1
|
Hooper GL, Netherton CL, Wright E. Cell entry mechanisms of African swine fever virus. Virology 2024; 600:110277. [PMID: 39488059 DOI: 10.1016/j.virol.2024.110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
African swine fever virus (ASFV) is a highly complex virus that poses a significant threat to the global swine industry. However, little is known about the mechanisms of ASFV cell entry because ASFV has a multilayered structure and a genome encoding over 150 proteins. This review aims to elucidate the current knowledge on cell entry mechanisms of ASFV and the cellular and viral proteins involved. Experimental evidence suggests that ASFV utilises multiple pathways for entry, which may be cell or tissue type dependent, but the intricate nature of ASFV has hindered the identification of cellular and viral proteins involved in this process. Therefore, further research into the molecular virology of ASFV is essential to advance our understanding of the ASFV entry mechanisms, which will pave the way for innovative strategies to combat this formidable pathogen.
Collapse
Affiliation(s)
- George L Hooper
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Brighton, East Sussex, United Kingdom
| | | | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Brighton, East Sussex, United Kingdom.
| |
Collapse
|
2
|
Kudryashov DA, Nefedeva MV, Malogolovkin AS, Titov IA. Multigenic family 110 (1 L-5-6 L) of African swine fever virus modulate cytokine genes expression in vitro. Mol Biol Rep 2024; 51:948. [PMID: 39222287 DOI: 10.1007/s11033-024-09884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND African swine fever (ASF) is a viral disease that affects pigs and wild boars providing economic burden in swine industry. METHODS AND RESULTS In this study, we investigated the effect of deleting the ASFV multigene family 110 (MGF110) fragment (1 L-5-6 L) on apoptosis modulation and the expression of proinflammatory cytokines. Gene expression in swine peripheral blood macrophages infected with either the parental "Volgograd/14c" strain or the gene-deleted "Volgograd/D(1L-5-6L) MGF110" strain was analyzed. Caspase-3 activity was 1.15 times higher in macrophages infected with the parental ASFV strain compared to the gene-deleted strain. Gene expression analysis of Caspase-3 (Cas-3), Interferon-A (IFN-A), Tumor Necrosis Factor A (TNF-A), B-cell Lymphoma-2 (Bcl-2), Nuclear Factor Kappa B (NF-kB), Interleukin-12 (IL-12), and Heat Shock Protein-70 (HSP-70) using RT-qPCR at various time points after infection revealed significant differences in expression profiles between the strains. The peak expression of cytokines (except NF-kB) occurred at 24 h post-infection with the "Volgograd/D(1L-5-6L) MGF110" strain. In samples infected with the ASFV "Volgograd/14c" strain, the most intense expression was observed at 72 and 96 h, except for Bcl-2 and NF-kB, which peaked at 6 h post-infection. The cytokine expression trend for the "Volgograd/D(1L-5-6L) MGF110" strain was more stable with higher expression values. CONCLUSION The expression trend for the parental strain increased over time, reaching maximum values at 72 and 96 h post-infection, but the overall expression level was lower than that of the gene-deleted strain. These findings suggest that deleting the multigene family 110 members (1 L-5-6 L) contributes to ASFV attenuation without affecting virus replication kinetics.
Collapse
Affiliation(s)
- Dmitriy A Kudryashov
- Federal Research Center for Virology and Microbiology, 601125, Volginsky, Russia
| | - Maria V Nefedeva
- Federal Research Center for Virology and Microbiology, 601125, Volginsky, Russia
| | - Alexander S Malogolovkin
- Sirius University of Science and Technology, 354340, Sochi, Russia
- Sechenov First Moscow State Medical University, 119048, Moscow, Russia
| | - Ilya A Titov
- Federal Research Center for Virology and Microbiology, 601125, Volginsky, Russia.
| |
Collapse
|
3
|
Gong L, Zhang Y, Wang L, Zhao X, Wang L, Qiu X, Yang X, Zhu W, Lv L, Kang Y, Wu Y, Zhang A, Du Y, Wang X, Zhang G, Sun A, Zhuang G. Advancing vaccine development: Evaluation of a mannose-modified lipid nanoparticle-based candidate for African swine fever p30 mRNA vaccine eliciting robust immune response in mice. Int J Biol Macromol 2024; 270:132432. [PMID: 38761609 DOI: 10.1016/j.ijbiomac.2024.132432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The African swine fever virus (ASFV) continues to pose significant economic and pandemic risks. Consequently, discovering new, efficient vaccines is crucial. Messenger RNA (mRNA) vaccines have emerged as promising candidates, providing minimal risk of insertional mutagenesis, high safety profiles, effectiveness, rapid scalability in production, and cost-effectiveness. In this study, we have developed an ASF p30 mRNA vaccine candidate (mRNA/Man-LNP) employing mannose-modified lipid nanoparticles (LNPs). The mRNA/Man-LNP exhibited effective antigen presentation and facilitated dendritic cells (DCs) maturation. Notably, it elicited strong IgG titers and activated CD4+ and CD8+ T-cells in immunized mice, all while adhering to stringent biosafety standards. This investigation demonstrates that mRNA/Man-LNP can trigger both humoral and cellular immune responses, suggesting its potential as a potent and promising vaccine candidate for controlling African swine fever (ASF).
Collapse
Affiliation(s)
- Lele Gong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Lele Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuyang Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Lucai Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangqi Qiu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xilong Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenhui Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Lijie Lv
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunzhe Kang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanan Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Angke Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongkun Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuannian Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Aijun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Gao S, Zuo W, Kang C, Zou Z, Zhang K, Qiu J, Shang X, Li J, Zhang Y, Zuo Q, Zhao Y, Jin M. Saccharomyces cerevisiae oral immunization in mice using multi-antigen of the African swine fever virus elicits a robust immune response. Front Immunol 2024; 15:1373656. [PMID: 38742108 PMCID: PMC11089227 DOI: 10.3389/fimmu.2024.1373656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
African swine fever virus (ASFV) is one of the most complex viruses. ASFV is a serious threat to the global swine industry because no commercial vaccines against this virus are currently available except in Vietnam. Moreover, ASFV is highly stable in the environment and can survive in water, feed, and aerosols for a long time. ASFV is transmitted through the digestive and respiratory tract. Mucosal immunity is the first line of defense against ASFV. Saccharomyces cerevisiae (SC), which has been certified by the U.S. Food and Drug Administration and has a generally recognized as safe status in the food industry, was used for oral immunization in this study. ASFV antigens were effectively expressed in recombinant SC strains with high DNA copy numbers and stable growth though surface display technology and chromosome engineering (δ-integration). The recombinant SC strains containing eight ASFV antigens-KP177R, E183L, E199L, CP204L, E248R, EP402R, B602L, and B646L- induced strong humoral and mucosal immune responses in mice. There was no antigenic competition, and these antigens induced Th1 and Th2 cellular immune responses. Therefore, the oral immunization strategy using recombinant SC strains containing multiple ASFV antigens demonstrate potential for future testing in swine, including challenge studies to evaluate its efficacy as a vaccine against ASFV.
