limeira, Brazil
| |
Collapse
|
4
|
A new monocomponent xylanase improves performance, ileal digestibility of energy and nutrients, intestinal morphology, and intestinal microbiota in young broilers. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
5
|
Kalia VC, Shim WY, Patel SKS, Gong C, Lee JK. Recent developments in antimicrobial growth promoters in chicken health: Opportunities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155300. [PMID: 35447189 DOI: 10.1016/j.scitotenv.2022.155300] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
With a continuously increasing human population is an increasing global demand for food. People in countries with a higher socioeconomic status tend to switch their preferences from grains to meat and high-value foods. Their preference for chicken as a source of protein has grown by 70% over the last three decades. Many studies have shown the role of feed in regulating the animal gut microbiome and its impact on host health. The microbiome absorbs nutrients, digests foods, induces a mucosal immune response, maintains homeostasis, and regulates bioactive metabolites. These metabolic activities are influenced by the microbiota and diet. An imbalance in microbiota affects host physiology and progressively causes disorders and diseases. With the use of antibiotics, a shift from dysbiosis with a higher density of pathogens to homeostasis can occur. However, the progressive use of higher doses of antibiotics proved harmful and resulted in the emergence of multidrug-resistant microbes. As a result, the use of antibiotics as feed additives has been banned. Researchers, regulatory authorities, and managers in the poultry industry have assessed the challenges associated with these restrictions. Research has sought to identify alternatives to antibiotic growth promoters for poultry that do not have any adverse effects. Modulating the host intestinal microbiome by regulating dietary factors is much easier than manipulating host genetics. Research efforts have led to the identification of feed additives, including bacteriocins, immunostimulants, organic acids, phytogenics, prebiotics, probiotics, phytoncides, and bacteriophages. In contrast to focusing on one or more of these alternative bioadditives, an improved feed conversion ratio with enhanced poultry products is possible by employing a combination of feed additives. This article may be helpful in future research towards developing a sustainable poultry industry through the use of the proposed alternatives.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| | - Woo Yong Shim
- Samsung Particulate Matter Research Institute, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Chunjie Gong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Paradowska M, Dunislawska A, Siwek M, Slawinska A. Avian Cell Culture Models to Study Immunomodulatory Properties of Bioactive Products. Animals (Basel) 2022; 12:670. [PMID: 35268238 PMCID: PMC8909239 DOI: 10.3390/ani12050670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial resistance is becoming a greater danger to both human and animal health, reducing the capacity to treat bacterial infections and increasing the risk of morbidity and mortality from resistant bacteria. Antimicrobial efficacy in the treatment of bacterial infections is still a major concern in both veterinary and human medicine. Antimicrobials can be replaced with bioactive products. Only a small number of plant species have been studied in respect to their bioactive compounds. More research is needed to characterize and evaluate the therapeutic properties of the plant extracts. Due to the more and more common phenomenon of antimicrobial resistance, poultry farming requires the use of natural alternatives to veterinary antibiotics that have an immunomodulatory effect. These include a variety of bioactive products, such as plant extracts, essential oils, probiotics, prebiotics, and synbiotics. This article presents several studies on bioactive products and their immunomodulatory effects tested in vitro and ex vivo using various avian cell culture models. Primary cell cultures that have been established to study the immune response in chickens include peripheral blood mononuclear cells (PBMCs), intestinal epithelial cells (IEC), and bone marrow-derived dendritic cells (BMDCs). Chicken lymphatic lines that can be used to study immune responses are mainly: chicken B cells infected with avian leukemia RAV-1 virus (DT40), macrophage-like cell line (HD11), and a spleen-derived macrophage cell line (MQ-NCSU). Ex vivo organ cultures combine in vitro and in vivo studies, as this model is based on fragments of organs or tissues grown in vitro. As such, it mimics the natural reactions of organisms, but under controlled conditions. Most ex vivo organ cultures of chickens are derived from the ileum and are used to model the interaction between the gastrointestinal tract and the microbiota. In conclusion, the use of in vitro and ex vivo models allows for numerous experimental replications in a short period, with little or no ethical constraints and limited confounding factors.
Collapse
Affiliation(s)
- Michelle Paradowska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (A.D.); (M.S.)
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (A.D.); (M.S.)
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland; (A.D.); (M.S.)
| | - Anna Slawinska
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| |
Collapse
|
7
|
Meijerink N, de Oliveira JE, van Haarlem DA, Lamot DM, Velkers FC, Smidt H, Stegeman JA, Rutten VPMG, Jansen CA. Long-chain glucomannan supplementation modulates immune responsiveness, as well as intestinal microbiota, and impacts infection of broiler chickens with Salmonella enterica serotype Enteritidis. Vet Res 2022; 53:9. [PMID: 35120583 PMCID: PMC8817541 DOI: 10.1186/s13567-022-01026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
The zoonotic pathogen Salmonella enterica serotype Enteritidis (SE) causes severe disease in young chickens. Restriction on antibiotic use requires alternative SE control strategies such as nutritional solutions to improve the resistance of chickens. In this study, chickens were fed long-chain glucomannan (GM) or standard diet and challenged with SE at seven days of age. During 21 days post-infection (dpi), we determined numbers and responsiveness of natural killer (NK) and T cells in ileum and spleen, and SE-specific antibody titers in serum. Microbiota compositions in ileum and caeca were determined, as well as correlations of these with numbers and function of immune cells. Some of the samples in the control group had numerically higher CFUs than the GM-treated group. In addition, the relative abundance of SE based on DNA assessment was significantly lower at 21 dpi upon GM supplementation. At 3 dpi, numbers of intraepithelial NK cells were significantly higher, while activation of intraepithelial NK cells (7 dpi), numbers of intraepithelial cytotoxic CD8+ T cells (14 dpi) and SE-specific antibodies (14 dpi) were numerically higher. Furthermore, relative abundance of the commensal lactic acid bacteria (LAB) significantly increased with GM supplementation post-infection. Higher relative abundance of streptococci was associated with reduced SE in ileal and caecal contents at 21 dpi. Relative abundance of streptococci negatively correlated with SE counts and positively correlated with NK cell activation and SE-specific antibodies, which suggests involvement of the commensal LAB in NK cell responsiveness. These results indicate that GM supplementation modulates the immune system, intestinal microbiota and impacts SE infection of young chickens.
