1
|
Harshitha M, D'souza R, Akshay SD, Nayak A, Disha S, Aditya V, Akshath US, Dubey S, Munang'andu HM, Chakraborty A, Karunasagar I, Maiti B. Oral administration of recombinant outer membrane protein A-based nanovaccine affords protection against Aeromonas hydrophila in zebrafish. World J Microbiol Biotechnol 2024; 40:250. [PMID: 38910219 DOI: 10.1007/s11274-024-04059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Aeromonas hydrophila, an opportunistic warm water pathogen, has always been a threat to aquaculture, leading to substantial economic losses. Vaccination of the cultured fish would effectively prevent Aeromoniasis, and recent advancements in nanotechnology show promise for efficacious vaccines. Oral delivery would be the most practical and convenient method of vaccine delivery in a grow-out pond. This study studied the immunogenicity and protective efficacy of a nanoparticle-loaded outer membrane protein A from A. hydrophila in the zebrafish model. The protein was over-expressed, purified, and encapsulated using poly lactic-co-glycolic acid (PLGA) nanoparticles via the double emulsion method. The PLGA nanoparticles loaded with recombinant OmpA (rOmpA) exhibited a size of 295 ± 15.1 nm, an encapsulation efficiency of 72.52%, and a polydispersity index of 0.292 ± 0.07. Scanning electron microscopy confirmed the spherical and isolated nature of the PLGA-rOmpA nanoparticles. The protective efficacy in A. hydrophila-infected zebrafish after oral administration of the nanovaccine resulted in relative percentage survival of 77.7. Gene expression studies showed significant upregulation of immune genes in the vaccinated fish. The results demonstrate the usefulness of oral administration of nanovaccine-loaded rOmpA as a potential vaccine since it induced a robust immune response and conferred adequate protection against A. hydrophila in zebrafish, Danio rerio.
Collapse
Affiliation(s)
- Mave Harshitha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Ruveena D'souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Sadanand Dangari Akshay
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Ashwath Nayak
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Somanath Disha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Vankadari Aditya
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Uchangi Satyaprasad Akshath
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Saurabh Dubey
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Anirban Chakraborty
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Molecular Genetics & Cancer, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), DST Technology Enabling Centre, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
2
|
Yang Q, Yang BT, Kang YH, Cong W. Efficacy of a recombinant Lactobacillus plantarum Lp-pPG-Malt as an oral vaccine candidate against Aeromonas hydrophila infection in crucian carp. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108737. [PMID: 37030560 DOI: 10.1016/j.fsi.2023.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Aeromonas hydrophila (A. hydrophila), a gram-negative bacterium, causes serious diseases with various clinical symptoms in farm raised fish. Thus, different ways to prevent and control A. hydrophila infection need to be explored, including a vaccine. In this study, we evaluated the protective efficacy of an oral vaccine prepared from the A. hydrophila TPS maltoporin (Malt) with Lactobacillus plantarum (L. plantarum) against A. hydrophila infection in crucian carp (Carassius auratus). For the in vivo experiment, the oral vaccine was administered to crucian carp by feeding them fish diets containing Lp-pPG-Malt, Lp-pPG and PBS for 28 days. The enzyme-linked immunosorbent assay (ELISA), leukocyte phagocytosis assay and real-time quantitative polymerase chain reaction (RT-qPCR) were performed to measure the protective efficacy of the Lp-pPG-Malt. ELISA and leukocyte phagocytosis assay confirmed that Lp-pPG-Malt significantly enhanced the IgM level and nonspecific immune response of crucian carp compared with the control groups (Lp-pPG and PBS). The RT-qPCR results showed that the Lp-pPG-Malt increased the relative expression of immune-related genes (IL-10, IL-1β, TNF-α, IFN-γ) of crucian carp in various tissues (liver, spleen, head kidney and hind intestine). Moreover, Lp-pPG-Malt significantly increased the relative percent survival of fish after intraperitoneal injection with A. hydrophila (55%) compared with the Lp-pPG and PBS groups (0%). These findings suggest that Lp-pPG-Malt can serve as an oral vaccine candidate for A. hydrophila infection and that Malt can be used as an effective antigen in crucian carp farming.