Collapse
Affiliation(s)
- Shuo Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Wenfeng Zuo
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Chao Kang
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Zhong Zou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Kaiqi Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jun Qiu
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Xiaomin Shang
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Jingjing Li
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Yuanfeng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Qi Zuo
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Ya Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Ma Y, Shao J, Liu W, Gao S, Peng D, Miao C, Yang S, Hou Z, Zhou G, Qi X, Chang H. A vesicular stomatitis virus-based African swine fever vaccine prototype effectively induced robust immune responses in mice following a single-dose immunization. Front Microbiol 2024; 14:1310333. [PMID: 38249478 PMCID: PMC10797088 DOI: 10.3389/fmicb.2023.1310333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction African swine fever (ASF) is a highly contagious hemorrhagic fever disease in pigs caused by African swine fever virus (ASFV). It is very difficult to control and prevent ASF outbreaks due to the absence of safe and effective vaccines. Methods In order to develop a safe and effective ASF vaccine for the control and prevention of ASF, two ASFV recombinant vesicular stomatitis virus (VSV) live vector vaccine prototypes, containing the gene of p72, and a chimera of p30 and p54, were developed based on the replication-competent VSV, and named VSV-p72 and VSV-p35. The immune potency of VSV-p72 or VSV-p35 alone and in combination was evaluated in BALB/c mice via intramuscular and intranasal vaccination. Results The results indicated that whether administered alone or in combination, the two vaccine prototypes showed acceptable safety in mice and, more importantly, induced high-level specific antibodies against p72, p30, and p54 of ASFV and a strong cellular immune response 28 days after vaccination. The sera from mice vaccinated with the vaccine prototypes significantly inhibited ASFV from infecting porcine alveolar macrophages (PAMs) in vitro. Most notably, the immunized sera from a mixture of VSV-p35 and VSV-p72 inhibited ASFV from infecting PAMs, with an inhibition rate of up to 78.58%. Conclusion Overall, our findings suggest that ASFV recombinant VSV live vector vaccine prototypes may become a promising candidate vaccine for the control and prevention of ASF.
Collapse
Affiliation(s)
- Yunyun Ma
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Junjun Shao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Wei Liu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shandian Gao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Decai Peng
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Chun Miao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Sicheng Yang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zhuo Hou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Guangqing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xuefeng Qi
- College of Veterinary Medicine Northwest A&F University, Yangling, Shanxi, China
| | - Huiyun Chang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Walczak M, Szymankiewicz K, Rodriguez F, Argilaguet J, Gavrilov B, Żmudzki J, Kochanowski M, Juszkiewicz M, Szczotka-Bochniarz A. Molecular contamination of an animal facility during and after African swine fever virus infection. J Vet Res 2023; 67:503-508. [PMID: 38130453 PMCID: PMC10730545 DOI: 10.2478/jvetres-2023-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The molecular contamination of an animal facility was investigated during and after an infection with highly pathogenic African swine fever virus (ASFV) among domestic pigs. The investigation evaluated the risk of indirect transmission of the disease and indicated points that may facilitate cleaning and disinfection processes. Material and Methods Six domestic pigs were infected oronasally with the highly pathogenic Georgia 2007 strain. Environmental samples from the floors, walls, rubber floor mats, feeders, drinkers, high-efficiency particulate-absorbing filter covers and doors were collected 7 days post infection (dpi), 7 days later and 24 h after disinfection of the facility. The samples were investigated by real-time PCR and in vitro assays to find genetic traces of ASFV and infectious virus. Results Typical clinical outcomes for ASF (i.e. fever, apathy, recumbency and bloody diarrhoea) were observed, and all animals died or required euthanasia before or at 9 dpi. No infectious virus was found in environmental samples at the sampling time points. Genetic traces of ASFV were found in all locations except the doors. The initial virus load was calculated using real-time PCR threshold cycle values and was the highest at the drain. A statistically significant decrease of virus load over time was found on non-porous surfaces mechanically cleaned by water (the floor and drain). Conclusion The gathered data confirmed different routes of virus excretion (oral and nasal, faeces and urine, and aerosol) and showed virus locations and different initial concentrations in the animal facility. Maintaining the facility with mechanical cleaning and using personal protection (gloves) and hand disinfection may efficiently minimise the risk of further virus spread. Together with the results of previously published studies, the present investigations' failure to isolate infectious virus may suggest that if stable environmental conditions are assured, the time needed before the introduction of new herds into previously ASF-affected farm facilities could be shortened and in this way the economic losses caused by the disease outbreak mitigated.
Collapse
Affiliation(s)
- Marek Walczak
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | | | - Fernando Rodriguez
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- WOAH Collaborating Centre for Emerging and Re-emerging Pig Diseases in Europe, IRTA-CReSA, 08193Barcelona, Spain
| | - Jordi Argilaguet
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- WOAH Collaborating Centre for Emerging and Re-emerging Pig Diseases in Europe, IRTA-CReSA, 08193Barcelona, Spain
| | | | - Jacek Żmudzki
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Maciej Kochanowski
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Małgorzata Juszkiewicz
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | | |
Collapse
|
7
|
Pérez-Núñez D, García-Belmonte R, Riera E, Fernández-Sesma MH, Vigara-Astillero G, Revilla Y. Signal peptide and N-glycosylation of N-terminal-CD2v determine the hemadsorption of African swine fever virus. J Virol 2023; 97:e0103023. [PMID: 37768082 PMCID: PMC10617588 DOI: 10.1128/jvi.01030-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE African swine fever virus (ASFV) is the cause of the current major animal epidemic worldwide. This disease affects domestic pigs and wild boars, has spread since 2007 through Russia, Eastern Europe, and more recently to Western European countries, and since 2018 emerged in China, from where it spread throughout Southeast Asia. Recently, outbreaks have appeared in the Caribbean, threatening the Americas. It is estimated that more than 900,000 animals have died directly or indirectly from ASFV since 2021 alone. One of the features of ASFV infection is hemoadsorption (HAD), which has been linked to virulence, although the molecular and pathological basis of this hypothesis remains largely unknown. In this study, we have analyzed and identified the key players responsible of HAD, contributing to the identification of new determinants of ASFV virulence, the understanding of ASFV pathogenesis, and the rational development of new vaccines.
Collapse
Affiliation(s)
- Daniel Pérez-Núñez
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Raquel García-Belmonte
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Elena Riera
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Marta H. Fernández-Sesma
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Gonzalo Vigara-Astillero
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Yolanda Revilla
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
8
|
Pakotiprapha D, Kuhaudomlarp S, Tinikul R, Chanarat S. Bridging the Gap: Can COVID-19 Research Help Combat African Swine Fever? Viruses 2023; 15:1925. [PMID: 37766331 PMCID: PMC10536364 DOI: 10.3390/v15091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious and economically devastating disease affecting domestic pigs and wild boar, caused by African swine fever virus (ASFV). Despite being harmless to humans, ASF poses significant challenges to the swine industry, due to sudden losses and trade restrictions. The ongoing COVID-19 pandemic has spurred an unparalleled global research effort, yielding remarkable advancements across scientific disciplines. In this review, we explore the potential technological spillover from COVID-19 research into ASF. Specifically, we assess the applicability of the diagnostic tools, vaccine development strategies, and biosecurity measures developed for COVID-19 for combating ASF. Additionally, we discuss the lessons learned from the pandemic in terms of surveillance systems and their implications for managing ASF. By bridging the gap between COVID-19 and ASF research, we highlight the potential for interdisciplinary collaboration and technological spillovers in the battle against ASF.