Collapse
Affiliation(s)
- Nathalie Meijerink
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Daphne A van Haarlem
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - David M Lamot
- Cargill Animal Nutrition and Health Innovation Center, Velddriel, The Netherlands
| | - Francisca C Velkers
- Department of Population Health Sciences, Division of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - J Arjan Stegeman
- Department of Population Health Sciences, Division of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P M G Rutten
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands. .,Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Nopparatmaitree M, Nava M, Chumsangchotisakun V, Saenphoom P, Chotnipat S, Kitpipit W. Effect of trimmed asparagus by-products supplementation in broiler diets on performance, nutrients digestibility, gut ecology, and functional meat production. Vet World 2022; 15:147-161. [PMID: 35369594 PMCID: PMC8924397 DOI: 10.14202/vetworld.2022.147-161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Trimmed asparagus by-products (TABP) is the resultant waste from asparagus possessing. TABP has fructans, such as inulins and fructooligosaccharide, which can be utilized as an alternative prebiotic. This study was conducted to examine the effect of TABP dietary supplementation on the productive performance, nutrient digestibility, gut microbiota, volatile fatty acid (VFA) content, small-intestine histology, and meat quality of broilers. Materials and Methods A total of 320 1-day-old broiler chicks (Ross 308®) were raised under ambient temperature and assigned through a completely randomized design to one of four dietary treatments, with four replicates per treatment. The dietary treatments comprised corn-soybean basal diet supplemented with 0 (control), 10, 30, or 50 g/kg TABP. All birds were provided drinking water and feed ad libitum to meet the standard nutritional requirements of National Research Council for broiler chickens. Results TABP supplementation to the broilers significantly increased the apparent ether extract, crude fiber, and gross energy digestibility (p<0.05). TABP supplementation significantly increased lactic bacteria and Enterococcus spp. numbers as well as acetic, propionic, butyric, and total VFA levels (p<0.01); on the other hand, it also significantly decreased Salmonella spp. and Escherichia coli contents in the cecum compared with the control group (p<0.01). Moreover, TABP supplementation increased villus height in the duodenum and jejunum (p<0.01), cryptal depth in the jejunum and ileum (p<0.01), and villus surface areas in the duodenum, jejunum, and ileum (p<0.01). Overall, 0-35 day TABP supplementation significantly increased the feed intake (p<0.01) and average daily gain of broilers (p<0.05), but not significantly affected the viability, productive index, and economic benefit return (p>0.05). The carcass characteristics, pH, color, and water holding capacity of the chicken meat between groups were not significantly different (p>0.05). All levels of TABP supplementation appeared to be a feasible means of producing broilers with the lower serum low-density lipoprotein cholesterol and triglyceride levels as well as atherogenic indices of serum compared with the control (p<0.05). Cholesterol contents and palmitic acid, oleic acid, saturated fatty acids, and Monounsaturated fatty acids levels decreased with an increase of TABP supplementation (p<0.05). Furthermore, TABP supplementation decreased atherogenic index (AI) and thrombogenicity index (TI) of meat (p<0.05). Conclusion Supplementation of 30 g/kg TABP in broiler diet could enhance broiler performance and provide chicken meat with beneficial properties, with decreased AI and TI resulted from altered cholesterol and fatty acid profiles.
Collapse
Affiliation(s)
- Manatsanun Nopparatmaitree
- Faculty of Animal Science and Agricultural Technology, Silpakorn University, Phetchaburi IT Campus, Cha-Am, Phetchaburi, 76120, Thailand
| | - Marisa Nava
- Faculty of Animal Science and Agricultural Technology, Silpakorn University, Phetchaburi IT Campus, Cha-Am, Phetchaburi, 76120, Thailand
| | - Verachai Chumsangchotisakun
- Faculty of Animal Science and Agricultural Technology, Silpakorn University, Phetchaburi IT Campus, Cha-Am, Phetchaburi, 76120, Thailand
| | - Pornpan Saenphoom
- Faculty of Animal Science and Agricultural Technology, Silpakorn University, Phetchaburi IT Campus, Cha-Am, Phetchaburi, 76120, Thailand
| | - Soranot Chotnipat
- Faculty of Animal Science and Agricultural Technology, Silpakorn University, Phetchaburi IT Campus, Cha-Am, Phetchaburi, 76120, Thailand
| | - Warangkana Kitpipit
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Food Technology and Innovation Research Center of Excellent, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
9
|
Ma F, Luo L, Gao X. Metabolite and transcriptome analyses revealed the modulation of fructo-oligosaccharide on ileum metabolism of Taiping chickens. J Appl Microbiol 2021; 132:2249-2261. [PMID: 34608718 DOI: 10.1111/jam.15319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 01/08/2023]
Abstract
AIM The metabolic markers and differentially expressed genes (DEGs) related to fructo-oligosaccharide (FOS) were screened, and the response of FOS to the ileum metabolic pathway of Taiping chickens was analysed. METHODS AND RESULTS Prebiotic are widely used in agricultural breeding for care and maintenance of animal health, especially FOS. Metabonomics evaluation of ileum of Taiping chicken ultra-performance liquid chromatography-quadruple time of-flight high-sensitivity mass spectrometry showed that 93 differentially altered metabolites were identified and divided into eight categories, of which organic acids and derivatives was the most important one. Transcriptomic analysis showed that DEGs were mainly enriched in drug metabolism-cytochrome p450, metabolism of xenobiotics by cytochrome p450, retinol metabolism and fat digestion and absorption. Integrated analysis of metabolite profiles and gene expression revealed that the significantly up-regulated GSTT1 was significantly correlated with most of the different lipid metabolites, suggesting that GSTT1 may play an important role in FOS regulation of lipid metabolism. CONCLUSIONS The results of this study suggest that supplementation of FOS can have a positive effect on gut metabolites, which may contribute to the overall health with indigenous chickens. SIGNIFICANCE AND IMPACT OF THE STUDY Insight into the responses of intestinal prebiotics of Taiping chicken is helpful to understand the role of prebiotics in maintaining intestinal microflora balance and improving immune response and productivity of poultry from the molecular and metabolic levels.
Collapse
Affiliation(s)
- Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, China
| | - Lintong Luo
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, China
| | - Xiang Gao
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, China
| |
Collapse
|
10
|
Karunaratne ND, Newkirk RW, Ames NP, Van Kessel AG, Bedford MR, Classen HL. Hulless barley and β-glucanase affect ileal digesta soluble beta-glucan molecular weight and digestive tract characteristics of coccidiosis-vaccinated broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:595-608. [PMID: 34377846 PMCID: PMC8326591 DOI: 10.1016/j.aninu.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 09/27/2020] [Indexed: 12/02/2022]
Abstract
Exogenous β-glucanase (BGase) in barley-based feed has been shown to reduce digesta viscosity in chickens, and thereby improve performance. Less well studied is the potential for BGase to convert barley β-glucan into low molecular weight carbohydrates, which might influence digestive tract function and enteric disease. Coccidiosis-vaccinated broiler chickens were fed graded levels of hulless barley (HB) and BGase to determine their effects on β-glucan depolymerization and digestive tract characteristics. Broilers were fed high β-glucan HB (0%, 30% and 60% replacing wheat) and BGase (0%, 0.01% and 0.1%) in a 3 × 3 factorial arrangement. A total of 5,346 broilers were raised in litter floor pens and vaccinated for coccidiosis on d 5. Each treatment was assigned to 1 pen in each of 9 rooms. The significance level was set at P ≤ 0.05. At both 11 and 33 d of broiler ages, peak molecular weight of β-glucan in ileal digesta decreased with increasing BGase for 30% and 60% HB. The maximum molecular weight for the smallest 10% β-glucan molecules (MW-10%) decreased with BGase at both ages for 30% and 60% HB; for birds fed 0% HB, only 0.1% BGase decreased MW-10%. The 0.1% BGase increased caecal short chain fatty acids (SCFA) compared to the 0.01% BGase at d 11 only for the 60% HB. Ileal pH increased with increasing HB and BGase at d 11 and 33. Caecal pH was lower for 0.1% BGase than 0% BGase for 60% HB at d 11. Relative mRNA expression of interleukin 6 (IL-6) and IL-8 in the ileum increased with 0.1% BGase at d 11 and 33, respectively, whereas expression of ileal mucin 2 (MUC2) decreased with 0.1% BGase at d 33. In the caeca, interactions between HB and BGase were significant for monocarboxylate transporter 1 (MCT1) and mucin 5AC (MUC5 AC) on d 11, but no treatment effects were found at d 33. In conclusion, BGase depolymerized high molecular weight β-glucan in HB in a dose-dependent manner. Hulless barley and BGase did not increase SCFA concentrations (except for 60% HB with 0.1% BGase at d 11) and caused minor effects on digestive tract histomorphological measurements and relative mRNA gene expression.
