1
|
Xiao J, Wang Y, Wu D, Song Y, Cai X, Chen H, Zhou H, Xu X. A marker-free genetic manipulation method for Glaesserella parasuis strains developed by alternately culturing transformants at 37°C and 30°C. BMC Biotechnol 2024; 24:60. [PMID: 39227838 PMCID: PMC11373133 DOI: 10.1186/s12896-024-00887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Glaesserella parasuis (G. parasuis) is the causative agent of Glässer's disease, which causes significant economic losses in the swine industry. However, research on the pathogenesis of G. parasuis has been hampered by the lack of a simple and efficient marker-free knockout system. RESULTS In this study, a marker-free knockout system was developed for G. parasuis using a temperature-sensitive vector. By alternating the incubation of transformants at 30°C and 37°C, we optimized the screening process for this system. The system was successfully applied to knockout the KanR cassette from JS0135ΔnanH::KanR, achieving a knockout efficiency of 90% in the final round of screening. To confirm that temperature variation was a key factor, we proceeded with knocking out the nanH and apd genes in the CF7066 strain. The knockout efficiency reached up to 100%, with the shortest screening time being only four days. The knockout of the nanH gene resulted in a significant reduction in the growth vitality of the strains, while the knockout of the apd gene led to an approximate 56% improvement in the adhesion rate. Additionally, we observed that the expression of recombinant genes in transformants was higher at 30℃ than at 37℃, with the recC gene being upregulated approximately 7-fold. In contrast, there was almost no difference in the expression of recombinant genes between 30℃ and 37℃ in the wild-type strains. This discrepancy was likely due to an elevated copy number of target plasmids at 30℃, which may have resulted in the enhanced expression of recombinant genes. CONCLUSIONS In conclusion, this newly developed gene knockout system for G. parasuis presents a valuable tool for advancing research on this organism.
Collapse
Affiliation(s)
- Jing Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuxin Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongfang Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Yuping Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xuwang Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaojuan Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
2
|
Tang X, Xu S, Yang Z, Wang K, Dai K, Zhang Y, Hu B, Wang Y, Cao S, Huang X, Yan Q, Wu R, Zhao Q, Du S, Wen X, Wen Y. EspP2 Regulates the Adhesion of Glaesserella parasuis via Rap1 Signaling Pathway. Int J Mol Sci 2024; 25:4570. [PMID: 38674155 PMCID: PMC11050538 DOI: 10.3390/ijms25084570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Different levels of EspP2 expression are seen in strains of Glaesserella parasuis with high and low pathogenicity. As a potential virulence factor for G. parasuis, the pathogenic mechanism of EspP2 in infection of host cells is not clear. To begin to elucidate the effect of EspP2 on virulence, we used G. parasuis SC1401 in its wild-type form and SC1401, which was made EspP2-deficient. We demonstrated that EspP2 causes up-regulation of claudin-1 and occludin expression, thereby promoting the adhesion of G. parasuis to host cells; EspP2-deficiency resulted in significantly reduced adhesion of G. parasuis to cells. Transcriptome sequencing analysis of EspP2-treated PK15 cells revealed that the Rap1 signaling pathway is stimulated by EspP2. Blocking this pathway diminished occludin expression and adhesion. These results indicated that EspP2 regulates the adhesion of Glaesserella parasuis via Rap1 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Liu D, Zhang H, Tan H, Jin Y, Zhang C, Bo Z, Zhang X, Guo M, Wu Y. Basic Characterization of Natural Transformation in Avibacterium paragallinarum. Microbiol Spectr 2023; 11:e0520922. [PMID: 37212663 PMCID: PMC10269479 DOI: 10.1128/spectrum.05209-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/04/2023] [Indexed: 05/23/2023] Open
Abstract
Avibacterium paragallinarum is the pathogen involved in infectious coryza (IC), an acute infectious upper respiratory disease in chickens. The prevalence of IC has increased in China in recent years. There is a lack of reliable and effective procedures for gene manipulation, which has limited the research on the bacterial genetics and pathogenesis of A. paragallinarum. Natural transformation has been developed as a method of gene manipulation in Pasteurellaceae by the introduction of foreign genes or DNA fragments into bacterial cells, but there has been no report on natural transformation in A. paragallinarum. In this study, we analyzed the existence of homologous genetic factors and competence proteins underlying natural transformation in A. paragallinarum and established a method for transformation in it. Through bioinformatics analysis, we identified 16 homologs of Haemophilus influenzae competence proteins in A. paragallinarum. We found that the uptake signal sequence (USS) was overrepresented in the genome of A. paragallinarum (1,537 to 1,641 copies of the core sequence ACCGCACTT). We then constructed a plasmid, pEA-KU, that carries the USS and a plasmid, pEA-K, without the USS. These plasmids can be transferred via natural transformation into naturally competent strains of A. paragallinarum. Significantly, the plasmid that carries USS showed a higher transformation efficiency. In summary, our results demonstrate that A. paragallinarum has the ability to undergo natural transformation. These findings should prove to be a valuable tool for gene manipulation in A. paragallinarum. IMPORTANCE Natural transformation is an important mechanism for bacteria to acquire exogenous DNA molecules during the process of evolution. Additionally, it can also be used as a method to introduce foreign genes into bacteria under laboratory conditions. Natural transformation does not require equipment such as an electroporation apparatus. It is easy to perform and is similar to gene transfer under natural conditions. However, there have been no reports on natural transformation in Avibacterium paragallinarum. In this study, we analyzed the presence of homologous genetic factors and competence proteins underlying natural transformation in A. paragallinarum. Our results indicate that natural competence could be induced in A. paragallinarum serovars A, B, and C. Furthermore, the method that we established to transform plasmids into naturally competent A. paragallinarum strains was stable and efficient.