Collapse
Affiliation(s)
- Qing Yang
- Marine College, Shandong University, Weihai, 264209, China
| | - Bin-Tong Yang
- Marine College, Shandong University, Weihai, 264209, China; Shandong Fu Han Ocean Sci-Tech Co., Ltd, Haiyang, 265100, China
| | - Yuan-Huan Kang
- Marine College, Shandong University, Weihai, 264209, China; Shandong Key Laboratory of Animal Microecological Preparation, Tai'an, 271000, China.
| | - Wei Cong
- Marine College, Shandong University, Weihai, 264209, China.
| |
Collapse
|
3
|
Muñoz-Atienza E, Díaz-Rosales P, Tafalla C. Systemic and Mucosal B and T Cell Responses Upon Mucosal Vaccination of Teleost Fish. Front Immunol 2021; 11:622377. [PMID: 33664735 PMCID: PMC7921309 DOI: 10.3389/fimmu.2020.622377] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
The development of mucosal vaccines against pathogens is currently a highly explored area of research in both humans and animals. This is due to the fact that mucosal vaccines have the potential to best elicit protective responses at these mucosal surfaces, which represent the frontline of host defense, thus blocking the pathogen at its initial replication sites. However, in order to provide an efficient long-lasting protection, these mucosal vaccines have to be capable of eliciting an adequate systemic immune response in addition to local responses. In aquaculture, the need for mucosal vaccines has further practical implications, as these vaccines would avoid the individual manipulation of fish out of the water, being beneficial from both an economic and animal welfare point of view. However, how B and T cells are organized in teleost fish within these mucosal sites and how they respond to mucosally delivered antigens varies greatly when compared to mammals. For this reason, it is important to establish which mucosally delivered antigens have the capacity to induce strong and long-lasting B and T cell responses. Hence, in this review, we have summarized what is currently known regarding the adaptive immune mechanisms that are induced both locally and systemically in fish after mucosal immunization through different routes of administration including oral and nasal vaccination, anal intubation and immersion vaccination. Finally, based on the data presented, we discuss how mucosal vaccination strategies could be improved to reach significant protection levels in these species.
Collapse
Affiliation(s)
- Estefanía Muñoz-Atienza
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| |
Collapse
|
4
|
Jiao L, Dai T, Zhong S, Jin M, Sun P, Zhou Q. Vibrio parahaemolyticus Infection Influenced Trace Element Homeostasis, Impaired Antioxidant Function, and Induced Inflammation Response in Litopenaeus vannamei. Biol Trace Elem Res 2021; 199:329-337. [PMID: 32198646 DOI: 10.1007/s12011-020-02120-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) caused huge diseases and economic losses in shrimp aquaculture. Understanding the infection mechanism might help develop new strategies for controlling pathogen outbreak. Redistribution of trace element homeostasis, accompanied by impairment of antioxidant status and immune response, was observed during various infections. Accordingly, we hypothesized that V. parahaemolyticus infection might influence trace element homeostasis, impair antioxidant function, and induce inflammation response in shrimp. In the present study, the aim of this study was to investigate the influence of V. parahaemolyticus infection on trace element homeostasis, antioxidant status, and inflammation response in Litopenaeus vannamei (L. vannamei). The results showed that compared with the control group, V. parahaemolyticus infection significantly increased (P < 0.05) intestinal V. parahaemolyticus number, serum copper (Cu) concentration at 24, 48, and 72 h and significantly increased (P < 0.05) serum zinc (Zn), iron (Fe), and manganese (Mn) concentrations at 24 h but decreased (P < 0.05) at 72 h. The intestinal gene expressions of metal transporters ZIP13, CTR1, and MT1 were significantly decreased at 24, 48, and 72 h, and DMT1 was significantly decreased at 48 h and 72 h in the infection group. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were suppressed at 48 h and 72 h, and the malondialdehyde (MDA) content was increased at 24, 48, and 72 h in the infection group; the pro-inflammatory genes including necrosis factor-α (TNF-α), lipopolysaccharide-induced TNF-α factor (LITAF), and Ras-related protein Rab6A (RAB6A) were significantly upregulated at 48 and 72 h in the infection group. These results suggest that V. parahaemolyticus infection influenced trace element homeostasis, impaired antioxidant function, and induced inflammation response in L. vannamei, which might help understand the infection mechanism. The results provide a better understanding of the L. vannamei and V. parahaemolyticus interactions and may deliver the basis for further research in preventing the bacterial diseases.