Collapse
Affiliation(s)
- Namalika D. Karunaratne
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Rex W. Newkirk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Nancy P. Ames
- Agriculture and Agri-food Canada, Winnipeg, R3T 2E1, Manitoba, Canada
| | - Andrew G. Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | | | - Henry L. Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada
| |
Collapse
|
11
|
Li A, Li Y, Zhang X, Zhang C, Li T, Zhang J, Li C. The human milk oligosaccharide 2'-fucosyllactose attenuates β-lactoglobulin-induced food allergy through the miR-146a-mediated toll-like receptor 4/nuclear factor-κB signaling pathway. J Dairy Sci 2021; 104:10473-10484. [PMID: 34334202 DOI: 10.3168/jds.2021-20257] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Our previous experiments have confirmed that human milk oligosaccharides (HMO) and its main component 2'-fucosyllactose (2'-FL), as prebiotics, could effectively alleviate cow milk allergy by regulating the intestinal microecology. This study intended to further explore the molecular mechanism of HMO regulating intestinal immunity. The results of the allergic mouse model showed that oral administration of 2'-FL or HMO reduced β-lactoglobulin (β-LG)-induced serum-specific IgE secretion and mast cell degranulation, while reducing the inflammatory cytokines, TNF-α, IL-4, and IL-6 production and promoting the miR-146a expression. In vitro results further confirmed that 2'-FL or HMO treatment reduced allergen-induced secretion of iNOS, NO, pro-inflammatory cytokines and reactive oxygen species in RAW264.7 cells. At the same time, in contrast to the β-LG group, 2'-FL dose-dependently inhibited the TLR4/NF-κB inflammatory pathway and upregulated miR-146a expression, and the effect of the 2'-FL mid-dose group was similar to that of the HMO intervention group. In particular, adding miR-146a inhibitors to macrophages attenuated the inhibitory effect of 2'-FL on the expression of TRAF6 and IRAKI in the TLR4 pathway, suggesting that miR-146a might be involved in the immune regulation of 2'-FL. The above results indicated that 2'-FL had a similar effect to HMOs, and its effect of reducing β-LG allergy might be related to the regulation of miR-146a to inhibit TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| | - Ying Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| | - Xin Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| | - Congwei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| | - Tongtong Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| | - Jingjing Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
12
|
Ma F, Luo L, Wang Q. Response of the ileum transcriptome to fructo-oligosaccharides in Taiping chickens. Anim Biotechnol 2021; 33:1217-1228. [PMID: 33591232 DOI: 10.1080/10495398.2021.1884565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate the effects of fructo-oligosaccharide (FOS) supplementation intake of Taiping chickens (Gallus gallus domesticus) and its stimulating effects on ileum. 120 healthy chickens were randomly divided into two groups; control group (CT) and fructo-oligosaccharides group (FOS). At the 60th day of age, ileum mucosa of three chickens per group were collected and performed transcriptome profiling of Taiping chicken ileum mucosa using the Hiseq™ 2500 sequencing platform. Compared with CT group, 50 genes were differentially expressed in the FOS group. Ten of the differently expressed genes were further validated by RT-qPCR. In addition, gene ontology and Kyoto encyclopedia of genes and genomes analyses revealed that these differentially expressed genes were mainly enriched to drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, retinol metabolism, fat digestion and absorption, herpes simplex infection and valine, leucine and isoleucine biosynthesis. The results of this study provided the help to our understanding application of fructo-oligosaccharides in indigenous chicken production and provide a theoretical basis for the genetic development of indigenous chickens.
Collapse
Affiliation(s)
- Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, P. R. China
| | - Lintong Luo
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, P. R. China
| | - Qianning Wang
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, P. R. China
| |
Collapse
|
13
|
Csernus B, Czeglédi L. Physiological, antimicrobial, intestine morphological, and immunological effects of fructooligosaccharides in pigs. Arch Anim Breed 2020; 63:325-335. [PMID: 32964103 PMCID: PMC7500070 DOI: 10.5194/aab-63-325-2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022] Open
Abstract
In pig nutrition, there are some periods when natural alternatives to
antibiotics are more required, such as during suckling and weaning.
Fructooligosaccharides (FOSs) are a group of prebiotics applied as feed
ingredients in animal nutrition since their positive effects on growth
performance, immunological parameters, intestinal microbiota, and gut
morphology are reported. Accordingly, FOS may be candidate molecules to
improve the mentioned properties in pigs. Previous studies defined FOS as inhibiting
the activity of pathogens and increasing the colonization of beneficial
bacteria in the gut, although metabolites of FOS decreased the intestinal pH
value. Beneficial effects on digestive-enzyme activities and on protein
digestion were determined in some studies. All of the three types of FOS
(inulin, oligomeric fructans, and short-chain FOSs) promoted the microbial
composition of the gut by increasing the colonizations of Lactobacillus, Bifidobacterium, and
Prevotella genus. FOS also affected the immune response directly and indirectly and
increased vaccine-specific IgA, serum IgG, and IgE levels. Moreover, FOS
enhanced the activation of T cells and altered the secretions of some
cytokines. Levels of vaccine-specific IgG could not be increased after FOS
supplements. In most cases, FOS modified intestinal morphological
parameters, such as longer villi, villus-height-to-crypt-depth ratio, and
thicker mucosa, which could suggest better absorptive functions. Results are
contradictory on growth performance, which might be influenced by the chemical
structure, the duration, and the dose of FOS, so further studies are
required. This review aims to gather information regarding immunological,
antimicrobial, intestine morphological, and growth performance properties of
fructooligosaccharides in pigs.
Collapse
Affiliation(s)
- Brigitta Csernus
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, 4032, Hungary.,Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
14
|
Khan S, Moore RJ, Stanley D, Chousalkar KK. The Gut Microbiota of Laying Hens and Its Manipulation with Prebiotics and Probiotics To Enhance Gut Health and Food Safety. Appl Environ Microbiol 2020; 86:e00600-20. [PMID: 32332137 PMCID: PMC7301851 DOI: 10.1128/aem.00600-20] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The microbiota plays a vital role in maintaining gut health and influences the overall performance of chickens. Most gut microbiota-related studies have been performed in broilers, which have different microbial communities compared to those of layers. The normal gut microbiota of laying chickens is dominated by Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and Actinobacteria at the phylum level. The composition of the gut microbiota changes with chicken age, genotype, and production system. The metabolites of gut microbiota, such as short-chain fatty acids, indole, tryptamine, vitamins, and bacteriocins, are involved in host-microbiota cross talk, maintenance of barrier function, and immune homeostasis. Resident gut microbiota members also limit and control the colonization of foodborne pathogens. In-feed supplementations of prebiotics and probiotics strengthen the gut microbiota for improved host performance and colonization resistance to gut pathogens, such as Salmonella and Campylobacter The mechanisms of action of prebiotics and probiotics come through the production of organic acids, activation of the host immune system, and production of antimicrobial agents. Probiotic candidates, including Lactobacillus, Bifidobacterium, Bacillus, Saccharomyces, and Faecalibacterium isolates, have shown promising results toward enhancing food safety and gut health. Additionally, a range of complex carbohydrates, including mannose oligosaccharides, fructo-oligosaccharides, and galacto-oligosaccharides, and inulin are promising candidates for improving gut health. Here, we review the potential roles of prebiotics and probiotics in the reshaping of the gut microbiota of layer chickens to enhance gut health and food safety.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Robert J Moore
- RMIT University, School of Science, Bundoora, Victoria, Australia
| | - Dragana Stanley
- Central Queensland University, Institute for Future Farming Systems, Rockhampton, Queensland, Australia
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
15
|
Lafontaine GMF, Fish NM, Connerton IF. In Vitro Evaluation of the Effects of Commercial Prebiotic GOS and FOS Products on Human Colonic Caco-2 Cells. Nutrients 2020; 12:nu12051281. [PMID: 32366023 PMCID: PMC7282019 DOI: 10.3390/nu12051281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 01/04/2023] Open
Abstract
Prebiotic oligosaccharides are widely used as human and animal feed additives for their beneficial effects on the gut microbiota. However, there are limited data to assess the direct effect of such functional foods on the transcriptome of intestinal epithelial cells. The purpose of this study is to describe the differential transcriptomes and cellular pathways of colonic cells directly exposed to galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS). We have examined the differential gene expression of polarized Caco–2 cells treated with GOS or FOS products and their respective mock-treated cells using mRNA sequencing (RNA-seq). A total of 89 significant differentially expressed genes were identified between GOS and mock-treated groups. For FOS treatment, a reduced number of 12 significant genes were observed to be differentially expressed relative to the control group. KEGG and gene ontology functional analysis revealed that genes up-regulated in the presence of GOS were involved in digestion and absorption processes, fatty acids and steroids metabolism, potential antimicrobial proteins, energy-dependent and -independent transmembrane trafficking of solutes and amino acids. Using our data, we have established complementary non-prebiotic modes of action for these frequently used dietary fibers.