Collapse
Affiliation(s)
- Donghui Liu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hao Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huihui Tan
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yikun Jin
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zongyi Bo
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, Jiangsu, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Tang X, Yang Z, Dai K, Liu G, Chang YF, Tang X, Wang K, Zhang Y, Hu B, Cao S, Huang X, Yan Q, Wu R, Zhao Q, Du S, Lang Y, Han X, Huang Y, Wen X, Wen Y. The molecular diversity of transcriptional factor TfoX is a determinant in natural transformation in Glaesserella parasuis. Front Microbiol 2022; 13:948633. [PMID: 35966685 PMCID: PMC9372613 DOI: 10.3389/fmicb.2022.948633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Natural transformation is a mechanism by which a particular bacterial species takes up foreign DNA and integrates it into its genome. The swine pathogen Glaesserella parasuis (G. parasuis) is a naturally transformable bacterium. The regulation of competence, however, is not fully understood. In this study, the natural transformability of 99 strains was investigated. Only 44% of the strains were transformable under laboratory conditions. Through a high-resolution melting curve and phylogenetic analysis, we found that genetic differences in the core regulator of natural transformation, the tfoX gene, leads to two distinct natural transformation phenotypes. In the absence of the tfoX gene, the highly transformable strain SC1401 lost its natural transformability. In addition, when the SC1401 tfoX gene was replaced by the tfoX of SH0165, which has no natural transformability, competence was also lost. These results suggest that TfoX is a core regulator of natural transformation in G. parasuis, and that differences in tfoX can be used as a molecular indicator of natural transformability. Transcriptomic and proteomic analyses of the SC1401 wildtype strain, and a tfoX gene deletion strain showed that differential gene expression and protein synthesis is mainly centered on pathways related to glucose metabolism. The results suggest that tfoX may mediate natural transformation by regulating the metabolism of carbon sources. Our study provides evidence that tfoX plays an important role in the natural transformation of G. parasuis.
Collapse
Affiliation(s)
- Xiaoyu Tang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Geyan Liu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Xinwei Tang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Wang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiwen Zhang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bangdi Hu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yifei Lang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yiping Wen,
| |
Collapse
|
5
|
Generation of markerless and multiple-gene knockout in Glaesserella parasuis based on natural transformation and Flp recombinase. Appl Microbiol Biotechnol 2022; 106:5167-5178. [DOI: 10.1007/s00253-022-11994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/02/2022]
|
6
|
Generation and Evaluation of a Glaesserella (Haemophilus) parasuis Capsular Mutant. Infect Immun 2020; 88:IAI.00879-19. [PMID: 32094250 DOI: 10.1128/iai.00879-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/14/2020] [Indexed: 01/18/2023] Open
Abstract
Glaesserella (Haemophilus) parasuis is a commensal bacterium of the upper respiratory tract in pigs and also the causative agent of Glässer's disease, which causes significant morbidity and mortality in pigs worldwide. Isolates are characterized into 15 serovars by their capsular polysaccharide, which has shown a correlation with isolate pathogenicity. To investigate the role the capsule plays in G. parasuis virulence and host interaction, a capsule mutant of the serovar 5 strain HS069 was generated (HS069Δcap) through allelic exchange following natural transformation. HS069Δcap was unable to cause signs of systemic disease during a pig challenge study and had increased sensitivity to complement killing and phagocytosis by alveolar macrophages. Compared with the parent strain, HS069Δcap produced more robust biofilm and adhered equivalently to 3D4/31 cells; however, it was unable to persistently colonize the nasal cavity of inoculated pigs, with all pigs clearing HS069Δcap by 5 days postchallenge. Our results indicate the importance of the capsular polysaccharide to G. parasuis virulence as well as nasal colonization in pigs.