Collapse
Affiliation(s)
| | | | | | - Sittinan Chanarat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Imdhiyas M, Sen S, Barman N, Buragohain L, Malik Y, Kumar S. Computational analysis of immunogenic epitopes in the p30 and p54 proteins of African swine fever virus. J Biomol Struct Dyn 2023; 41:7480-7489. [PMID: 36148815 DOI: 10.1080/07391102.2022.2123400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
African swine fever (ASF) is a highly infectious viral disease of pigs, which causes acute fatal haemorrhage and is a severe concern to the global pork industry. The present study followed computational approaches to identify B- and T-cell epitopes for the p30 and p54 proteins of the African swine fever virus (ASFV) by interacting with the swine leukocyte antigen (SLA) alleles. The amino acid sequences of p30 and p54 were analysed for variability and relative solvent accessibility, and their three-dimensional structures were predicted and validated. Molecular dynamics simulation was performed to study the structural and dynamic properties of the protein. Six and five linear B-cell epitopes have been predicted for p30 and p54, respectively. Four and three discontinuous B-cell epitopes have been predicted for p30 and p54, respectively. Further, the top five T-cell epitopes for SLA-1, 2, and 3 have been listed for both proteins. These results can help us to understand the immunodominant regions in the p30 and p54 proteins of ASFV and potentially assist in designing peptide-based diagnostics and vaccines. Also, the identified T-cell epitopes may be considered for peptide-based vaccine design against ASFV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed Imdhiyas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Suvam Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Nagendra Barman
- Department of Microbiology, College of Veterinary Science, Assam Agricultural University Khanapara Campus, Guwahati, Assam, India
| | - Lukumoni Buragohain
- Department of Microbiology, College of Veterinary Science, Assam Agricultural University Khanapara Campus, Guwahati, Assam, India
| | - Yashpal Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University (GADVASU), Ludhiana, Punjab, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
10
|
Zhang G, Liu W, Yang S, Song S, Ma Y, Zhou G, Liang X, Miao C, Li J, Liu Y, Shao J, Chang H. Evaluation of humoral and cellular immune responses induced by a cocktail of recombinant African swine fever virus antigens fused with OprI in domestic pigs. Virol J 2023; 20:104. [PMID: 37237390 DOI: 10.1186/s12985-023-02070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND African swine fever (ASF) is a highly fatal disease in domestic pigs caused by ASF virus (ASFV), for which there is currently no commercial vaccine available. The genome of ASFV encodes more than 150 proteins, some of which have been included in subunit vaccines but only induce limited protection against ASFV challenge. METHODS To enhance immune responses induced by ASFV proteins, we expressed and purified three fusion proteins with each consisting of bacterial lipoprotein OprI, 2 different ASFV proteins/epitopes and a universal CD4+ T cell epitope, namely OprI-p30-modified p54-TT, OprI-p72 epitopes-truncated pE248R-TT, and OprI-truncated CD2v-truncated pEP153R-TT. The immunostimulatory activity of these recombinant proteins was first assessed on dendritic cells. Then, humoral and cellular immunity induced by these three OprI-fused proteins cocktail formulated with ISA206 adjuvant (O-Ags-T formulation) were assessed in pigs. RESULTS The OprI-fused proteins activated dendritic cells with elevated secretion of proinflammatory cytokines. Furthermore, the O-Ags-T formulation elicited a high level of antigen-specific IgG responses and interferon-γ-secreting CD4+ and CD8+ T cells after stimulation in vitro. Importantly, the sera and peripheral blood mononuclear cells from pigs vaccinated with the O-Ags-T formulation respectively reduced ASFV infection in vitro by 82.8% and 92.6%. CONCLUSIONS Our results suggest that the OprI-fused proteins cocktail formulated with ISA206 adjuvant induces robust ASFV-specific humoral and cellular immune responses in pigs. Our study provides valuable information for the further development of subunit vaccines against ASF.
Collapse
Affiliation(s)
- Guanglei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- Lanzhou Institute of Biological Products Co., Ltd. (LIBP), a subsidiary company of China National Biotec Group Company Limited (CNBG), Lanzhou, 730046, China
| | - Wei Liu
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Sicheng Yang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunyun Ma
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Guangqing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Xiaxia Liang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Chun Miao
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Junhui Li
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yanhong Liu
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Junjun Shao
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| | - Huiyun Chang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| |
Collapse
|
11
|
Zhang H, Zhao S, Zhang H, Qin Z, Shan H, Cai X. Vaccines for African swine fever: an update. Front Microbiol 2023; 14:1139494. [PMID: 37180260 PMCID: PMC10173882 DOI: 10.3389/fmicb.2023.1139494] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
African swine fever (ASF) is a fatal infectious disease of swine caused by the African swine fever virus (ASFV). Currently, the disease is listed as a legally notifiable disease that must be reported to the World Organization for Animal Health (WOAH). The economic losses to the global pig industry have been insurmountable since the outbreak of ASF. Control and eradication of ASF are very critical during the current pandemic. Vaccination is the optimal strategy to prevent and control the ASF epidemic, but since inactivated ASFV vaccines have poor immune protection and there aren't enough cell lines for efficient in vitro ASFV replication, an ASF vaccine with high immunoprotective potential still remains to be explored. Knowledge of the course of disease evolution, the way of virus transmission, and the breakthrough point of vaccine design will facilitate the development of an ASF vaccine. In this review, the paper aims to highlight the recent advances and breakthroughs in the epidemic and transmission of ASF, virus mutation, and the development of vaccines in recent years, focusing on future directions and trends.
Collapse
Affiliation(s)
- Hongliang Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Saisai Zhao
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Haojie Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhihua Qin
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hu Shan
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiulei Cai
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
12
|
Pérez-Núñez D, Sunwoo SY, García-Belmonte R, Kim C, Vigara-Astillero G, Riera E, Kim DM, Jeong J, Tark D, Ko YS, You YK, Revilla Y. Recombinant African Swine Fever Virus Arm/07/CBM/c2 Lacking CD2v and A238L Is Attenuated and Protects Pigs against Virulent Korean Paju Strain. Vaccines (Basel) 2022; 10:vaccines10121992. [PMID: 36560402 PMCID: PMC9784410 DOI: 10.3390/vaccines10121992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
African swine fever (ASF) is an obligated declaration swine disease, provoking farm isolation measures and the closing of affected country boarders. ASF virus (ASFV) is currently the cause of a pandemic across China and Eurasia. By the end of 2019, ASF was detected in nine EU Member States: Bulgaria, Romania, Slovakia, Estonia, Hungary, Latvia, Lithuania, Poland and Belgium. The affected area of the EU extended progressively, moving mostly in a southwestern direction (EFSA). Inactivated and/or subunit vaccines have proven to fail since certain virus replication is needed for protection. LAVs are thus the most realistic option, which must be safe, effective and industrially scalable. We here generated a vaccine prototype from the Arm/07/CBM/c2 genotype II strain, in which we have deleted the EP402R (CD2v) and A238L genes by CRISPR/Cas9 in COS-1 cells, without detectable further genetic changes. The successful immunization of pigs has proven this vaccine to be safe and fully protective against the circulating Korean Paju genotype II strain, opening the possibility of a new vaccine on the market in the near future.