Collapse
Affiliation(s)
- Geraldine M. Flaujac Lafontaine
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK;
| | - Neville M. Fish
- Saputo Dairy UK, Innovation Centre, Harper Adams University, Newport TF10 8NB, UK;
| | - Ian F. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK;
- Correspondence:
| |
Collapse
|
16
|
Immunomodulation of Avian Dendritic Cells under the Induction of Prebiotics. Animals (Basel) 2020; 10:ani10040698. [PMID: 32316442 PMCID: PMC7222706 DOI: 10.3390/ani10040698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Dendritic cells recognize pathogen-associated molecular patterns in chicken intestines and are part of the initial immune response. The immunoregulatory properties of prebiotics acting in several ways in poultry have been known for many years. According to their function, dendritic cells should play an indispensable role in the proven effects of prebiotics on the intestinal immune system, such as through activation of T and B cells and cytokine production. Currently, there are no studies concerning direct interactions in poultry between non-digestible feed components and dendritic cells. Whereas most in vitro experiments with chicken dendritic cells have studied their interactions with pathogens, in vitro studies are now needed to determine the impacts of prebiotics on the gastrointestinal dendritic cells themselves. The present lack of information in this area limits the development of effective feed additives for poultry production. The main purpose of this review is to explore ideas regarding potential mechanisms by which dendritic cells might harmonize the immune response after prebiotic supplementation and thereby provide a basis for future studies. Abstract Although the immunomodulatory properties of prebiotics were demonstrated many years ago in poultry, not all mechanisms of action are yet clear. Dendritic cells (DCs) are the main antigen-presenting cells orchestrating the immune response in the chicken gastrointestinal tract, and they are the first line of defense in the immune response. Despite the crucial role of DCs in prebiotic immunomodulatory properties, information is lacking about interaction between prebiotics and DCs in an avian model. Mannan-oligosaccharides, β-glucans, fructooligosaccharides, and chitosan-oligosaccharides are the main groups of prebiotics having immunomodulatory properties. Because pathogen-associated molecular patterns on these prebiotics are recognized by many receptors of DCs, prebiotics can mimic activation of DCs by pathogens. Short-chain fatty acids are products of prebiotic fermentation by microbiota, and their anti-inflammatory properties have also been demonstrated in DCs. This review summarizes current knowledge about avian DCs in the gastrointestinal tract, and for the first-time, their role in the immunomodulatory properties of prebiotics within an avian model.
Collapse
|
17
|
Zhang S, Wu S, Shen Y, Xiao Y, Gao L, Shi S. Cytotoxicity studies of Fe 3O 4 nanoparticles in chicken macrophage cells. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191561. [PMID: 32431865 PMCID: PMC7211854 DOI: 10.1098/rsos.191561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/06/2020] [Indexed: 05/06/2023]
Abstract
Magnetic Fe3O4 nanoparticles (Fe3O4-NPs) have been widely investigated for their biomedical applications. The main purpose of this study was to evaluate the cytotoxic effects of different sizes of Fe3O4-NPs in chicken macrophage cells (HD11). Experimental groups based on three sizes of Fe3O4-NPs (60, 120 and 250 nm) were created, and the Fe3O4-NPs were added to the cells at different doses according to the experimental group. The cell activity, oxidative index (malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen species (ROS)), apoptosis and pro-inflammatory cytokine secretion level were detected to analyse the cytotoxic effects of Fe3O4-NPs of different sizes in HD11 cells. The results revealed that the cell viability of the 60 nm Fe3O4-NPs group was lower than those of the 120 and 250 nm groups when the same concentration of Fe3O4-NPs was added. No significant difference in MDA was observed among the three Fe3O4-NP groups. The SOD level and ROS production of the 60 nm group were significantly greater than those of the 120 and 250 nm groups. Furthermore, the highest levels of apoptosis and pro-inflammatory cytokine secretion were caused by the 60 nm Fe3O4-NPs. In conclusion, the smaller Fe3O4-NPs produced stronger cytotoxicity in chicken macrophage cells, and the cytotoxic effects may be related to the oxidative stress and apoptosis induced by increased ROS production as well as the increased expression of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Shan Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
| | - Shu Wu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
| | - Yiru Shen
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
| | - Yunqi Xiao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
| | - Lizeng Gao
- Institute of Biophysics, Chinese Academy of Science, CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, CAS, Beijing 100101, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China
- Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225000, People's Republic of China
- Author for correspondence: Shourong Shi e-mail:
| |
Collapse
|
18
|
Foo RQ, Jahromi MF, Chen WL, Ahmad S, Lai KS, Idrus Z, Liang JB. Oligosaccharides from Palm Kernel Cake Enhances Adherence Inhibition and Intracellular Clearance of Salmonella enterica Serovar Enteritidis In Vitro. Microorganisms 2020; 8:E255. [PMID: 32075189 PMCID: PMC7074813 DOI: 10.3390/microorganisms8020255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 01/15/2023] Open
Abstract
Salmonella enterica serovar (ser.) Enteritidis (S. Enteritidis) is a foodborne pathogen often associated with contaminated poultry products. This study evaluated the anti-adherence and intracellular clearance capability of oligosaccharides extracted from palm kernel cake (PKC), a by-product of the palm oil industry, and compared its efficacy with commercial prebiotics- fructooligosaccharide (FOS) and mannanoligosaccharide (MOS)-against S. Enteritidis in vitro. Based on the degree of polymerization (DP), PKC oligosaccharides were further divided into 'Small' (DP ≤ 6) and 'Big' (DP > 6) fractions. Results showed that the Small and Big PKC fractions were able to reduce (p < 0.05) S. Enteritidis adherence to Cancer coli-2 (Caco-2) cells at 0.1 mg/ mL while MOS and FOS showed significant reduction at 1.0 mg/mL and 10.0 mg/mL, respectively. In terms of S. Enteritidis clearance, oligosaccharide-treated macrophages showed better S. Enteritidis clearance over time at 50 µg/mL for Small, Big and MOS, while FOS required a concentration of 500 µg/mL for a similar effect. This data highlights that oligosaccharides from PKC, particularly those of lower DP, were more effective than MOS and FOS at reducing S. Enteritidis adherence and enhancing S. Enteritidis clearance in a cell culture model.
Collapse
Affiliation(s)
- Rui Qing Foo
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (R.Q.F.); (M.F.J.); (W.L.C.); (Z.I.)
| | - Mohammad Faseleh Jahromi
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (R.Q.F.); (M.F.J.); (W.L.C.); (Z.I.)
- Arianabiotech co. No 118, Parsian Industrial Zone, Mashad 9354195366, Khorasan Razavi, Iran
| | - Wei Li Chen
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (R.Q.F.); (M.F.J.); (W.L.C.); (Z.I.)
| | - Syahida Ahmad
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Kok Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, UAE;
| | - Zulkifli Idrus
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (R.Q.F.); (M.F.J.); (W.L.C.); (Z.I.)