Collapse
|
7
|
Dai K, Yang Z, Chang YF, He L, Cao S, Zhao Q, Huang X, Wu R, Huang Y, Yan Q, Han X, Ma X, Wen X, Wen Y. Construction of targeted and integrative promoter-reporter plasmids pDK-K and pDK-G to measure gene expression activity in Haemophilus parasuis. Microb Pathog 2019; 134:103565. [PMID: 31158493 DOI: 10.1016/j.micpath.2019.103565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/10/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
Haemophilus parasuis (H. parasuis) is rather difficult to manipulate genetically due to the diversity of restriction-modification systems and other mechanisms harbored by various isolates. This prevents exogenous plasmids from replicating in this species and hinders research efforts focused on transcriptional regulators in this bacterium. In this study, we generated a convenient promoter reporter system based on gene knock-in method using natural transformation in H. parasuis. Gene knock-in has proven useful as a powerful tool facilitating identification and studying the transcription activities of regulators under a variety of conditions that favor gene transcription or expression from an incorporated promoter. The vectors, pDK-K and pDK-G, carrying promoterless reporter lacZ gene and two homologous sequences flanking a knock-in site, may have some advantages over the extensively used plasmid-bearing reporter system in other bacteria in stability and ease of genetic manipulation in H. parasuis. The knock-in site was positioned at a site occupied by flanking genes that were both hypothetical and had the same transcription orientation, thus the expression of the reversely cloned promoter-lacZ fusion wouldn't be affected by the upstream promoter on the chromosome. The expression activity of lacZ gene under the transcriptional activation of a 300 bp promoter-proximal segment of cyaA, crp or comA genes in H. parasuis was separately validated using X-gal and o-nitrophenyl-β-d-galactoside(ONPG) as substrates. The derivatives harboring promoter-lacZ fusion segments showed significantly higher β-galactosidase activity levels than the promoterlessones both in TSB++ broth and on TSA++ plate as screened either by X-gal method or the standard Miller method. We also used pDK vector to further certify that the cyaA promoter is inducible and whose transcriptional levels were in correlation with the growth kinetics of the bacteria in TSB++. With this system, gene knock-in method based on natural transformation in H. parasuis proved to be useful in identifying transcriptional regulation of a certain promoter.
Collapse
Affiliation(s)
- Ke Dai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, NY, USA
| | - Lvqin He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
8
|
Zhang X, Cai X, Qi Y, Liu Y, Cao Q, Wang X, Chen H, Xu X. Improvement in the efficiency of natural transformation of Haemophilus parasuis by shuttle-plasmid methylation. Plasmid 2018; 98:8-14. [PMID: 30003899 DOI: 10.1016/j.plasmid.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 11/26/2022]
Abstract
Some Haemophilus parasuis strains display resistance to transformation with Escherichia.coli-derived plasmids. This property limits the application of genetic approaches previously developed for H. parasuis. The present study showed that natural transformation with the shuttle plasmid pS2UK led to allelic exchange in H. parasuis strains SH0165 and CF7066. Furthermore, natural transformation with pS2UK yielded allelic exchange mutants in 10 of 17 H. parasuis strains, similar to results using the suicide plasmid pK2UK. Subsequently, 17 H. parasuis strains were transformed with pS2UK by electroporation and 13 obtained the transformants harboring the complete plasmid molecules. As a result, natural transformation of homologous blank strains with the H. parasui-derived plasmids significantly improved the transformation efficiency targeted at obtaining allelic exchange mutants. In addition, shuttle plasmids pS1UG and pSHUK that carried the different homologous arm sequences also displayed the increased transformation efficiency after they were replicated in homologous H. parasuis cells. The approach described here not only improved the efficiency of natural transformation of H. parasuis, but also enlarged the range of transformable H. parasuis strains, thereby enabling application of H. parasuis-specific genetic manipulation techniques in a wider range of isolates.