Collapse
Affiliation(s)
- Lefei Jiao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tianmeng Dai
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Sunqian Zhong
- Ningbo Economic Technical Development Area Bolun Marine Surveyors Office, Ningbo, 315800, People's Republic of China
| | - Min Jin
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Peng Sun
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
5
|
Abstract
Vibrio is a large and diverse genus of bacteria, of which most are nonpathogenic species found in the aquatic environment. However, a subset of the Vibrio genus includes several species that are highly pathogenic, either to humans or to aquatic animals. In recent years, Danio rerio, commonly known as the zebrafish, has emerged as a major animal model used for studying nearly every aspect of biology, including infectious diseases. Zebrafish are especially useful because the embryos are transparent, larvae are small and facilitate imaging studies, and numerous transgenic fish strains have been constructed. Zebrafish models for several pathogenic Vibrio species have been described, and indeed a fish model is highly relevant for the study of aquatic bacterial pathogens. Here, we summarize the zebrafish models that have been used to study pathogenic Vibrio species to date.
Collapse
Affiliation(s)
- Dhrubajyoti Nag
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dustin A Farr
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Madison G Walton
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey H Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
6
|
Xing J, Zhang Z, Luo K, Tang X, Sheng X, Zhan W. T and B lymphocytes immune responses in flounder (Paralichthys olivaceus) induced by two forms of outer membrane protein K from Vibrio anguillarum: Subunit vaccine and DNA vaccine. Mol Immunol 2019; 118:40-51. [PMID: 31841966 DOI: 10.1016/j.molimm.2019.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
To further elucidate the roles of T and B lymphocytes in fish subunit and DNA candidate vaccines for immunisation, the immune responses of T and B lymphocytes to recombinant protein (rOmpK) and plasmid OmpK (pOmpK) from Vibrio anguillarum plus cyclosporine A (CsA) were investigated in flounder (Paralichthys olivaceus). The results showed that in the rOmpK-immunised groups, the percentages of CD4-1+ and CD4-2+ T (PCD4-1+ and PCD4-2+ T) lymphocytes significantly increased to a peak on days 5 or 7. The percentages of IgM+ B (PIgM+ B) lymphocytes and specific antibodies markedly increased to a peak at weeks 4 or 5. The nine immune-related genes were significantly up-regulated and the expression levels of CD4-1, CD4-2 and MHC II genes were higher than that of CD8α, CD8β and MHC I genes. The CD4+ T lymphocytes, IgM+ B lymphocytes, and specific antibodies were significantly inhibited by CsA. Therefore, the responses of CD4+ T lymphocytes influenced the responses of the B lymphocytes and antibodies. In the pOmpK-immunised groups, the PCD4-1+, PCD4-2+, and PCD8β+ T lymphocytes significantly increased to a peak on days 11 or 14, days 9 or 11, and days 7 or 9, respectively. The PIgM+ B lymphocytes and specific antibodies significantly increased to a peak at weeks 5 or 6. Immune related genes upregulated, and CD4+ and CD8+ T lymphocytes, IgM+ B lymphocytes and specific antibodies all suppressed by CsA, suggesting that the responses of T lymphocytes subpopulations influenced B lymphocytes and antibodies responses. Therefore, the subpopulations of T lymphocytes played an important role in the immune responses induced by subunit and DNA candidate vaccines of OmpK and regulated the immune responses of B lymphocytes in flounder.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China
| | - Zhiqi Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Keke Luo
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China.