- Office of the Deputy Vice Chancellor (Research & Innovation), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - Juan Boo Liang
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (R.Q.F.); (M.F.J.); (W.L.C.); (Z.I.)
| |
Collapse
|
19
|
Khan S, Chousalkar KK. Short-term feeding of probiotics and synbiotics modulates caecal microbiota during Salmonella Typhimurium infection but does not reduce shedding and invasion in chickens. Appl Microbiol Biotechnol 2019; 104:319-334. [PMID: 31758235 DOI: 10.1007/s00253-019-10220-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Positive modulation of gut microbiota in laying chickens may offer a strategy for reduction of Salmonella Typhimurium shedding and production of safer poultry products. In the current study, the caecal luminal microbiota of laying chicks was studied using 16S rRNA amplicon sequencing on DNA obtained from the chicks that were offered supplementation with commercial probiotics, synbiotics and/or Salmonella Typhimurium challenge. The load of Salmonella Typhimurium in various organs was quantified. Irrespective of the probiotics and synbiotics supplementation and Salmonella Typhimurium challenge, caecal microbiota was dominated by 22 distinct bacterial genera and 14 families that clustered into Actinobacteria, Proteobacteria and Firmicutes at phylum level. Taken together, probiotics and synbiotics supplementation increased (false discovery rate; FDR < 0.05) the abundance of Ruminococcus, Trabulsiella, Bifidobacterium, Holdemania and Oscillospira, indicating their role in maintaining gut health through lowering luminal pH and digestion of complex polysaccharides. Salmonella Typhimurium challenge decreased the abundance of Trabulsiella, Oscillospira, Holdemania, Coprococcus, Bifidobacterium and Lactobacillus and increased Klebsiella and Escherichia, indicating its role in caecal dysbiosis. Although probiotics and synbiotics supplementation positively modulated the caecal microbiota, they were not effective in significantly (P > 0.05) reducing Salmonella Typhimurium load in caecal tissue and invasion into vital organs such as liver and spleen. The early colonisation of laying chick caeca by probiotics and synbiotics had the potential to positively influence luminal microbiota; however, the microbial abundance and diversity were not sufficient to significantly reduce the shedding of Salmonella Typhimurium in faeces or invasion into internal organs during this study.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.
| |
Collapse
|
20
|
Selenium Treatment Enhanced Clearance of Salmonella in Chicken Macrophages (HD11). Antioxidants (Basel) 2019; 8:antiox8110532. [PMID: 31703342 PMCID: PMC6912687 DOI: 10.3390/antiox8110532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 11/21/2022] Open
Abstract
As an important micronutrient, selenium (Se) plays many essential roles in immune response and protection against pathogens in humans and animals, but underlying mechanisms of Se-based control of salmonella growth within macrophages remain poorly elucidated. In this study, using RNA-seq analyses, we demonstrate that Se treatment (at an appropriate concentration) can modulate the global transcriptome of chicken macrophages HD11. The bioinformatic analyses (KEGG pathway analysis) revealed that the differentially expressed genes (DEGs) were mainly enriched in retinol and glutathione metabolism, revealing that Se may be associated with retinol and glutathione metabolism. Meanwhile, Se treatment increased the number of salmonella invading the HD11 cells, but reduced the number of salmonella within HD11 cells, suggesting that enhanced clearance of salmonella within HD11 cells was potentially modulated by Se treatment. Furthermore, RNA-seq analyses also revealed that nine genes including SIVA1, FAS, and HMOX1 were differentially expressed in HD11 cells infected with salmonella following Se treatment, and GO enrichment analysis showed that these DEGs were mainly enriched in an extrinsic apoptotic signaling pathway. In summary, these results indicate that Se treatment may not only affect retinol and glutathione metabolism in macrophages, but could also inhibit salmonella-induced macrophage apoptosis via an extrinsic apoptotic signaling pathway involving SIVA1.
Collapse
|
21
|
Adhikari P, Cosby DE, Cox NA, Franca MS, Williams SM, Gogal RM, Ritz CW, Kim WK. Effect of dietary fructooligosaccharide supplementation on internal organs Salmonella colonization, immune response, ileal morphology, and ileal immunohistochemistry in laying hens challenged with Salmonella enteritidis. Poult Sci 2018; 97:2525-2533. [PMID: 29669131 DOI: 10.3382/ps/pey101] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/08/2018] [Indexed: 01/20/2023] Open
Abstract
A study was conducted to evaluate the efficacy of fructooligosaccharides (FOS) in controlling the infection of Salmonella Enteritidis (SE) in White Leghorns. A total of 30 laying hens (white leghorns W-36) were challenged both orally and cloacally with approximately 108 colony-forming units of nalidxic acid resistant SE (SENAR) and divided into 3 treatments: 1) SENAR challenged + 0.0% FOS, 2) SENAR challenged + 0.5% FOS (Nutraflora), and 3) SENAR challenged + 1.0% FOS. SENAR recovery via fecal shedding was measured at 3- and 6-d post-infection (dpi), whereas in the ceca and internal organs, SENAR recovery was measured at 7-d post-infection. In the first experiment, there was a 1.0 log10 and a 1.3 log10 reduction in cecal SENAR by supplementation of FOS at 0.5 and 1.0%, respectively. In the second experiment, there was a 0.6 log10 and a 0.8 log10 reduction in cecal SENAR by supplementation of FOS at 0.5 and 1.0%, respectively. Fecal shedding was significantly lower in 1.0% FOS supplemented groups compared to SENAR challenge 0.0% FOS. There was no significant difference among the 3 treatments on SENAR recovery in liver with gall bladder and ovaries. However, the frequency of positive SENAR in the ovaries (10 to 40%) in SENAR challenge 0.0% FOS was significantly lower than liver with gall bladder (60 to 80%) in both experiments. There was a significant upregulation of toll-like receptor-4 in 1.0% FOS and interferon gamma in both 0.5 and 1.0% FOS. Histologic measurements of ileal villi height and crypt depth were similar across all treatments. Immunohistochemistry analyses of ileal samples showed that immunoglobulin A positive cells increased as FOS concentration increased reaching significance at 1.0% as well as altered cytokine gene expression in the ileum. Further, FOS supplementation also reduced cecal SENAR and feces SENAR levels. Collectively, the results suggest that dietary supplementation with FOS may impair SE pathogenesis while modulating humoral immunity within the gut-associated lymphoid tissue.