Collapse
Affiliation(s)
- Daniel Pérez-Núñez
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Sun-Young Sunwoo
- Careside Co., Ltd., Sagimakgol-ro 45 Beongil 14, Seongnam-si 13209, Gyeonggi-do, Republic of Korea
| | - Raquel García-Belmonte
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Chansong Kim
- Careside Co., Ltd., Sagimakgol-ro 45 Beongil 14, Seongnam-si 13209, Gyeonggi-do, Republic of Korea
| | - Gonzalo Vigara-Astillero
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Elena Riera
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Dae-min Kim
- Laboratory for infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, 79 Gobong-ro, Ma-dong, Iksan 54531, Jeollabuk-do, Republic of Korea
| | - Jiyun Jeong
- Careside Co., Ltd., Sagimakgol-ro 45 Beongil 14, Seongnam-si 13209, Gyeonggi-do, Republic of Korea
| | - Dongseob Tark
- Laboratory for infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, 79 Gobong-ro, Ma-dong, Iksan 54531, Jeollabuk-do, Republic of Korea
| | - Young-Seung Ko
- Laboratory for infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, 79 Gobong-ro, Ma-dong, Iksan 54531, Jeollabuk-do, Republic of Korea
| | - Young-Kook You
- Careside Co., Ltd., Sagimakgol-ro 45 Beongil 14, Seongnam-si 13209, Gyeonggi-do, Republic of Korea
| | - Yolanda Revilla
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-911964570
| |
Collapse
|
13
|
African Swine Fever Vaccinology: The Biological Challenges from Immunological Perspectives. Viruses 2022; 14:v14092021. [PMID: 36146827 PMCID: PMC9505361 DOI: 10.3390/v14092021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
African swine fever virus (ASFV), a nucleocytoplasmic large DNA virus (NCLDV), causes African swine fever (ASF), an acute hemorrhagic disease with mortality rates up to 100% in domestic pigs. ASF is currently epidemic or endemic in many countries and threatening the global swine industry. Extensive ASF vaccine research has been conducted since the 1920s. Like inactivated viruses of other NCLDVs, such as vaccinia virus, inactivated ASFV vaccine candidates did not induce protective immunity. However, inactivated lumpy skin disease virus (poxvirus) vaccines are protective in cattle. Unlike some experimental poxvirus subunit vaccines that induced protection, ASF subunit vaccine candidates implemented with various platforms containing several ASFV structural genes or proteins failed to protect pigs effectively. Only some live attenuated viruses (LAVs) are able to protect pigs with high degrees of efficacy. There are currently several LAV ASF vaccine candidates. Only one commercial LAV vaccine is approved for use in Vietnam. LAVs, as ASF vaccines, have not yet been widely tested. Reports thus far show that the onset and duration of protection induced by the LAVs are late and short, respectively, compared to LAV vaccines for other diseases. In this review, the biological challenges in the development of ASF vaccines, especially subunit platforms, are discussed from immunological perspectives based on several unusual ASFV characteristics shared with HIV and poxviruses. These characteristics, including multiple distinct infectious virions, extremely high glycosylation and low antigen surface density of envelope proteins, immune evasion, and possible apoptotic mimicry, could pose enormous challenges to the development of ASF vaccines, especially subunit platforms designed to induce humoral immunity.
Collapse
|
14
|
Li Z, Chen W, Qiu Z, Li Y, Fan J, Wu K, Li X, Zhao M, Ding H, Fan S, Chen J. African Swine Fever Virus: A Review. Life (Basel) 2022; 12:1255. [PMID: 36013434 PMCID: PMC9409812 DOI: 10.3390/life12081255] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is a viral disease with a high fatality rate in both domestic pigs and wild boars. ASF has greatly challenged pig-raising countries and also negatively impacted regional and national trade of pork products. To date, ASF has spread throughout Africa, Europe, and Asia. The development of safe and effective ASF vaccines is urgently required for the control of ASF outbreaks. The ASF virus (ASFV), the causative agent of ASF, has a large genome and a complex structure. The functions of nearly half of its viral genes still remain to be explored. Knowledge on the structure and function of ASFV proteins, the mechanism underlying ASFV infection and immunity, and the identification of major immunogenicity genes will contribute to the development of an ASF vaccine. In this context, this paper reviews the available knowledge on the structure, replication, protein function, virulence genes, immune evasion, inactivation, vaccines, control, and diagnosis of ASFV.
Collapse
Affiliation(s)
- Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zilong Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
15
|
Wang L, Fu D, Tesfagaber W, Li F, Chen W, Zhu Y, Sun E, Wang W, He X, Guo Y, Bu Z, Zhao D. Development of an ELISA Method to Differentiate Animals Infected with Wild-Type African Swine Fever Viruses and Attenuated HLJ/18-7GD Vaccine Candidate. Viruses 2022; 14:v14081731. [PMID: 36016353 PMCID: PMC9415487 DOI: 10.3390/v14081731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is a highly contagious hemorrhagic disease of pigs, posing a significant threat to the world pig industry. Several researchers are investigating the possibilities for developing a safe and efficient vaccine against ASF. In this regard, significant progress has been made and some gene-deleted ASFVs are reported as potential live attenuated vaccines. A seven-gene-deleted live attenuated vaccine candidate HLJ/18-7GD (among which CD2v is included) has been developed in our laboratory and reported to be safe and protective, and it is expected to be commercialized in the near future. There is an urgent need for developing a diagnostic method that can clearly discriminate between wild-type-ASFV-infected and vaccinated animals (DIVA). In the present study, a dual indirect ELISA based on p54 and CD2v proteins was successfully established to specifically distinguish serum antibodies from pigs infected with wild-type ASFV or possessing vaccine immunization. To evaluate the performance of the assay, a total of 433 serum samples from four groups of pigs experimentally infected with the wild-type HLJ/18 ASFV, immunized with the HLJ/18-7GD vaccine candidate, infected with the new lower virulent variant, and specific-pathogen-free pigs were used. Our results showed that the positive rate of immunized serum was 96.54% (p54) and 2.83% (CD2v), and the positive rate of the infection by wild-type virus was 100% (p54) and 97.8% (CD2v). Similarly, the positive rate to infection by the new low-virulent ASFV variant in China was 100% (p54) and 0% (CD2v), indicating the technique was also able to distinguish antibodies from wild-type and the new low-virulent ASFV variant in China. Moreover, no cross-reaction was observed in immune sera from other swine pathogens, such as CSFV, PEDV, PRRSV, HP-PRRSV, PCV2, and PrV. Overall, the developed dual indirect ELISA exhibited high diagnostic sensitivity, specificity, and repeatability and will provide a new approach to differentiate serum antibodies between wild virulent and CD2v-unexpressed ASFV infection, which will play a great role in serological diagnosis and epidemiological monitoring of ASF in the future.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Dan Fu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Weldu Tesfagaber
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Fang Li
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Weiye Chen
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuanmao Zhu
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Encheng Sun
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wan Wang
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xijun He
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
- Correspondence: (Y.G.); (Z.B.); (D.Z.)
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (Y.G.); (Z.B.); (D.Z.)
| | - Dongming Zhao
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (Y.G.); (Z.B.); (D.Z.)
| |
Collapse
|
16
|
Canter JA, Aponte T, Ramirez-Medina E, Pruitt S, Gladue DP, Borca MV, Zhu JJ. Serum Neutralizing and Enhancing Effects on African Swine Fever Virus Infectivity in Adherent Pig PBMC. Viruses 2022; 14:v14061249. [PMID: 35746720 PMCID: PMC9229155 DOI: 10.3390/v14061249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/28/2022] Open
Abstract
African swine fever virus (ASFV) causes hemorrhagic fever with mortality rates of up to 100% in domestic pigs. Currently, there are no commercial vaccines for the disease. Only some live-attenuated viruses have been able to protect pigs from ASFV infection. The immune mechanisms involved in the protection are unclear. Immune sera can neutralize ASFV but incompletely. The mechanisms involved are not fully understood. Currently, there is no standardized protocol for ASFV neutralization assays. In this study, a flow cytometry-based ASFV neutralization assay was developed and tested in pig adherent PBMC using a virulent ASFV containing a fluorescent protein gene as a substrate for neutralization. As with previous studies, the percentage of infected macrophages was approximately five time higher than that of infected monocytes, and nearly all infected cells displayed no staining with anti-CD16 antibodies. Sera from naïve pigs and pigs immunized with a live-attenuated ASFV and fully protected against parental virus were used in the assay. The sera displayed incomplete neutralization with MOI-dependent neutralizing efficacies. Extracellular, but not intracellular, virions suspended in naïve serum were more infectious than those in the culture medium, as reported for some enveloped viruses, suggesting a novel mechanism of ASFV infection in macrophages. Both the intracellular and extracellular virions could not be completely neutralized.