| |
Collapse
|
7
|
Khansari AR, Parra D, Reyes-López FE, Tort L. Modulatory in vitro effect of stress hormones on the cytokine response of rainbow trout and gilthead sea bream head kidney stimulated with Vibrio anguillarum bacterin. FISH & SHELLFISH IMMUNOLOGY 2017; 70:736-749. [PMID: 28882798 DOI: 10.1016/j.fsi.2017.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
In fish, the stress response and their consequences in the immune system have been widely described. Recently, a differential cytokine regulation between rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) was reported after treatment with stress hormones together with their receptor antagonists. Nevertheless, there is no evidence of whether antagonists for stress hormone receptors may influence the interaction between hormones and cytokines after bacterial administration. Thus, the aim of our study was to evaluate the cytokine expression in the presence of stress hormones (cortisol, ACTH, adrenaline), hormone receptor antagonists and inactivated Vibrio anguillarum bacterin in rainbow trout and gilthead sea bream head kidney primary cell culture (HKPCC). Mifepristone, spironolactone, propranolol and phentolamine were used to block GR, MR, MC2R, and β-/α-adrenoreceptors. Our results showed an expected increase of the pro-inflammatory and anti-inflammatory response after inactivated V. anguillarum bacterin treatment in both species. Cortisol, ACTH and adrenaline did not modulate the expression of immune-related genes in rainbow trout, while in sea bream cortisol was able to reduce the stimulated gene expression of all cytokines. This effect was only restored to basal expression level in IL-1β and TNF-α by mifepristone. ACTH reduced both pro-inflammatory and anti-inflammatory cytokine expression, excluding IL-1β, only in sea bream. Adrenaline enhanced the expression of IL-1β and TGF-β1 stimulated by inactivated V. anguillarum in sea bream, and the effect was diminished by propranolol. In sum, our results confirm that the immunoendocrine differences reported at gene expression profile between two teleost species are also observed after exposure to inactivated V. anguillarum bacterin, suggesting that stress hormones would differentially modulate the immune response against pathogens in teleost species.
Collapse
Affiliation(s)
- Ali Reza Khansari
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - David Parra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Lluís Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
8
|
Identification of immunogenic proteins and evaluation of four recombinant proteins as potential vaccine antigens from Vibrio anguillarum in flounder ( Paralichthys olivaceus ). Vaccine 2017; 35:3196-3203. [DOI: 10.1016/j.vaccine.2017.04.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/30/2017] [Accepted: 04/25/2017] [Indexed: 11/20/2022]
|
9
|
Immune effects of the vaccine of live attenuated Aeromonas hydrophila screened by rifampicin on common carp ( Cyprinus carpio L). Vaccine 2016; 34:3087-3092. [DOI: 10.1016/j.vaccine.2016.04.075] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/19/2016] [Accepted: 04/25/2016] [Indexed: 11/18/2022]
|
10
|
Li J, Ma S, Woo NYS. Vaccination of Silver Sea Bream (Sparus sarba) against Vibrio alginolyticus: Protective Evaluation of Different Vaccinating Modalities. Int J Mol Sci 2015; 17:E40. [PMID: 26729096 PMCID: PMC4730285 DOI: 10.3390/ijms17010040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/12/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022] Open
Abstract
In order to develop more effective immunological strategies to prevent vibriosis of farmed marine fish in Hong Kong and southern China, various vaccine preparations including formalin-, phenol-, chloroform- and heat-killed whole cell bacterins and subcellular lipopolysaccharides (LPS), as well as different administration routes, were investigated. Fish immunized with the subcellular LPS exhibited the best protection [Relative Percent of Survival (RPS) = 100], while fish immunized with whole cell bacterins displayed varying degrees of protection (RPS ranged from 28 to 80), in descending order: formalin-killed > phenol-killed > heat-killed > chloroform-killed bacterins. Regarding various administration routes, fish immunized with two intraperitoneal (i.p.) injections exhibited the best protection, and the RPS values were 100 or 85 upon higher or lower doses of pathogenic V. alginolyticus challenges. Both oral vaccination and a combination of injection/immersion trial were also effective, which achieved relatively high protection (the RPS values ranged from 45 to 64.3). However, two hyperosmotic immersions could not confer satisfactory protection, especially when fish were exposed to the severe pathogenic bacteria challenge. Marked elevations of serum agglutinating antibody titer were detected in all immunized fish. Macrophage phagocytosis was enhanced significantly, especially in the fish immunized by formalin- and phenol-killed bacterins through various administration routes. Both adaptive (specific antibody) and innate (phagocytic activity) immunity elicited by different immunization strategies were in parallel with the degree of protection offered by each of them. Although all vaccination trials had no significant effect on the serum hematocrit and hemoglobin levels, the circulating lymphocyte counts were significantly elevated in the fish immunized with LPS, formalin- and phenol-killed bacterins. Serum cortisol levels appeared to be reduced in all immunized fish except the trial of hyperosmotic immersion, which indicated the stressful impact on vaccinated fish.
Collapse
Affiliation(s)
- Jun Li
- School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA.