Collapse
Affiliation(s)
- Pratima Adhikari
- Department of Poultry Science, Mississippi State University, Starkville, Mississippi, 39762, USA
| | - Douglas E Cosby
- USDA, ARS, The U.S. National Poultry Research Center, Athens, GA 30605, USA
| | - Nelson A Cox
- USDA, ARS, The U.S. National Poultry Research Center, Athens, GA 30605, USA
| | - Monique S Franca
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Susan M Williams
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Robert M Gogal
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Casey W Ritz
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
22
|
Li B, Schroyen M, Leblois J, Wavreille J, Soyeurt H, Bindelle J, Everaert N. Effects of inulin supplementation to piglets in the suckling period on growth performance, postileal microbial and immunological traits in the suckling period and three weeks after weaning. Arch Anim Nutr 2018; 72:425-442. [PMID: 30160174 DOI: 10.1080/1745039x.2018.1508975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the effect of inulin (IN) supplementation to suckling piglets at and 3 weeks post-weaning. A total of 72 newborn piglets were used. Twenty-four piglets per group received different amounts of IN during the suckling period: (a) CON: no IN; (b) IN-0.5: 0.5 g IN/d on the 1st week, 1 g IN/d on the 2nd week, 1.5 g IN/d on the 3rd week and 2 g IN/d on the 4th week, or (c) IN-0.75: 0.75 g IN/d on the 1st week, 1.5 g IN/d on the 2nd week, 2.25 g IN/d on the 3rd week and 3 g IN/d on the 4th week. Starting at 28 d of age, piglets were weaned and received a post-weaning diet without inulin during the following 3 weeks. At both 28 d and 49 d of age, piglets were euthanised for sampling. Piglets of group IN-0.5 had the highest body weight starting from the 3rd week (p < 0.05), concomitant with the highest villus height and the ratio of villus height/crypt depth in the jejunum and ileum on both sampling days (p < 0.05). At 28 d of age, an increased concentration of propionate, iso-butyrate or total short chain fatty acids was observed between treatment IN-0.5 and the other groups in the caecum or colon (p < 0.05). Moreover, the relative abundance of Escherichia coli (p = 0.05) and Enterobacteriaceae (p = 0.01) in colonic digesta were reduced in IN-0.5-treated piglets, and in both IN-supplemented groups, colonic interleukin-8, tumor necrosis factor-α and toll-like receptor-4 mRNA abundance were decreased compared to the CON group (p < 0.05). However, at 49 d of age, most of these differences disappeared. In conclusion, treatment IN-0.5 improved during the suckling period of piglets development of intestine, but these beneficial effects were not lasting after weaning, when IN supplementation was terminated. Treatment IN-0.75, however, did not display a prebiotic effect.
Collapse
Affiliation(s)
- Bing Li
- a Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, Teaching and Research Centre , University of Liège , Gembloux , Belgium
| | - Martine Schroyen
- a Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, Teaching and Research Centre , University of Liège , Gembloux , Belgium
| | - Julie Leblois
- a Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, Teaching and Research Centre , University of Liège , Gembloux , Belgium.,b Research Foundation for Industry and Agriculture , Fonds De La Recherche Scientifique - FNRS , Brussels , Belgium
| | - José Wavreille
- c Department of Production and Sectors , Walloon Agricultural Research Centre , Gembloux , Belgium
| | - Hélène Soyeurt
- d Laboratory of statistics, informatics and modelling applied to bioengineering, agrobiochem department, Gembloux Agro-Bio Tech, Teaching and Research Centre , University of Liège , Gembloux , Belgium
| | - Jérôme Bindelle
- a Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, Teaching and Research Centre , University of Liège , Gembloux , Belgium
| | - Nadia Everaert
- a Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, Teaching and Research Centre , University of Liège , Gembloux , Belgium
| |
Collapse
|
23
|
Zhang G, Liu J, Li R, Jiao S, Feng C, Wang ZA, Du Y. Conjugation of Inulin Improves Anti-Biofilm Activity of Chitosan. Mar Drugs 2018; 16:md16050151. [PMID: 29734657 PMCID: PMC5983282 DOI: 10.3390/md16050151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/31/2022] Open
Abstract
Bacteria biofilm helps bacteria prevent phagocytosis during infection and increase resistance to antibiotics. Staphylococcus aureus is a Gram-positive pathogenic bacterium and is tightly associated with biofilm-related infections, which have led to great threat to human health. Chitosan, the only cationic polysaccharide in nature, has been demonstrated to have antimicrobial and anti-biofilm activities, which, however, require a relative high dosage of chitosan. Moreover, poor water solubility further restricts its applications on anti-infection therapy. Inulins are a group of polysaccharides produced by many types of plants, and are widely used in processed foods. Compared to chitosan, inulin is very soluble in water and possesses a mild antibacterial activity against certain pathogenic bacteria. In order to develop an effective strategy to treat biofilm-related infections, we introduce a method by covalent conjugation of inulin to chitosan. The physicochemical characterization of the inulin–chitosan conjugate was assayed, and the anti-biofilm activity was evaluated against S. aureus biofilm. The results indicated that, as compared to chitosan, this novel polysaccharide–polysaccharide conjugate significantly enhanced activities against S. aureus either in a biofilm or planktonic state. Of note, the conjugate also showed a broad spectrum anti-biofilm activity on different bacteria strains and low cellular toxicity to mammalian cells. These results suggested that chitosan conjugation of inulin was a viable strategy for treatment against biofilm-related infections. This finding may further spread the application of natural polysaccharides on treatments of infectious disease.
Collapse
Affiliation(s)
- Guiqiang Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jing Liu
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Ruilian Li
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Siming Jiao
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Cui Feng
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhuo A Wang
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuguang Du
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
24
|
Itaya NM, Oliveira MGXD, Oliveira MCVD, Porreta C, Menão MC, Borges RM, Silva JRMCD, Borges JCS, Knöbl T. Prebiotic effects of inulin extracted from burdock (Arctium lappa) in broilers. ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000522016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT: The aim of this study was to evaluate the prebiotic effect of burdock (Arctium lappa) in commercial poultry. Four experiments were conducted to evaluate the performance parameters and the protection after challenge with Salmonella Enteritidis and Salmonella Kedougou, with and without Bifidobacterium probiotic. In two trials, the chickens were fed with flour burdock 1% during 42 days. In the other two, the chickens were fed with fructan extracted from burdock (inulin), by gavage, at a concentration of 100 mg/bird, during the first three days of life. The results showed that the broilers treated with burdock flour showed underperformed, with less weight gain from the second week, and the worst results in the fattening stage. The treated birds had diarrhea and impaired intestinal integrity. However, the groups treated with the flour had a lower rate of intestinal colonization by Salmonella Kedougou, after challenge. No statistically significant differences were detected in the performance parameters of broilers receiving the inulin, and the morphometric analysis showed no lesions in the intestinal villi. However, there was no protection in the challenge with Salmonella Enteritidis, regardless of association with probiotic. These results demonstrated that the manner of administration has influence on the prebiotic effect of burdock. The burdock flour was administered for 42 days, which may have influenced intestinal mucosal injury. Instead, the inulin was given only in the first three days, which may have been insufficient for protection against Salmonella. New experiments are needed to determine an able formulation for a protective effect, without negative impact on growth, weight gain and feed conversion of the supplemented animals.
Collapse
Affiliation(s)
| | | | | | - Camila Porreta
- Complexo Educacional Faculdades Metropolitanas Unidas, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Adhikari P, Cosby DE, Cox NA, Kim WK. Effect of dietary supplementation of nitrocompounds on Salmonella colonization and ileal immune gene expression in laying hens challenged with Salmonella Enteritidis. Poult Sci 2017; 96:4280-4286. [DOI: 10.3382/ps/pex221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/10/2017] [Indexed: 12/29/2022] Open
|
26
|
Hughes RA, Ali RA, Mendoza MA, Hassan HM, Koci MD. Impact of Dietary Galacto-Oligosaccharide (GOS) on Chicken's Gut Microbiota, Mucosal Gene Expression, and Salmonella Colonization. Front Vet Sci 2017; 4:192. [PMID: 29181381 PMCID: PMC5693913 DOI: 10.3389/fvets.2017.00192] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/24/2017] [Indexed: 11/13/2022] Open
Abstract
Preventing Salmonella colonization in young birds is key to reducing contamination of poultry products for human consumption (eggs and meat). While several Salmonella vaccines have been developed that are capable of yielding high systemic antibodies, it is not clear how effective these approaches are at controlling or preventing Salmonella colonization of the intestinal tract. Effective alternative control strategies are needed to help supplement the bird’s ability to prevent Salmonella colonization, specifically by making the cecum less hospitable to Salmonella. In this study, we investigated the effect of the prebiotic galacto-oligosaccharide (GOS) on the cecal microbiome and ultimately the carriage of Salmonella. Day-old pullet chicks were fed control diets or diets supplemented with GOS (1% w/w) and then challenged with a cocktail of Salmonella Typhimurium and Salmonella Enteritidis. Changes in cecal tonsil gene expression, cecal microbiome, and levels of cecal and extraintestinal Salmonella were assessed at 1, 4, 7, 12, and 27 days post infection. While the Salmonella counts were generally lower in the GOS-treated birds, the differences were not significantly different at the end of the experiment. However, these data demonstrated that treatment with the prebiotic GOS can modify both cecal tonsil gene expression and the cecal microbiome, suggesting that this type of treatment may be useful as a tool for altering the carriage of Salmonella in poultry.