Collapse
Affiliation(s)
- Jessica A. Canter
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Plum Island Animal Disease Center, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Theresa Aponte
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Plum Island Animal Disease Center, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Elizabeth Ramirez-Medina
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
| | - Sarah Pruitt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
| | - Douglas P. Gladue
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Correspondence: (D.P.G.); (M.V.B.); (J.J.Z.); Tel.: +1-631-323-3131 (D.P.G.); +1-631-323-3035 (M.V.B.); +1-631-323-3186 (J.J.Z.)
| | - Manuel V. Borca
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Correspondence: (D.P.G.); (M.V.B.); (J.J.Z.); Tel.: +1-631-323-3131 (D.P.G.); +1-631-323-3035 (M.V.B.); +1-631-323-3186 (J.J.Z.)
| | - James J. Zhu
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (J.A.C.); (T.A.); (E.R.-M.); (S.P.)
- Correspondence: (D.P.G.); (M.V.B.); (J.J.Z.); Tel.: +1-631-323-3131 (D.P.G.); +1-631-323-3035 (M.V.B.); +1-631-323-3186 (J.J.Z.)
| |
Collapse
|
17
|
ASF -survivors’ sera do not inhibit African swine fever virus replication in vitro. J Vet Res 2022; 66:21-27. [PMID: 35582480 PMCID: PMC8959686 DOI: 10.2478/jvetres-2022-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction African swine fever virus (ASFV) causes one of the most dangerous diseases of pigs and wild boar – African swine fever (ASF). Since its second introduction into Europe (in 2007), the disease has been spreading consistently, and now ASF-free European countries are at risk. Complex interactions between the host’s immune system and the virus have long prevented the development of a safe vaccine against ASF. This study analysed the possibility of neutralisation of the ASFV in vitro by sera collected from ASF-survivor animals. Material and Methods Two pig and three wild boar serum samples were collected from previously selected potential ASF survivors. All sera presented high antibody titres (>5 log10/mL). Primary alveolar macrophages were cultured in growth medium containing 10% and 20% concentrations of selected sera and infected with a haemadsorbing ASFV strain (Pol18_28298_O111, genotype II). The progress of infection was investigated under a light microscope by observing the cytopathic effect (CPE) and the haemadsorption phenomenon. Growth kinetics were investigated using a real-time PCR assay. Results Haemadsorption inhibition was detected in the presence of almost all selected sera; however, the inhibition of virus replication in vitro was excluded. In all samples, a CPE and decreasing quantification cycle values of the viral DNA were found. Conclusion Anti-ASFV antibodies alone are not able to inhibit virus replication. Interactions between the humoral and cellular immune response which effectively combat the disease are implicated in an ASF-survivor’s organism.
Collapse
|
18
|
Le T, Sun C, Chang J, Zhang G, Yin X. mRNA Vaccine Development for Emerging Animal and Zoonotic Diseases. Viruses 2022; 14:401. [PMID: 35215994 PMCID: PMC8877136 DOI: 10.3390/v14020401] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
In the prevention and treatment of infectious diseases, mRNA vaccines hold great promise because of their low risk of insertional mutagenesis, high potency, accelerated development cycles, and potential for low-cost manufacture. In past years, several mRNA vaccines have entered clinical trials and have shown promise for offering solutions to combat emerging and re-emerging infectious diseases such as rabies, Zika, and influenza. Recently, the successful application of mRNA vaccines against COVID-19 has further validated the platform and opened the floodgates to mRNA vaccine's potential in infectious disease prevention, especially in the veterinary field. In this review, we describe our current understanding of the mRNA vaccines and the technologies used for mRNA vaccine development. We also provide an overview of mRNA vaccines developed for animal infectious diseases and discuss directions and challenges for the future applications of this promising vaccine platform in the veterinary field.
Collapse
Affiliation(s)
- Ting Le
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Chao Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Jitao Chang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Guijie Zhang
- Departments of Animal Science, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| |
Collapse
|
19
|
Zhang G, Liu W, Gao Z, Chang Y, Yang S, Peng Q, Ge S, Kang B, Shao J, Chang H. Antigenic and immunogenic properties of recombinant proteins consisting of two immunodominant African swine fever virus proteins fused with bacterial lipoprotein OprI. Virol J 2022; 19:16. [PMID: 35062983 PMCID: PMC8781047 DOI: 10.1186/s12985-022-01747-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
African swine fever (ASF) is a highly fatal swine disease, which threatens the global pig industry. There is no commercially available vaccine against ASF and effective subunit vaccines would represent a real breakthrough.
Methods
In this study, we expressed and purified two recombinant fusion proteins, OPM (OprI-p30-modified p54) and OPMT (OprI-p30-modified p54-T cell epitope), which combine the bacterial lipoprotein OprI with ASF virus proteins p30 and p54. Purified recombinant p30 and modified p54 expressed alone or fused served as controls. The activation of dendritic cells (DCs) by these proteins was first assessed. Then, humoral and cellular immunity induced by the proteins were evaluated in mice.
Results
Both OPM and OPMT activated DCs with elevated expression of relevant surface molecules and proinflammatory cytokines. Furthermore, OPMT elicited the highest levels of antigen-specific IgG responses, cytokines including interleukin-2, interferon-γ, and tumor necrosis factor-α, and proliferation of lymphocytes. Importantly, the sera from mice vaccinated with OPM or OPMT neutralized more than 86% of ASF virus in vitro.
Conclusions
Our results suggest that OPMT has good immunostimulatory activities and immunogenicity in mice, and might be an appropriate candidate to elicit immune responses in swine. Our study provides valuable information on further development of a subunit vaccine against ASF.
Collapse
|
20
|
Zhang Y, Ke J, Zhang J, Yue H, Chen T, Li Q, Zhou X, Qi Y, Zhu R, Wang S, Miao F, Zhang S, Li N, Mi L, Yang J, Yang J, Han X, Wang L, Li Y, Hu R. I267L Is Neither the Virulence- Nor the Replication-Related Gene of African Swine Fever Virus and Its Deletant Is an Ideal Fluorescent-Tagged Virulence Strain. Viruses 2021; 14:v14010053. [PMID: 35062257 PMCID: PMC8777747 DOI: 10.3390/v14010053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022] Open
Abstract
African swine fever virus (ASFV) is the causative agent of African swine fever (ASF) which reaches up to 100% case fatality in domestic pigs and wild boar and causes significant economic losses in the swine industry. Lack of knowledge of the function of ASFV genes is a serious impediment to the development of the safe and effective vaccine. Herein, I267L was identified as a relative conserved gene and an early expressed gene. A recombinant virus (SY18ΔI267L) with I267L gene deletion was produced by replacing I267L of the virulent ASFV SY18 with enhanced green fluorescent protein (EGFP) cassette. The replication kinetics of SY18ΔI267L is similar to that of the parental isolate in vitro. Moreover, the doses of 102.0 TCID50 (n = 5) and 105.0 TCID50 (n = 5) SY18ΔI267L caused virulent phenotype, severe clinical signs, viremia, high viral load, and mortality in domestic pigs inoculated intramuscularly as the virulent parental virus strain. Therefore, the deletion of I267L does not affect the replication or the virulence of ASFV. Utilizing the fluorescent-tagged virulence deletant can be easy to gain a visual result in related research such as the inactivation effect of some drugs, disinfectants, extracts, etc. on ASFV.
Collapse
Affiliation(s)
- Yanyan Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Junnan Ke
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (J.K.); (J.Y.)
| | - Jingyuan Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Huixian Yue
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Teng Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Qian Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Xintao Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Yu Qi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Rongnian Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Shuchao Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Faming Miao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Shoufeng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Lijuan Mi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Jinjin Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (J.K.); (J.Y.)
| | - Jinmei Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Xun Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Lidong Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
| | - Ying Li
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (J.K.); (J.Y.)
