1
|
Wright K, Mizzi R, Plain KM, Purdie AC, de Silva K. Mycobacterium avium subsp. paratuberculosis exploits miRNA expression to modulate lipid metabolism and macrophage polarisation pathways during infection. Sci Rep 2022; 12:9681. [PMID: 35690602 PMCID: PMC9188571 DOI: 10.1038/s41598-022-13503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Pathogenic mycobacteria including Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, manipulate host macrophages to persist and cause disease. In mycobacterial infection, highly plastic macrophages, shift between inflammatory M1 and permissive M2 phenotypes which alter the disease outcome and allow bacteria to survive intracellularly. Here we examine the impact of MAP infection on polarised macrophages and how increased lipid availability alters macrophage phenotype and bacterial persistence. Further, we assess if host microRNA (miRNA) are sensitive to macrophage polarisation state and how MAP can drive their expression to overcome innate responses. Using in vitro MAP infection, we find that increasing lipid availability through supplementing culture media with exogenous lipid increases cellular nitric oxide production. Lipid-associated miRs -19a, -129, -24, and -24-3p are differentially expressed following macrophage polarisation and lipid supplementation and are further regulated during MAP infection. Collectively, our results highlight the importance of host lipid metabolism in MAP infection and demonstrate control of miRNA expression by MAP to favour intracellular persistence.
Collapse
Affiliation(s)
- Kathryn Wright
- Sydney School of Veterinary Science, The University of Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Rachel Mizzi
- Sydney School of Veterinary Science, The University of Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Karren M Plain
- Sydney School of Veterinary Science, The University of Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Auriol C Purdie
- Sydney School of Veterinary Science, The University of Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Kumudika de Silva
- Sydney School of Veterinary Science, The University of Sydney, Faculty of Science, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Bo M, Arru G, Niegowska M, Erre GL, Manchia PA, Sechi LA. Association between Lipoprotein Levels and Humoral Reactivity to Mycobacterium avium subsp. paratuberculosis in Multiple Sclerosis, Type 1 Diabetes Mellitus and Rheumatoid Arthritis. Microorganisms 2019; 7:E423. [PMID: 31597322 PMCID: PMC6843567 DOI: 10.3390/microorganisms7100423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 01/12/2023] Open
Abstract
Environmental factors such as bacterial infections may play an important role in the development of autoimmune diseases. Mycobacterium avium subsp. paratuberculosis (MAP) is an obligate pathogen of ruminants able to use the host's cholesterol for survival into macrophages and has been associated with multiple sclerosis (MS), type 1 diabetes (T1DM) and rheumatoid arthritis (RA) through a molecular mimicry mechanism. Here, we aimed at investigating the correlation between humoral reactivity against MAP and serum lipoprotein levels in subjects at T1DM risk (rT1DM) grouped by geographical background and in patients affected by MS or RA. Our results showed significant differences in HDL, LDL/VLDL and Total Cholesterol (TC) levels between patients and healthy controls (p < 0.0001). Patients positive to anti-MAP Abs (MAP+) had lower HDL levels in comparison with Abs negative (MAP-) subjects, while opposite trends were found for LDL/VLDL concentrations (p < 0.05). TC levels varied between MAP+ and MAP- patients in all three assessed diseases. These findings suggest the implication of anti-MAP Abs in fluctuations of lipoprotein levels highlighting a possible link with cardiovascular disease. Further studies will be needed to confirm these results in larger groups.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
| | - Giannina Arru
- Department of Clinical, Surgical and Experimental Medicine, Neurological Clinic, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy.
| | - Magdalena Niegowska
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
| | - Gian Luca Erre
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria di Sassari, UOC di Reumatologia, Viale San Pietro 8, 07100 Sassari, Italy.
| | | | - Leonardo A Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
| |
Collapse
|
3
|
Johansen MD, Hortle E, Kasparian JA, Romero A, Novoa B, Figueras A, Britton WJ, de Silva K, Purdie AC, Oehlers SH. Analysis of mycobacterial infection-induced changes to host lipid metabolism in a zebrafish infection model reveals a conserved role for LDLR in infection susceptibility. FISH & SHELLFISH IMMUNOLOGY 2018; 83:238-242. [PMID: 30219383 DOI: 10.1016/j.fsi.2018.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Changes to lipid metabolism are well-characterised consequences of human tuberculosis infection but their functional relevance are not clearly elucidated in these or other host-mycobacterial systems. The zebrafish-Mycobacterium marinum infection model is used extensively to model many aspects of human-M. tuberculosis pathogenesis but has not been widely used to study the role of infection-induced lipid metabolism. We find mammalian mycobacterial infection-induced alterations in host Low Density Lipoprotein metabolism are conserved in the zebrafish model of mycobacterial pathogenesis. Depletion of LDLR, a key lipid metabolism node, decreased M. marinum burden, and corrected infection-induced altered lipid metabolism resulting in decreased LDL and reduced the rate of macrophage transformation into foam cells. Our results demonstrate a conserved role for infection-induced alterations to host lipid metabolism, and specifically the LDL-LDLR axis, across host-mycobacterial species pairings.
Collapse
Affiliation(s)
- Matt D Johansen
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia; Sydney School of Veterinary Science and Marie Bashir Institute The University of Sydney, Camden, NSW, Australia
| | - Elinor Hortle
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia
| | - Joshua A Kasparian
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia; Sydney School of Veterinary Science and Marie Bashir Institute The University of Sydney, Camden, NSW, Australia
| | - Alejandro Romero
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Warwick J Britton
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia; Tuberculosis Research Program Centenary Institute, Sydney Medical School and Marie Bashir Institute The University of Sydney, Camperdown, NSW, Australia
| | - Kumudika de Silva
- Sydney School of Veterinary Science and Marie Bashir Institute The University of Sydney, Camden, NSW, Australia
| | - Auriol C Purdie
- Sydney School of Veterinary Science and Marie Bashir Institute The University of Sydney, Camden, NSW, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia; Tuberculosis Research Program Centenary Institute, Sydney Medical School and Marie Bashir Institute The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|