Collapse
Affiliation(s)
- Rebecca-Ayme Hughes
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States.,Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Riawana A Ali
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Mary A Mendoza
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Hosni M Hassan
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Matthew D Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
27
|
Suresh G, Das RK, Kaur Brar S, Rouissi T, Avalos Ramirez A, Chorfi Y, Godbout S. Alternatives to antibiotics in poultry feed: molecular perspectives. Crit Rev Microbiol 2017; 44:318-335. [DOI: 10.1080/1040841x.2017.1373062] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ratul Kumar Das
- INRS-ETE, Université du Québec, Québec, QC, Canada
- TERI Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gurgaon, India
| | | | | | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en Technologie Environnementales Inc, Shawinigan, Canada
| | - Younes Chorfi
- Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Stephane Godbout
- Institut de recherche et de développement en agroenvironnement, Québec, Canada
| |
Collapse
|
28
|
Oliveira M, Porretta M, Itaya N, Oliveira M, Reple J, Cunha M, Sanches L, Davies Y, Menão M, Borges J, Polaquini L, Knöbl T. Utilização do yacon ( Smallanthus sonchifolius ) na proteção contra colonização intestinal de frangos de corte infectados por Salmonella Enteritidis. ARQ BRAS MED VET ZOO 2017. [DOI: 10.1590/1678-4162-8174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO Os frutanos do tipo inulina são oligossacarídeos que favorecem a multiplicação de determinados gêneros bacterianos no intestino, promovendo um efeito prebiótico. Este trabalho avaliou o efeito da inulina extraída de raízes de yacon (Smallanthus sonchifolius) sobre a colonização intestinal de frangos de corte experimentalmente infectados por Salmonella Enteritidis. Sessenta frangos de corte com um dia de idade foram divididos em três grupos de tratamento, com duas repetições, criados até 21 dias. As aves do grupo yacon receberam 100mg de inulina/dia, via oral, por três dias consecutivos. No sétimo dia de vida, as aves tratadas e o controle positivo foram desafiados pela via oral com uma cultura de S. Enteritidis. Não foram observadas diferenças de desempenho zootécnico entre os grupos. O índice de infectividade das aves suplementadas com yacon foi menor até o sexto dia após o desafio, mas, ao término do experimento, foi superior ao controle positivo. Os dados deste trabalho demonstram que o uso da inulina nos três primeiros dias de vida promoveu uma redução da colonização intestinal dos frangos por Salmonella Enteritidis na primeira semana após o desafio. Novos estudos são necessários para determinar a dose e o tempo de tratamento ideal para um efeito protetor de maior duração.
Collapse
Affiliation(s)
| | - M.C. Porretta
- Faculdades Metropolitanas Unidas, Brazil; Instituto de Botânica de São Paulo, Brazil
| | - N.M. Itaya
- Faculdades Metropolitanas Unidas, Brazil; Instituto de Botânica de São Paulo, Brazil; Faculdades Metropolitanas Unidas, Brazil
| | | | | | | | | | | | - M.C. Menão
- Faculdades Metropolitanas Unidas, Brazil
| | | | | | - T. Knöbl
- Universidade de São Paulo, Brazil
| |
Collapse
|
29
|
Gast RK, Guraya R, Jones DR, Anderson KE, Karcher DM. Frequency and Duration of Fecal Shedding of Salmonella Enteritidis by Experimentally Infected Laying Hens Housed in Enriched Colony Cages at Different Stocking Densities. Front Vet Sci 2017; 4:47. [PMID: 28443289 PMCID: PMC5385464 DOI: 10.3389/fvets.2017.00047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 03/22/2017] [Indexed: 12/02/2022] Open
Abstract
Human infections with Salmonella Enteritidis are often attributed to the consumption of contaminated eggs, so the prevalence of this pathogen in egg-laying poultry is an important public health risk factor. Numerous and complex environmental influences on Salmonella persistence and transmission are exerted by management practices and housing facilities used in commercial egg production. In recent years, the animal welfare implications of poultry housing systems have guided the development of alternatives to traditional cage-based housing, but their food safety consequences are not yet fully understood. The present study assessed the effects of different bird stocking densities on the frequency and duration of fecal shedding of S. Enteritidis in groups of experimentally infected laying hens housed in colony cages enriched with perching and nesting areas. In two trials, groups of laying hens were distributed at two stocking densities (648 and 973 cm2/bird) into enriched colony cages and (along with a group housed in conventional cages at 648 cm2/bird) orally inoculated with doses of 1.0 × 108 cfu of S. Enteritidis. At 10 weekly postinoculation intervals, samples of voided feces were collected from beneath each cage and cultured to detect S. Enteritidis. Fecal shedding of S. Enteritidis was detected for up to 10 weeks postinoculation by hens in all three housing treatment groups. The overall frequency of positive fecal cultures was significantly (P < 0.05) greater from conventional cages than from enriched colony cages (at the lower stocking density) for the total of all sampling dates (45.0 vs. 33.3%) and also for samples collected at 4–9 weeks postinfection. Likewise, the frequency of S. Enteritidis isolation from feces from conventional cages was significantly greater than from enriched colony cages (at the higher hen stocking density) for the sum of all samples (45.0 vs. 36.7%) and at 6 weeks postinoculation. Moreover, the frequency of S. Enteritidis fecal recovery from enriched colony cages at the higher hen stocking was significantly greater than from similar cages at the lower stocking density for all 10 sampling dates combined (39.4 vs. 33.3%). These results suggest that stocking density can affect S. Enteritidis intestinal colonization and fecal shedding in laying hens, but some other difference between conventional and enriched colony cage systems appears to exert an additional influence.
Collapse
Affiliation(s)
- Richard K Gast
- USDA Agricultural Research Service, U. S. National Poultry Research Center, Athens, GA, USA
| | - Rupa Guraya
- USDA Agricultural Research Service, U. S. National Poultry Research Center, Athens, GA, USA
| | - Deana R Jones
- USDA Agricultural Research Service, U. S. National Poultry Research Center, Athens, GA, USA
| | - Kenneth E Anderson
- Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Darrin M Karcher
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
30
|
Takaki H, Sato H, Kurata R, Hikono H, Hiono T, Kida H, Matsumoto M, Saito T, Seya T. Cytokine responses to eye spray adjuvants for enhancing vaccine-induced immunity in chickens. Microbiol Immunol 2017; 60:511-5. [PMID: 27240729 DOI: 10.1111/1348-0421.12391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 11/30/2022]
Abstract
Eye spray influenza vaccines for chickens are increasingly available; however, how to enhance cellular and antibody responses to them remains undetermined. Here, eye-drops containing the immune-enhancing adjuvants Pam2CSK4 or polyI:C were assessed in chickens. Application of these TLR agonists to chicken conjunctiva resulted in up-regulation of IL-1β, but not other cytokines, including IFN and IL-6, in the spleen, lung and Harderian gland. Thus, responses to adjuvant applied to the conjunctival mucosa of chickens differ from those expected from the responses to intra-nasal adjuvants in mammals. Identifying an appropriate delivery route for adjuvants is crucial for evoking immune responses in chickens.