- Correspondence: (Y.L.); (R.H.)
| | - Rongliang Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Y.Z.); (J.Z.); (H.Y.); (T.C.); (Q.L.); (X.Z.); (Y.Q.); (R.Z.); (S.W.); (F.M.); (S.Z.); (N.L.); (L.M.); (J.Y.); (X.H.); (L.W.)
- Correspondence: (Y.L.); (R.H.)
| |
Collapse
|
21
|
Sun W, Zhang H, Fan W, He L, Chen T, Zhou X, Qi Y, Sun L, Hu R, Luo T, Liu W, Li J. Evaluation of Cellular Immunity with ASFV Infection by Swine Leukocyte Antigen (SLA)-Peptide Tetramers. Viruses 2021; 13:v13112264. [PMID: 34835070 PMCID: PMC8617699 DOI: 10.3390/v13112264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022] Open
Abstract
African swine fever virus (ASFV) causes acute hemorrhagic fever in domestic pigs and wild boars, resulting in incalculable economic losses to the pig industry. As the mechanism of viral infection is not clear, protective antigens have not been discovered or identified. In this study, we determined that the p30, pp62, p72, and CD2v proteins were all involved in the T cell immune response of live pigs infected with ASFV, among which p72 and pp62 proteins were the strongest. Panoramic scanning was performed on T cell epitopes of the p72 protein, and three high-frequency positive epitopes were selected to construct a swine leukocyte antigen (SLA)-tetramer, and ASFV-specific T cells were detected. Subsequently, the specific T cell and humoral immune responses of ASFV-infected pigs and surviving pigs were compared. The results demonstrate that the specific T cellular immunity responses gradually increased during the infection and were higher than that in the surviving pigs in the late stages of infection. The same trend was observed in specific humoral immune responses, which were highest in surviving pigs. In general, our study provides key information for the exploration of ASFV-specific immune responses and the development of an ASFV vaccine.
Collapse
Affiliation(s)
- Wenqiang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China;
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (W.F.); (L.H.); (L.S.)
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - He Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (W.F.); (L.H.); (L.S.)
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (W.F.); (L.H.); (L.S.)
| | - Lihong He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (W.F.); (L.H.); (L.S.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Chen
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China; (T.C.); (X.Z.); (Y.Q.)
| | - Xintao Zhou
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China; (T.C.); (X.Z.); (Y.Q.)
| | - Yu Qi
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China; (T.C.); (X.Z.); (Y.Q.)
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (W.F.); (L.H.); (L.S.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongliang Hu
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China; (T.C.); (X.Z.); (Y.Q.)
- Correspondence: (R.H.); (T.L.); (W.L.); (J.L.)
| | - Tingrong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China;
- Correspondence: (R.H.); (T.L.); (W.L.); (J.L.)
| | - Wenjun Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China;
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (W.F.); (L.H.); (L.S.)
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (R.H.); (T.L.); (W.L.); (J.L.)
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (H.Z.); (W.F.); (L.H.); (L.S.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (R.H.); (T.L.); (W.L.); (J.L.)
| |
Collapse
|
22
|
Zhang G, Liu W, Gao Z, Yang S, Zhou G, Chang Y, Ma Y, Liang X, Shao J, Chang H. Antigenicity and immunogenicity of recombinant proteins comprising African swine fever virus proteins p30 and p54 fused to a cell-penetrating peptide. Int Immunopharmacol 2021; 101:108251. [PMID: 34715492 DOI: 10.1016/j.intimp.2021.108251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/11/2023]
Abstract
African swine fever (ASF) is a highly fatal swine disease threatening the global pig industry. Currently, vaccine is not commercially available for ASF. Hence, it is desirable to develop effective subunit vaccines against ASF. Here, we expressed and purified two recombinant fusion proteins comprising ASFV proteins p30 and p54 fused to a novel cell-penetrating peptide Z12, which were labeled as ZPM (Z12-p30-modified p54) and ZPMT (Z12-p30-modified p54-T cell epitope). Purified recombinant p30 and modified p54 expressed alone or fused served as controls. The transduction capacity of these recombinant proteins was assessed in RAW264.7 cells. Both ZPM and ZPMT exhibited higher transduction efficiency than the other proteins. Subsequently, humoral and cellular immune responses elicited by these proteins were evaluated in mice. ZPMT elicited the highest levels of antigen-specific IgG responses, cytokines (interleukin-2, interferon-γ, and tumor necrosis factor-α) and lymphocyte proliferation. Importantly, sera from mice immunized with ZPM or ZPMT neutralized greater than 85% of ASFV in vitro. Our results indicate that ZPMT induces potent neutralizing antibody responses and cellular immunity in mice. Therefore, ZPMT may be a suitable candidate to elicit immune responses in swine, providing valuable information for the development of subunit vaccines against ASF.
Collapse
Affiliation(s)
- Guanglei Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Wei Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Zhan Gao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Sicheng Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Guangqing Zhou
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yanyan Chang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yunyun Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Xiaxia Liang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Junjun Shao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| |
Collapse
|
23
|
African Swine Fever Virus as a Difficult Opponent in the Fight for a Vaccine-Current Data. Viruses 2021; 13:v13071212. [PMID: 34201761 PMCID: PMC8310326 DOI: 10.3390/v13071212] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Prevention and control of African swine fever virus (ASFV) in Europe, Asia, and Africa seem to be extremely difficult in view of the ease with which it spreads, its high resistance to environmental conditions, and the many obstacles related to the introduction of effective specific immunoprophylaxis. Biological properties of ASFV indicate that the African swine fever (ASF) pandemic will continue to develop and that only the implementation of an effective and safe vaccine will ensure a reduction in the spread of ASFV. At present, vaccines against ASF are not available. The latest approaches to the ASFV vaccine’s design concentrate on the development of either modified live vaccines by targeted gene deletion from different isolates or subunit vaccines. The construction of an effective vaccine is hindered by the complex structure of the virus, the lack of an effective continuous cell line for the isolation and propagation of ASFV, unpredictable and stain-specific phenotypes after the genetic modification of ASFV, a risk of reversion to virulence, and our current inability to differentiate infected animals from vaccinated ones. Moreover, the design of vaccines intended for wild boars and oral administration is desirable. Despite several obstacles, the design of a safe and effective vaccine against ASFV seems to be achievable.
Collapse
|
24
|
Wang F, Zhang H, Hou L, Yang C, Wen Y. Advance of African swine fever virus in recent years. Res Vet Sci 2021; 136:535-539. [PMID: 33882382 DOI: 10.1016/j.rvsc.2021.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
African swine fever (ASF) is one of the most devastating hemorrhagic infectious diseases that affect pigs and wild suids due to the lack of a vaccine or an effective treatment. The large dsDNA genome of African swine fever virus (ASFV) contains up to 167 ORFs that are predicted to encode proteins. Since its introduction to China in 2018, this genome has aroused the enthusiasm of researchers throughout the world. Here, we review the research progress on ASFV in recent years. Given the importance of this disease, this review will highlight recent discoveries in basic virology, focusing mainly on epidemiology, virulence, pathogenic mechanisms, diagnosis, vaccine development, and treatment; this will help in understanding virus-host interactions and disease prevention regarding ASFV.
