1
|
de Carvalho TP, da Silva LA, Castanheira TLL, de Souza TD, da Paixão TA, Lazaro-Anton L, Tsolis RM, Santos RL. Cell and Tissue Tropism of Brucella spp. Infect Immun 2023; 91:e0006223. [PMID: 37129522 PMCID: PMC10187126 DOI: 10.1128/iai.00062-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Brucella spp. are facultatively intracellular bacteria that can infect, survive, and multiply in various host cell types in vivo and/or in vitro. The genus Brucella has markedly expanded in recent years with the identification of novel species and hosts, which has revealed additional information about the cell and tissue tropism of these pathogens. Classically, Brucella spp. are considered to have tropism for organs that contain large populations of phagocytes such as lymph nodes, spleen, and liver, as well as for organs of the genital system, including the uterus, epididymis, testis, and placenta. However, experimental infections of several different cultured cell types indicate that Brucella may actually have a broader cell tropism than previously thought. Indeed, recent studies indicate that certain Brucella species in particular hosts may display a pantropic distribution in vivo. This review discusses the available knowledge on cell and tissue tropism of Brucella spp. in natural infections of various host species, as well as in experimental animal models and cultured cells.
Collapse
Affiliation(s)
- Thaynara Parente de Carvalho
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Laice Alves da Silva
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Larissa Lourenço Castanheira
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Federal de Educação Ciência e Tecnologia do Norte de Minas Gerais, Salinas, Brazil
| | - Tayse Domingues de Souza
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tatiane Alves da Paixão
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leticia Lazaro-Anton
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| |
Collapse
|
2
|
Stranahan LW, Arenas-Gamboa AM. When the Going Gets Rough: The Significance of Brucella Lipopolysaccharide Phenotype in Host-Pathogen Interactions. Front Microbiol 2021; 12:713157. [PMID: 34335551 PMCID: PMC8319746 DOI: 10.3389/fmicb.2021.713157] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is a facultatively intracellular bacterial pathogen and the cause of worldwide zoonotic infections, infamous for its ability to evade the immune system and persist chronically within host cells. Despite the frequent association with attenuation in other Gram-negative bacteria, a rough lipopolysaccharide phenotype is retained by Brucella canis and Brucella ovis, which remain fully virulent in their natural canine and ovine hosts, respectively. While these natural rough strains lack the O-polysaccharide they, like their smooth counterparts, are able to evade and manipulate the host immune system by exhibiting low endotoxic activity, resisting destruction by complement and antimicrobial peptides, entering and trafficking within host cells along a similar pathway, and interfering with MHC-II antigen presentation. B. canis and B. ovis appear to have compensated for their roughness by alterations to their outer membrane, especially in regards to outer membrane proteins. B. canis, in particular, also shows evidence of being less proinflammatory in vivo, suggesting that the rough phenotype may be associated with an enhanced level of stealth that could allow these pathogens to persist for longer periods of time undetected. Nevertheless, much additional work is required to understand the correlates of immune protection against the natural rough Brucella spp., a critical step toward development of much-needed vaccines. This review will highlight the significance of rough lipopolysaccharide in the context of both natural disease and host–pathogen interactions with an emphasis on natural rough Brucella spp. and the implications for vaccine development.
Collapse
Affiliation(s)
- Lauren W Stranahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
3
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
4
|
Abstract
Brucellosis is a bacterial disease of domestic animals and humans. The pathogenic ability of Brucella organisms relies on their stealthy strategy and their capacity to replicate within host cells and to induce long-lasting infections. Brucella organisms barely induce neutrophil activation and survive within these leukocytes by resisting microbicidal mechanisms. Very few Brucella-infected neutrophils are found in the target organs, except for the bone marrow, early in infection. Still, Brucella induces a mild reactive oxygen species formation and, through its lipopolysaccharide, promotes the premature death of neutrophils, which release chemokines and express "eat me" signals. This effect drives the phagocytosis of infected neutrophils by mononuclear cells that become thoroughly susceptible to Brucella replication and vehicles for bacterial dispersion. The premature death of the infected neutrophils proceeds without NETosis, necrosis/oncosis, or classical apoptosis morphology. In the absence of neutrophils, the Th1 response exacerbates and promotes bacterial removal, indicating that Brucella-infected neutrophils dampen adaptive immunity. This modulatory effect opens a window for bacterial dispersion in host tissues before adaptive immunity becomes fully activated. However, the hyperactivation of immunity is not without a price, since neutropenic Brucella-infected animals develop cachexia in the early phases of the disease. The delay in the immunological response seems a sine qua non requirement for the development of long-lasting brucellosis. This property may be shared with other pathogenic alphaproteobacteria closely related to Brucella We propose a model in which Brucella-infected polymorphonuclear neutrophils (PMNs) function as "Trojan horse" vehicles for bacterial dispersal and as modulators of the Th1 adaptive immunity in infection.