Collapse
Affiliation(s)
- Hiromi Takaki
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine
| | - Haruko Sato
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine
| | - Riho Kurata
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hirokazu Hikono
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Takahiro Hiono
- Department of Disease Control, Hokkaido University Graduate School of Veterinary Medicine
| | - Hiroshi Kida
- Research Center for Zoonosis Control, Hokkaido University, Kita-ku, Sapporo
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine
| | - Takehiko Saito
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine
| |
Collapse
|
31
|
Alkie TN, Taha-Abdelaziz K, Barjesteh N, Bavananthasivam J, Hodgins DC, Sharif S. Characterization of Innate Responses Induced by PLGA Encapsulated- and Soluble TLR Ligands In Vitro and In Vivo in Chickens. PLoS One 2017; 12:e0169154. [PMID: 28045984 PMCID: PMC5207720 DOI: 10.1371/journal.pone.0169154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/13/2016] [Indexed: 11/24/2022] Open
Abstract
Natural or synthetic Toll-like receptor (TLR) ligands trigger innate responses by interacting with distinct TLRs. TLR ligands can thus serve as vaccine adjuvants or stand-alone antimicrobial agents. One of the limitations of TLR ligands for clinical application is their short half-life and rapid clearance from the body. In the current study, encapsulation of selected TLR ligands in biodegradable poly(D,L-lactide-co-glycolide) polymer nanoparticles (PLGA NPs) was examined in vitro and in vivo as a means to prolong innate responses. MQ-NCSU cells (a chicken macrophage cell line) were treated with encapsulated or soluble forms of TLR ligands and the resulting innate responses were evaluated. In most cases, encapsulated forms of TLR ligands (CpG ODN 2007, lipopolysaccharide and Pam3CSK4) induced comparable or higher levels of nitric oxide and cytokine gene expression in macrophages, compared to the soluble forms. Encapsulated CpG ODN, in particular the higher dose, induced significantly higher expression of interferon (IFN)-γ and IFN-β until at least 18 hr post-treatment. Cytokine expression by splenocytes was also examined in chickens receiving encapsulated or soluble forms of lipopolysaccharide (a potent inflammatory cytokine inducer in chickens) by intramuscular injection. Encapsulated LPS induced more sustained innate responses characterized by higher expression of IFN-γ and IL-1β until up to 96 hr. The ability of TLR ligands encapsulated in polymeric nanoparticles to maintain prolonged innate responses indicates that this controlled-release system can extend the use of TLR ligands as vaccine adjuvants or as stand-alone prophylactic agents against pathogens.
Collapse
Affiliation(s)
- Tamiru N Alkie
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada.,Pathology Department, Beni-Suef University, Al Shamlah, Beni-Suef, Egypt
| | - Neda Barjesteh
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | | | - Douglas C Hodgins
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
32
|
Awaad M, El-Ghany WAA, Nasef S, El-Halawan MS, Mohamed FF, Gaber AF. Effect of Na-butyrate Supplementation on Electromicroscopy, Virulence Gene Expression Analysis and Gut Integrity of Experimentally Induced Salmonella enteritidis in Broiler Chickens. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajpsaj.2016.126.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Gast RK, Guraya R, Jones DR, Anderson KE, Karcher DM. Colonization of internal organs by Salmonella Enteritidis in experimentally infected laying hens housed in enriched colony cages at different stocking densities. Poult Sci 2016; 95:1363-9. [DOI: 10.3382/ps/pew037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/08/2016] [Indexed: 01/12/2023] Open
|
34
|
|
35
|
Abstract
Prebiotics are non-digestible feed ingredients that are metabolized by specific members of intestinal microbiota and provide health benefits for the host. Fermentable oligosaccharides are best known prebiotics that have received increasing attention in poultry production. They act through diverse mechanisms, such as providing nutrients, preventing pathogen adhesion to host cells, interacting with host immune systems and affecting gut morphological structure, all presumably through modulation of intestinal microbiota. Currently, fructooligosaccharides, inulin and mannanoligosaccharides have shown promising results while other prebiotic candidates such as xylooligosaccharides are still at an early development stage. Despite a growing body of evidence reporting health benefits of prebiotics in chickens, very limited studies have been conducted to directly link health improvements to prebiotic-dependent changes in the gut microbiota. This article visits the current knowledge of the chicken gastrointestinal microbiota and reviews most recent publications related to the roles played by prebiotics in modulation of the gut microbiota and immune functions. Progress in this field will help us better understand how the gut microbiota contributes to poultry health and productivity, and support the development of new prebiotic products as an alternative to in-feed antibiotics.
Collapse
Affiliation(s)
- Mohsen Pourabedin
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
36
|
Salaheen S, Chowdhury N, Hanning I, Biswas D. Zoonotic bacterial pathogens and mixed crop-livestock farming. Poult Sci 2015; 94:1398-1410. [DOI: 10.3382/ps/peu055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
37
|
Wigley P. Salmonella enterica in the Chicken: How it has Helped Our Understanding of Immunology in a Non-Biomedical Model Species. Front Immunol 2014; 5:482. [PMID: 25346731 PMCID: PMC4193332 DOI: 10.3389/fimmu.2014.00482] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/20/2014] [Indexed: 11/13/2022] Open
Abstract
Salmonella infection of the chicken is important both as a source of foodborne human salmonellosis and as a source of disease in the chicken itself. Vaccination and other control strategies require an understanding of the immune response and as such have been important in understanding both mucosal immunity and more generally the response to bacterial infection. In this review, we discuss the contribution the study of avian salmonellosis has made to understanding innate immunity including the function of phagocytic cells, pattern recognition receptors, and defensins. The mucosal response to Salmonella infection and its regulation and the contribution this makes in protection against infection and persistence within the gut and future directions in better understanding the role of TH17 and Tregs in this response. Finally, we discuss the role of the immune system and its modulation in persistent infection and infection of the reproductive tract. We also outline key areas of research required to fully understand the interaction between the chicken immune system and Salmonella and how infection is maintained in the absence of substantive gastrointestinal disease.
Collapse
Affiliation(s)
- Paul Wigley
- Department of Infection Biology, School of Veterinary Science and Institute for Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
38
|
Ortega-González M, Sánchez de Medina F, Molina-Santiago C, López-Posadas R, Pacheco D, Krell T, Martínez-Augustin O, Abdelali D. Fructooligosacharides reduce Pseudomonas aeruginosa PAO1 pathogenicity through distinct mechanisms. PLoS One 2014; 9:e85772. [PMID: 24465697 PMCID: PMC3899050 DOI: 10.1371/journal.pone.0085772] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/06/2013] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages) FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF-α. Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF-κB pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed.
Collapse
Affiliation(s)
- Mercedes Ortega-González
- Department of Biochemistry and Molecular Biology II, Centre of networked Biomedical Research about Hepatic and Digestive Diseases, School of Pharmacy, University of Granada, Granada, Spain
| | - Fermín Sánchez de Medina
- Departments of Pharmacology, Centre of networked Biomedical Research about Hepatic and Digestive Diseases, School of Pharmacy, University of Granada, Granada, Spain
| | - Carlos Molina-Santiago
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, Spain
| | - Rocío López-Posadas
- Departments of Pharmacology, Centre of networked Biomedical Research about Hepatic and Digestive Diseases, School of Pharmacy, University of Granada, Granada, Spain
| | - Daniel Pacheco
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, Centre of networked Biomedical Research about Hepatic and Digestive Diseases, School of Pharmacy, University of Granada, Granada, Spain
| | - Daddaoua Abdelali
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, Spain
| |
Collapse
|
39
|
Effect of Bacteriophage on the Transcriptional and Translational Expression of Inflammatory Mediators in Chicken Macrophage. J Poult Sci 2014. [DOI: 10.2141/jpsa.0130095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|