Collapse
Affiliation(s)
- Fengxue Wang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China.
| | - He Zhang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China
| | - Lina Hou
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China
| | - Chao Yang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China
| | - Yongjun Wen
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China
| |
Collapse
|
25
|
Wu K, Liu J, Wang L, Fan S, Li Z, Li Y, Yi L, Ding H, Zhao M, Chen J. Current State of Global African Swine Fever Vaccine Development under the Prevalence and Transmission of ASF in China. Vaccines (Basel) 2020; 8:vaccines8030531. [PMID: 32942741 PMCID: PMC7564663 DOI: 10.3390/vaccines8030531] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022] Open
Abstract
African swine fever (ASF) is a highly lethal contagious disease of swine caused by African swine fever virus (ASFV). At present, it is listed as a notifiable disease reported to the World Organization for Animal Health (OIE) and a class one animal disease ruled by Chinese government. ASF has brought significant economic losses to the pig industry since its outbreak in China in August 2018. In this review, we recapitulated the epidemic situation of ASF in China as of July 2020 and analyzed the influencing factors during its transmission. Since the situation facing the prevention, control, and eradication of ASF in China is not optimistic, safe and effective vaccines are urgently needed. In light of the continuous development of ASF vaccines in the world, the current scenarios and evolving trends of ASF vaccines are emphatically analyzed in the latter part of the review. The latest research outcomes showed that attempts on ASF gene-deleted vaccines and virus-vectored vaccines have proven to provide complete homologous protection with promising efficacy. Moreover, gaps and future research directions of ASF vaccine are also discussed.
Collapse
Affiliation(s)
- Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jiameng Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lianxiang Wang
- Hog Production Division, Guangdong Wen2019s Foodstuffs Group Co, Ltd., Xinxing 527439, China;
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (K.W.); (J.L.); (S.F.); (Z.L.); (Y.L.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: ; Fax: +86-20-8528-0245
| |
Collapse
|
26
|
Bosch-Camós L, López E, Rodriguez F. African swine fever vaccines: a promising work still in progress. Porcine Health Manag 2020. [PMID: 32626597 DOI: 10.1186/s40813‐020‐00154‐2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract African swine fever (ASF), a disease of obligatory declaration to the World Organization for Animal Health (OIE), has contributed to poverty and underdevelopment of affected areas. The presence of ASF has been historically neglected in Africa, contributing to its uncontrolled expansion and favouring its spread to continental Europe on at least three occasions, the last one in 2007 through the Republic of Georgia. Since then, African swine fever virus (ASFV) has spread to neighbouring countries, reaching the European Union in 2014, China in the summer of 2018 and spreading through Southeast Asia becoming a global problem. Lack of available vaccines against ASF makes its control even more difficult, representing today the number one threat for the swine industry worldwide and negatively affecting the global commerce equilibrium. Main body In this review, we intend to put in perspective the reality of ASF vaccination today, taking into account that investment into ASF vaccine development has been traditionally unattractive, overall since ASF-free areas with large swine industries applied a non-vaccination policy for diseases listed by the OIE. The dramatic situation suffered in Asia and the increasing threat that ASF represents for wealthy countries with large swine industries, has dramatically changed the perspective that both private and public bodies have about ASF vaccinology, although this is controversial. The feasibility of modifying the ASFV genome has led to safe and efficacious experimental recombinant live attenuated viruses (LAVs). The main challenge today will be confirming the safety and efficacy of these technologies in the field, accelerating transfer to the industry for official registration and commercialization. The complexity of ASFV, together with the lack of knowledge about the mechanisms involved in protection and the specific antigens involved in it, requires further investment in research and development. Although far from the efficacy achieved by LAVs, subunit vaccines are the optimal choice for the future. If the world can wait for them or not is a contentious issue. Conclusion Despite their inherent disadvantages, LAVs will be the first technology to reach the market, while subunit vaccines will need much further research to become a successful commercial reality.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elisabeth López
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Fernando Rodriguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
27
|
Bosch-Camós L, López E, Rodriguez F. African swine fever vaccines: a promising work still in progress. Porcine Health Manag 2020; 6:17. [PMID: 32626597 PMCID: PMC7329361 DOI: 10.1186/s40813-020-00154-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/06/2020] [Indexed: 11/10/2022] Open
Abstract
ABSTRACT African swine fever (ASF), a disease of obligatory declaration to the World Organization for Animal Health (OIE), has contributed to poverty and underdevelopment of affected areas. The presence of ASF has been historically neglected in Africa, contributing to its uncontrolled expansion and favouring its spread to continental Europe on at least three occasions, the last one in 2007 through the Republic of Georgia. Since then, African swine fever virus (ASFV) has spread to neighbouring countries, reaching the European Union in 2014, China in the summer of 2018 and spreading through Southeast Asia becoming a global problem. Lack of available vaccines against ASF makes its control even more difficult, representing today the number one threat for the swine industry worldwide and negatively affecting the global commerce equilibrium. MAIN BODY In this review, we intend to put in perspective the reality of ASF vaccination today, taking into account that investment into ASF vaccine development has been traditionally unattractive, overall since ASF-free areas with large swine industries applied a non-vaccination policy for diseases listed by the OIE. The dramatic situation suffered in Asia and the increasing threat that ASF represents for wealthy countries with large swine industries, has dramatically changed the perspective that both private and public bodies have about ASF vaccinology, although this is controversial. The feasibility of modifying the ASFV genome has led to safe and efficacious experimental recombinant live attenuated viruses (LAVs). The main challenge today will be confirming the safety and efficacy of these technologies in the field, accelerating transfer to the industry for official registration and commercialization. The complexity of ASFV, together with the lack of knowledge about the mechanisms involved in protection and the specific antigens involved in it, requires further investment in research and development. Although far from the efficacy achieved by LAVs, subunit vaccines are the optimal choice for the future. If the world can wait for them or not is a contentious issue. CONCLUSION Despite their inherent disadvantages, LAVs will be the first technology to reach the market, while subunit vaccines will need much further research to become a successful commercial reality.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elisabeth López
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Fernando Rodriguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
28
|
The African Swine Fever Virus (ASFV) Topoisomerase II as a Target for Viral Prevention and Control. Vaccines (Basel) 2020; 8:vaccines8020312. [PMID: 32560397 PMCID: PMC7350233 DOI: 10.3390/vaccines8020312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
African swine fever (ASF) is, once more, spreading throughout the world. After its recent reintroduction in Georgia, it quickly reached many neighboring countries in Eastern Europe. It was also detected in Asia, infecting China, the world's biggest pig producer, and spreading to many of the surrounding countries. Without any vaccine or effective treatment currently available, new strategies for the control of the disease are mandatory. Its etiological agent, the African swine fever virus (ASFV), has been shown to code for a type II DNA topoisomerase. These are enzymes capable of modulating the topology of DNA molecules, known to be essential in unicellular and multicellular organisms, and constitute targets in antibacterial and anti-cancer treatments. In this review, we summarize most of what is known about this viral enzyme, pP1192R, and discuss about its possible role(s) during infection. Given the essential role of type II topoisomerases in cells, the data so far suggest that pP1192R is likely to be equally essential for the virus and thus a promising target for the elaboration of a replication-defective virus, which could provide the basis for an effective vaccine. Furthermore, the use of inhibitors could be considered to control the spread of the infection during outbreaks and therefore limit the spreading of the disease.