Collapse
Affiliation(s)
- Xiaojing Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China
| | - Xuwang Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Yi Qi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China
| | - Yunbao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China
| | - Qi Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xiaojuan Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University,Wuhan, Hubei 430070,China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| |
Collapse
|
9
|
He L, Dai K, Wen X, Ding L, Cao S, Huang X, Wu R, Zhao Q, Huang Y, Yan Q, Ma X, Han X, Wen Y. QseC Mediates Osmotic Stress Resistance and Biofilm Formation in Haemophilus parasuis. Front Microbiol 2018; 9:212. [PMID: 29487590 PMCID: PMC5816903 DOI: 10.3389/fmicb.2018.00212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/30/2018] [Indexed: 01/05/2023] Open
Abstract
Haemophilus parasuis is known as a commensal organism discovered in the upper respiratory tract of swine where the pathogenic bacteria survive in various adverse environmental stress. QseC, a histidine protein kinase of the two-component regulatory systems CheY/QseC, is involved in the environmental adaptation in bacteria. To investigate the role of QseC in coping with the adverse environment stresses and survive in the host, we constructed a qseC mutant of H. parasuis serovar 13 strain (ΔqseC), MY1902. In this study, we found that QseC was involved in stress tolerance of H. parasuis, by the ΔqseC exhibited a decreased resistance to osmotic pressure, oxidative stress, and heat shock. Moreover, the ΔqseC weakened the ability to take up iron and biofilm formation. We also found that the QseC participate in sensing the epinephrine in environment to regulate the density of H. parasuis.
Collapse
Affiliation(s)
- Lvqin He
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lingqiang Ding
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Dai K, He L, Chang YF, Cao S, Zhao Q, Huang X, Wu R, Huang Y, Yan Q, Han X, Ma X, Wen X, Wen Y. Basic Characterization of Natural Transformation in a Highly Transformable Haemophilus parasuis Strain SC1401. Front Cell Infect Microbiol 2018; 8:32. [PMID: 29473023 PMCID: PMC5809987 DOI: 10.3389/fcimb.2018.00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/25/2018] [Indexed: 11/13/2022] Open
Abstract
Haemophilus parasuis causes Glässer's disease and pneumonia, incurring serious economic losses in the porcine industry. In this study, natural competence was investigated in H. parasuis. We found competence genes in H. parasuis homologous to ones in Haemophilus influenzae and a high consensus battery of Sxy-dependent cyclic AMP (cAMP) receptor protein (CRP-S) regulons using bioinformatics. High rates of natural competence were found from the onset of stationary-phase growth condition to mid-stationary phase (OD600 from 0.29 to 1.735); this rapidly dropped off as cells reached mid-stationary phase (OD600 from 1.735 to 1.625). As a whole, bacteria cultured in liquid media were observed to have lower competence levels than those grown on solid media plates. We also revealed that natural transformation in this species is stable after 200 passages and is largely dependent on DNA concentration. Transformation competition experiments showed that heterogeneous DNA cannot outcompete intraspecific natural transformation, suggesting an endogenous uptake sequence or other molecular markers may be important in differentiating heterogeneous DNA. We performed qRT-PCR targeting multiple putative competence genes in an effort to compare bacteria pre-cultured in TSB++ vs. TSA++ and SC1401 vs. SH0165 to determine expression profiles of the homologs of competence-genes in H. influenzae. Taken together, this study is the first to investigate natural transformation in H. parasuis based on a highly naturally transformable strain SC1401.
Collapse
Affiliation(s)
- Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lvqin He
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Dai K, Wen X, Chang YF, Cao S, Zhao Q, Huang X, Wu R, Huang Y, Yan Q, Han X, Ma X, Wen Y. A streptomycin resistance marker in H. parasuis based on site-directed mutations in rpsL gene to perform unmarked in-frame mutations and to verify natural transformation. PeerJ 2018; 6:e4253. [PMID: 29340249 PMCID: PMC5767333 DOI: 10.7717/peerj.4253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Haemophilus parasuis is a member of the family Pasteurellaceae and a major causative agent of Glässer’s disease. This bacterium is normally a benign swine commensal but may become a deadly pathogen upon penetration into multiple tissues, contributing to severe lesions in swine. We have established a successive natural transformation-based markerless mutation system in this species. However, the two-step mutation system requires screening of natural competent cells, and cannot delete genes which regulate natural competence per se. In this study, we successfully obtained streptomycin-resistant derivatives from H. parasuis wild type strain SC1401 by using ethyl methane sulfonate (EMS, CH3SO2OC2H5). Upon sequencing and site-directed mutations, we uncovered that the EMS-induced point mutation in rpsL at codon 43rd (AAA → AGA; K43R) or at 88th (AAA → AGA; K88R) confers a much higher streptomycin resistance than clinical isolates. We have applied the streptomycin resistance marker as a positive selection marker to perform homologous recombination through conjugation and successfully generated a double unmarked in-frame targeted mutant 1401D88△tfox△arcA. Combined with a natural transformation-based knockout system and this genetic technique, multiple deletion mutants or attenuated strains of H. parasuis can be easily constructed. Moreover, the mutant genetic marker rpsL and streptomycin resistant phenotypes can serve as an effective tool to select naturally competent strains, and to verify natural transformation quantitatively.