Collapse
|
5
|
A Role for the VPS Retromer in Brucella Intracellular Replication Revealed by Genomewide siRNA Screening. mSphere 2019; 4:4/3/e00380-19. [PMID: 31243080 PMCID: PMC6595151 DOI: 10.1128/msphere.00380-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brucella, the agent causing brucellosis, is a major zoonotic pathogen with worldwide distribution. Brucella resides and replicates inside infected host cells in membrane-bound compartments called Brucella-containing vacuoles (BCVs). Following uptake, Brucella resides in endosomal BCVs (eBCVs) that gradually mature from early to late endosomal features. Through a poorly understood process that is key to the intracellular lifestyle of Brucella, the eBCV escapes fusion with lysosomes by transitioning to the replicative BCV (rBCV), a replicative niche directly connected to the endoplasmic reticulum (ER). Despite the notion that this complex intracellular lifestyle must depend on a multitude of host factors, a holistic view on which of these components control Brucella cell entry, trafficking, and replication is still missing. Here we used a systematic cell-based small interfering RNA (siRNA) knockdown screen in HeLa cells infected with Brucella abortus and identified 425 components of the human infectome for Brucella infection. These include multiple components of pathways involved in central processes such as the cell cycle, actin cytoskeleton dynamics, or vesicular trafficking. Using assays for pathogen entry, knockdown complementation, and colocalization at single-cell resolution, we identified the requirement of the VPS retromer for Brucella to escape the lysosomal degradative pathway and to establish its intracellular replicative niche. We thus validated the VPS retromer as a novel host factor critical for Brucella intracellular trafficking. Further, our genomewide data shed light on the interplay between central host processes and the biogenesis of the Brucella replicative niche.IMPORTANCE With >300,000 new cases of human brucellosis annually, Brucella is regarded as one of the most important zoonotic bacterial pathogens worldwide. The agent causing brucellosis resides inside host cells within vacuoles termed Brucella-containing vacuoles (BCVs). Although a few host components required to escape the degradative lysosomal pathway and to establish the ER-derived replicative BCV (rBCV) have already been identified, the global understanding of this highly coordinated process is still partial, and many factors remain unknown. To gain deeper insight into these fundamental questions, we performed a genomewide RNA interference (RNAi) screen aiming at discovering novel host factors involved in the Brucella intracellular cycle. We identified 425 host proteins that contribute to Brucella cellular entry, intracellular trafficking, and replication. Together, this study sheds light on previously unknown host pathways required for the Brucella infection cycle and highlights the VPS retromer components as critical factors for the establishment of the Brucella intracellular replicative niche.
Collapse
|
6
|
Pujol M, Borie C, Montoya M, Ferreira A, Vernal R. Brucella canis induces canine CD4 + T cells multi-cytokine Th1/Th17 production via dendritic cell activation. Comp Immunol Microbiol Infect Dis 2018; 62:68-75. [PMID: 30711049 DOI: 10.1016/j.cimid.2018.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 01/18/2023]
Abstract
Brucella canis is a small intracellular Gram-negative bacterium that frequently leads to chronic infections highly resistant to antibiotic therapy in dogs. Also, it causes mild human brucellosis compared to other zoonotic Brucella spp. Herein we characterize the cellular immune response elicited by B. canis by analysing human and canine CD4+ T cells after stimulation with autologous monocyte-derived dendritic cells (MoDCs). Human and canine B. canis-primed MoDCs stimulated autologous CD4+ T cells; however, a Th1 response was triggered by human MoDCs, whereas canine MoDCs induced Th1/Th17 responses, with increased CD4+ T cells producing IFN-γ and IL-17A simultaneously. Each pattern of cellular response may contribute to host susceptibility, helping to understand the differences in B. canis virulence between these two hosts. In addition, other aspects of canine immunology are unveiled by highlighting the participation of IL-17A-producing canine MoDCs and CD4+ T cells producing IFN-γ and IL-17A.