- Key laboratory of Experimental Marine Biology, Institute of Oceanology, the Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology; Qingdao 266071, China.
| | - Siyuan Ma
- Key laboratory of Experimental Marine Biology, Institute of Oceanology, the Chinese Academy of Sciences, Qingdao 266071, China.
| | - Norman Y S Woo
- Department of Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
11
|
Parra D, Reyes-Lopez FE, Tort L. Mucosal Immunity and B Cells in Teleosts: Effect of Vaccination and Stress. Front Immunol 2015; 6:354. [PMID: 26236311 PMCID: PMC4502357 DOI: 10.3389/fimmu.2015.00354] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/29/2015] [Indexed: 01/24/2023] Open
Abstract
Fish are subjected to several insults from the environment, which may endanger animal survival. Mucosal surfaces are the first line of defense against these threats, acting as a physical barrier to protect the animal but also functioning as an active immune tissue. Thus, four mucosal-associated lymphoid tissues (MALTs), which lead the immune responses in gut, skin, gills, and nose, have been described in fish. Humoral and cellular immunity, as well as their regulation and the factors that influence the response in these mucosal lymphoid tissues, are still not well known in most fish species. Mucosal B-lymphocytes and immunoglobulins (Igs) are key players in the immune response that takes place in those MALTs. The existence of IgT as a mucosal specialized Ig gives us the opportunity of measuring specific responses after infection or vaccination, a fact that was not possible until recently in most fish species. The vaccination process is influenced by several factors, being stress one of the main stimuli determining the success of the vaccine. Thus, one of the major goals in a vaccination process is to avoid possible situations of stress, which might interfere with fish immune performance. However, interaction between immune and neuroendocrine systems at mucosal tissues is still unknown. In this review, we will summarize the latest findings about B-lymphocytes and Igs in mucosal immunity and the effect of stress and vaccination on B-cell response at mucosal sites. It is important to point out that a limited number of studies have been published regarding stress in mucosa and very few about the influence of stress over mucosal B-lymphocytes.
Collapse
Affiliation(s)
- David Parra
- Animal Physiology Unit, Department of Cell Biology, Physiology and Immunology, School of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Felipe E. Reyes-Lopez
- Animal Physiology Unit, Department of Cell Biology, Physiology and Immunology, School of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Lluis Tort
- Animal Physiology Unit, Department of Cell Biology, Physiology and Immunology, School of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| |
Collapse
|
12
|
Design and evaluation of a tandemly arranged outer membrane protein U (OmpU) multi-epitope as a potential vaccine antigen against Vibrio mimicus in grass carps (Ctenopharyngodon idella). Vet Immunol Immunopathol 2014; 160:61-9. [PMID: 24751414 DOI: 10.1016/j.vetimm.2014.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/18/2014] [Accepted: 03/27/2014] [Indexed: 01/07/2023]
Abstract
Vibrio mimicus (V. mimicus) is an extracellular pathogen that causes ascites disease in aquatic animals. In our previous studies, the outer membrane protein U (OmpU) of V. mimicus has been proven to be a protective antigen, and several mimotopes of the protein were identified. Here, a tandemly arranged multi-epitope peptide (named 6EPIS) was designed with six mimotopes and heterologously expressed. Then, the immunoprotection efficacy of recombinant 6EPIS (r6EPIS) was evaluated in grass carps (Ctenopharyngodon idella) by determining relative percentage survival (RPS), specific immunoglobulin M (IgM) antibody titer, and transcriptional levels of immune-related genes of inoculated grass carps. Fish vaccinated with r6EPIS via intraperitoneal injection exhibited 85.71% RPS over the control, when challenged with V. mimicus. The enzyme-linked immunosorbent assay titer of specific IgM antibodies against r6EPIS reached 1:12,800 on Day 28 post the primary immunization. After 28 days post immunization, the transcriptional level of total IgM mRNA was significantly higher in the r6EPIS-vaccinated fish than in those vaccinated with recombinant OmpU, inactivated bacterin and rHis tag peptide (p<0.05). In addition, the transcription levels of interleukin-1β and tumor necrosis factor-α genes in the spleen and head kidney of r6EPIS-vaccinated fish were significantly increased during the period of immunization and early phase of infection, while the transcription level of interleukin-10 gene was significantly increased from Day 3 to 7 post challenge, compared to the control level. These results show that r6EPIS was highly immunogenic and could elicit strong protective immune responses. It may be an attractive vaccine candidate against V. mimicus infection.
Collapse
|