Collapse
|
29
|
Gaudreault NN, Madden DW, Wilson WC, Trujillo JD, Richt JA. African Swine Fever Virus: An Emerging DNA Arbovirus. Front Vet Sci 2020; 7:215. [PMID: 32478103 PMCID: PMC7237725 DOI: 10.3389/fvets.2020.00215] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
African swine fever virus (ASFV) is the sole member of the family Asfarviridae, and the only known DNA arbovirus. Since its identification in Kenya in 1921, ASFV has remained endemic in Africa, maintained in a sylvatic cycle between Ornithodoros soft ticks and warthogs (Phacochoerus africanus) which do not develop clinical disease with ASFV infection. However, ASFV causes a devastating and economically significant disease of domestic (Sus scrofa domesticus) and feral (Sus scrofa ferus) swine. There is no ASFV vaccine available, and current control measures consist of strict animal quarantine and culling procedures. The virus is highly stable and easily spreads by infected swine, contaminated pork products and fomites, or via transmission by the Ornithodoros vector. Competent Ornithodoros argasid soft tick vectors are known to exist not only in Africa, but also in parts of Europe and the Americas. Once ASFV is established in the argasid soft tick vector, eradication can be difficult due to the long lifespan of Ornithodoros ticks and their proclivity to inhabit the burrows of warthogs or pens and shelters of domestic pigs. Establishment of endemic ASFV infections in wild boar populations further complicates the control of ASF. Between the late 1950s and early 1980s, ASFV emerged in Europe, Russia and South America, but was mostly eradicated by the mid-1990s. In 2007, a highly virulent genotype II ASFV strain emerged in the Caucasus region and subsequently spread into the Russian Federation and Europe, where it has continued to circulate and spread. Most recently, ASFV emerged in China and has now spread to several neighboring countries in Southeast Asia. The high morbidity and mortality associated with ASFV, the lack of an efficacious vaccine, and the complex makeup of the ASFV virion and genome as well as its lifecycle, make this pathogen a serious threat to the global swine industry and national economies. Topics covered by this review include factors important for ASFV infection, replication, maintenance, and transmission, with attention to the role of the argasid tick vector and the sylvatic transmission cycle, current and future control strategies for ASF, and knowledge gaps regarding the virus itself, its vector and host species.
Collapse
Affiliation(s)
- Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - William C. Wilson
- Arthropod Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, United States
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
30
|
Sang H, Miller G, Lokhandwala S, Sangewar N, Waghela SD, Bishop RP, Mwangi W. Progress Toward Development of Effective and Safe African Swine Fever Virus Vaccines. Front Vet Sci 2020; 7:84. [PMID: 32154279 PMCID: PMC7047163 DOI: 10.3389/fvets.2020.00084] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
African swine fever is a major concern due to its negative impact on pork production in affected regions. Due to lack of treatment and a safe vaccine, it has been extremely difficult to control this devastating disease. The mechanisms of virus entry, replication within the host cells, immune evasion mechanisms, correlates of protection, and antigens that are effective at inducing host immune response, are now gradually being identified. This information is required for rational design of novel disease control strategies. Pigs which recover from infection with less virulent ASFV isolates can be protected from challenge with related virulent isolates. This strongly indicates that an effective vaccine against ASFV could be developed. Nonetheless, it is clear that effective immunity depends on both antibody and cellular immune responses. This review paper summarizes the key studies that have evaluated three major approaches for development of African Swine Fever virus vaccines. Recent immunization strategies have involved development and in vivo evaluation of live attenuated virus, and recombinant protein- and DNA-based and virus-vectored subunit vaccine candidates. The limitations of challenge models for evaluating ASFV vaccine candidates are also discussed.
Collapse
Affiliation(s)
- Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Gabrielle Miller
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Suryakant D. Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Richard P. Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
31
|
Teklue T, Sun Y, Abid M, Luo Y, Qiu HJ. Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg Dis 2019; 67:529-542. [PMID: 31538406 DOI: 10.1111/tbed.13364] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
African swine fever (ASF) is a highly lethal haemorrhagic disease of swine caused by African swine fever virus (ASFV), a unique and genetically complex virus. The disease continues to be a huge burden to the pig industry in Africa, Europe and recently in Asia, especially China. The purpose of this review was to recapitulate the current scenarios and evolving trends in ASF vaccine development. The unavailability of an applicable ASF vaccine is partly due to the complex nature of the virus, which encodes various proteins associated with immune evasion. Moreover, the incomplete understanding of immune protection determinants of ASFV hampers the rational vaccine design. Developing an effective ASF vaccine continues to be a challenging task due to many undefined features of ASFV immunobiology. Recent attempts on DNA and live attenuated ASF vaccines have been reported with promising efficacy, and especially live attenuated vaccines have been proved to provide complete homologous protection. Single-cycle viral vaccines have been developed for various diseases such as Rift Valley fever and bluetongue, and the rational extension of these strategies could be helpful for developing single-cycle ASF vaccines. Therefore, live attenuated vaccines in short term and single-cycle vaccines in long term would be the next generation of ASF vaccines.
Collapse
Affiliation(s)
- Teshale Teklue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Abid
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
32
|
Gaudreault NN, Richt JA. Subunit Vaccine Approaches for African Swine Fever Virus. Vaccines (Basel) 2019; 7:vaccines7020056. [PMID: 31242632 PMCID: PMC6631172 DOI: 10.3390/vaccines7020056] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
African swine fever virus (ASFV) is the cause of a highly fatal disease in swine, for which there is no available vaccine. The disease is highly contagious and poses a serious threat to the swine industry worldwide. Since its introduction to the Caucasus region in 2007, a highly virulent, genotype II strain of ASFV has continued to circulate and spread into Eastern Europe and Russia, and most recently into Western Europe, China, and various countries of Southeast Asia. This review summarizes various ASFV vaccine strategies that have been investigated, with focus on antigen-, DNA-, and virus vector-based vaccines. Known ASFV antigens and the determinants of protection against ASFV versus immunopathological enhancement of infection and disease are also discussed.
Collapse
Affiliation(s)
- Natasha N Gaudreault
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, K224 Mosier Hall, 1800 Denison Ave, Manhattan, KS 66506, USA.
| | - Juergen A Richt
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, K224 Mosier Hall, 1800 Denison Ave, Manhattan, KS 66506, USA.
| |
Collapse
|
33
|
DNA-Protein Vaccination Strategy Does Not Protect from Challenge with African Swine Fever Virus Armenia 2007 Strain. Vaccines (Basel) 2019; 7:vaccines7010012. [PMID: 30696015 PMCID: PMC6466342 DOI: 10.3390/vaccines7010012] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
African swine fever virus (ASFV) causes high morbidity and mortality in swine (Sus scrofa), for which there is no commercially available vaccine. Recent outbreaks of the virus in Trans-Caucasus countries, Eastern Europe, Belgium and China highlight the urgent need to develop effective vaccines against ASFV. Previously, we evaluated the immunogenicity of a vaccination strategy designed to test various combinations of ASFV antigens encoded by DNA plasmids and recombinant proteins with the aim to activate both humoral and cellular immunity. Based on our previous results, the objective of this study was to test the combined DNA-protein vaccine strategy using a cocktail of the most immunogenic antigens against virulent ASFV challenge. Pigs were vaccinated three times with a cocktail that included ASFV plasmid DNA (CD2v, p72, p32, +/−p17) and recombinant proteins (p15, p35, p54, +/−p17). Three weeks after the third immunization, all pigs were challenged with the virulent ASFV Armenia 2007 strain. The results showed that vaccinated pigs were not protected from ASFV infection or disease. Compared to the non-vaccinated controls, earlier onset of clinical signs, viremia, and death were observed for the vaccinated animals following virulent ASFV challenge. ASFV induced pathology was also enhanced in the vaccinated pigs. Furthermore, while the vaccinated pigs developed antigen-specific antibodies, immunized pig sera at the time of challenge lacked the capacity to neutralize virus, and instead was observed to enhance ASFV infection in vitro. The results of this work points to a putative immune enhancement mechanism involved in ASFV pathogenesis that warrants further investigation. This pilot study provides insight for the selection of appropriate combinations of ASFV antigens for the development of a rationally-designed, safe, and efficacious vaccine for ASF.
Collapse
|