Collapse
Affiliation(s)
- Myriam Pujol
- Program of Immunology, Institute of Biomedical Sciences ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| | - Consuelo Borie
- Laboratory of Veterinary Bacteriology, Department of Animal Preventive Medicine, Faculty of Veterinary Sciences, Universidad de Chile, Santiago, Chile
| | - María Montoya
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Arturo Ferreira
- Program of Immunology, Institute of Biomedical Sciences ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Li M, Zhou X, Li J, Sun L, Chen X, Wang P. Real-time PCR assays for diagnosing brucellar spondylitis using formalin-fixed paraffin-embedded tissues. Medicine (Baltimore) 2018; 97:e0062. [PMID: 29489665 PMCID: PMC5851713 DOI: 10.1097/md.0000000000010062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is difficult to diagnose brucellar spondylitis because of its nonspecific clinical, radiological, and histological characteristics. This study aimed to determine whether real-time polymerase chain reaction (PCR) using formalin-fixed paraffin-embedded (FFPE) tissues was superior to conventional serum-based methods for diagnosing brucellar spondylitis.This retrospective study included 31 patients with brucellosis and a control group of 20 people with no history of brucellosis or exposure to Brucella spp. Samples from all patients with brucellar spondylitis were evaluated using Giemsa staining, the standard tube agglutination (STA) test, blood culture, and real-time PCR.The brucellar spondylitis was acute in 7 patients (22.6%), subacute in 15 patients (48.4%), and chronic in 9 patients (29%). Serological assays provided positive results for 25 patients (80.1%), real-time PCR provided positive results for 29 patients (93.5%), and blood cultures provided positive results for 11 patients (35.5%). The real-time PCR provided sensitivity of 93.5%, specificity of 100%, a positive predictive value of 100%, and a negative predictive value of 100%. The corresponding values for the STA test were 80.1%, 100%, 100%, and 76.9%, respectively. Real-time PCR provided better sensitivity than Giemsa staining, the STA test, and blood culture, although the difference between PCR and STA was not statistically significant (P = .22). B melitensis was the only pathogen that was detected in patient with brucellar spondylitis using real-time PCR.These results suggest that real-time PCR provides a high sensitivity for diagnosing brucellar spondylitis. Furthermore, the real-time PCR results indicate that B melitensis was the causative pathogen in these cases.
Collapse
Affiliation(s)
| | | | - Jingjing Li
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, Chaoyang District, Beijing, China
| | | | | | | |
Collapse
|
8
|
Osman AY, Saharee AA, Jesse FF, Kadir AA. Comparative experimental study of Brucella melitensis and its lipopolysaccharide in mouse model infected via subcutaneous route of exposure. Microb Pathog 2018; 116:318-327. [DOI: 10.1016/j.micpath.2018.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 01/18/2023]
|
9
|
Pujol M, Castillo F, Alvarez C, Rojas C, Borie C, Ferreira A, Vernal R. Variability in the response of canine and human dendritic cells stimulated with Brucella canis. Vet Res 2017; 48:72. [PMID: 29096717 PMCID: PMC5667440 DOI: 10.1186/s13567-017-0476-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/16/2017] [Indexed: 01/30/2023] Open
Abstract
Brucella canis is a small intracellular Gram-negative bacterium whose primary host is the dog, but it also can cause mild human brucellosis. One of the main causes of an inefficient immune response against other species of Brucella is their interaction with dendritic cells (DCs), which affects antigen presentation and impairs the development of an effective Th1 immune response. This study analysed the cytokine pattern production, by RT-qPCR and ELISA, in human and canine DCs against whole B. canis or its purified LPS. Human and canine DCs produced different patterns of cytokines after stimulation with B. canis. In particular, while human DCs produced a Th1-pattern of cytokines (IL-1β, IL-12, and TNF-α), canine cells produced both Th1 and Th17-related cytokines (IL-6, IL-12, IL-17, and IFN-γ). Thus, differences in susceptibility and pathogenicity between these two hosts could be explained, at least partly, by the distinct cytokine patterns observed in this study, where we propose that human DCs induce an effective Th1 immune response to control the infection, while canine DCs lead to a less effective immune response, with the activation of Th17-related response ineffective to control the B. canis infection.
Collapse
Affiliation(s)
- Myriam Pujol
- Doctoral Program in Agronomy Forestry and Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Chile, Santiago, Chile.,Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Francisca Castillo
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carla Alvarez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Camila Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Consuelo Borie
- Laboratory of Veterinary Bacteriology, Department of Animal Preventive Medicine, Faculty of Veterinary Sciences, Universidad de Chile, Santiago, Chile
| | - Arturo Ferreira
- Program of Immunology, Institute of Biomedical Sciences ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile. .,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Tadepalli G, Konduru B, Murali HS, Batra HV. Intraperitoneal administration of a novel chimeric immunogen (rOP) elicits IFN-γ and IL-12p70 protective immune response in BALB/c mice against virulent Brucella. Immunol Lett 2017; 192:79-87. [PMID: 29106986 DOI: 10.1016/j.imlet.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/03/2017] [Accepted: 10/24/2017] [Indexed: 02/02/2023]
Abstract
Recombinant engineering of immunologically active chimeric protein consisting of Omp19 and P39 domains of B. abortus (rOP), was purified under denaturing conditions upon expression in E. coli BL21 (DE3) and refolded to dynamic form. The immuno-protective efficacy of rOP was evaluated by challenging the BALB/c mice intraperitoneally (I.P) with the infective species of Brucella in the absence or presence of adjuvants, such as Aluminum hydroxide gel (Al), or Freund's Complete Adjuvant (FCA)/Incomplete Freund's Adjuvant (IFA). Surprisingly, after second boosting, mice received rOP per se were found to be immunogenic in terms of IgG response with the dominant expression of IgG2a and significant IFN-γ by splenic T cells, suggesting that rOP is a strong inducer of anti-Brucella immunity. The resulted anti-rOP antibodies recognized native Omp19 and P39 among species of Brucella with distinct double bands and single band against chimera in immunoblotting. An enhanced and comparable antibody response with varied IgG isotype combinations were noticed in the mice primed and boosted with rOP in adjuvants. However, rOP+FCA/IFA formulation was found to be the most effective in lymphocyte recall assays at inducing significant (P<0.001) proliferation index (P.I.) as well as increased Th1-coupled cytokines (IFN-γ, IL-2 and IL-12p70) than rOP+Al in response to rOP re-stimulation. Furthermore, in vitro defensive assay revealed that compared to anti-rOP antisera, the polyclonal anti-sera from rOP+adjuvants exhibited enhanced protection of RAW264.7 cells against virulent challenge by B. melitensis 16M and B. abortus 544. In addition, compared to sham group, enumeration of Brucella CFU after challenge with the above species showed a significant (P<0.01) reduction of bacteria (log CFU) in the macrophage cell lines and organs of vaccinated mice. On the whole, a relatively higher and faster reduction was noticed in the mice vaccinated with similar amount of purified antigen in Freund's adjuvant. Ability of inducing Th1 directed immune protection in the absence of adjuvant support, postulated rOP as a plausible entrant for developing a chimeric based subunit vaccine against Brucella.
Collapse
Affiliation(s)
- Ganesh Tadepalli
- Department of Microbiology, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India.
| | - Balakrishna Konduru
- Department of Microbiology, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India
| | | | - Harsh Vardhan Batra
- Department of Microbiology, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India
| |
Collapse
|
11
|
Temporal Role for MyD88 in a Model of Brucella-Induced Arthritis and Musculoskeletal Inflammation. Infect Immun 2017; 85:IAI.00961-16. [PMID: 28069819 DOI: 10.1128/iai.00961-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 01/18/2023] Open
Abstract
Brucella spp. are facultative intracellular Gram-negative bacteria that cause the zoonotic disease brucellosis, one of the most common global zoonoses. Osteomyelitis, arthritis, and musculoskeletal inflammation are common focal complications of brucellosis in humans; however, wild-type (WT) mice infected systemically with conventional doses of Brucella do not develop these complications. Here we report C57BL/6 WT mice infected via the footpad with 103 to 106 CFU of Brucella spp. display neutrophil and monocyte infiltration of the joint space and surrounding musculoskeletal tissue. Joint inflammation is detectable as early as 1 day postinfection and peaks 1 to 2 weeks later, after which WT mice are able to slowly resolve inflammation. B and T cells were dispensable for the onset of swelling but required for resolution of joint inflammation and infection. At early time points, MyD88-/- mice display decreased joint inflammation, swelling, and proinflammatory cytokine levels relative to WT mice. Subsequently, swelling of MyD88-/- joints surpassed WT joint swelling, and resolution of joint inflammation was prolonged. Joint bacterial loads in MyD88-/- mice were significantly greater than those in WT mice by day 3 postinfection and at all time points thereafter. In addition, MyD88-/- joint inflammatory cytokine levels on day 3 and beyond were similar to WT levels. Collectively these data demonstrate MyD88 signaling mediates early inflammatory responses in the joint but also contributes to subsequent clearance of Brucella and resolution of inflammation. This work also establishes a mouse model for studying Brucella-induced arthritis, musculoskeletal complications, and systemic responses, which will lead to a better understanding of focal complications of brucellosis.
Collapse
|