Collapse
Affiliation(s)
- Ke Dai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Chen F, Hu H, Li Z, Huang J, Cai X, Wang C, He Q, Cao J. Deletion of HAPS_2096 Increases Sensitivity to Cecropin B in Haemophilus parasuis. J Mol Microbiol Biotechnol 2015; 25:284-91. [PMID: 26304836 DOI: 10.1159/000434752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cecropin B (CB) is a very effective natural antimicrobial peptide that has shown great potential for future antimicrobial drug development. HAPS_2096 is a Haemophilus parasuis gene that encodes the periplasmic substrate-binding protein of an ATP-binding cassette-type amino acid transporter. In this research, we constructed and verified an HAPS_2096 deletion mutant and a complementary HAPS_2096 mutant of H. parasuis JS0135. A bactericidal assay revealed that the HAPS_2096 deletion mutant was significantly more sensitive than the wild-type strain to 0.25-0.5 µg/ml CB. However, the gene complementation alleviated the CB sensitivity of the mutant. Immunoelectron microscopy observation following a 30-min treatment with a sublethal concentration of CB (0.25 μg/ml) revealed more extensive morphological damage in the mutant strain than in the wild-type strain. Hence, our results suggest that the HAPS_2096 gene contributes to H. parasuis resistance to CB.
Collapse
Affiliation(s)
- Fanjie Chen
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Curran DM, Adamiak PJ, Fegan JE, Qian C, Yu RH, Schryvers AB. Sequence and structural diversity of transferrin receptors in Gram-negative porcine pathogens. Vaccine 2015; 33:5700-5707. [PMID: 26263196 DOI: 10.1016/j.vaccine.2015.07.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/13/2015] [Accepted: 07/25/2015] [Indexed: 10/23/2022]
Abstract
Actinobacillus pleuropneumoniae, Actinobacillus suis, and Haemophilus parasuis are bacterial pathogens from the upper respiratory tract that are responsible for a substantial burden of porcine disease. Although reduction of disease has been accomplished by intensive management practices, immunization remains an important strategy for disease prevention, particularly when intensive management practices are not feasible or suitable. An attractive target for vaccine development is the surface receptor involved in acquiring iron from host transferrin, since it is common to all three pathogenic species and has been shown to be essential for survival and disease causation. It has also recently been demonstrated that an engineered antigen derived from the lipoprotein component of the receptor, transferrin-binding protein B (TbpB), was more effective at preventing infection by H. parasuis than a commercial vaccine product. This study was initiated to explore the genetic and immunogenic diversity of the transferrin receptor system from these species. Nucleic acid sequences were obtained from a geographically and temporally diverse collection of isolates, consisting of 41 A. pleuropneumoniae strains, 30 H. parasuis strains, and 2 A. suis strains. Phylogenetic analyses demonstrated that the receptor protein sequences cluster independently of species, suggesting that there is genetic exchange between these species such that receptor-based vaccines should logically target all three species. To evaluate the cross-reactive response of TbpB-derived antigens, pigs were immunized with the intact TbpB, the TbpB N-lobe and the TbpB C-lobe from A. pleuropneumoniae strain H49 and the resulting sera were tested against a representative panel of TbpBs; demonstrating that the C-lobe induces a broadly cross-reactive response. Overall our results indicate that there is a common reservoir for transferrin receptor antigenic variation amongst these pathogens. While this could present a challenge to future vaccine development, our results suggest a rationally designed TbpB-based vaccine may provide protection against all three pathogens.
Collapse
Affiliation(s)
- David M Curran
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Paul J Adamiak
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Jamie E Fegan
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Chenzhe Qian
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Rong-Hua Yu
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
14
|
Zhang L, Li Y, Dai K, Wen X, Wu R, Huang X, Jin J, Xu K, Yan Q, Huang Y, Ma X, Wen Y, Cao S. Establishment of a Successive Markerless Mutation System in Haemophilus parasuis through Natural Transformation. PLoS One 2015; 10:e0127393. [PMID: 25985077 PMCID: PMC4436007 DOI: 10.1371/journal.pone.0127393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/15/2015] [Indexed: 11/18/2022] Open
Abstract
Haemophilus parasuis, belonging to the family Pasteurellaceae, is the causative agent of Glässer's disease leading to serious economic losses. In this study, a successive markerless mutation system for H. parasuis using two sequential steps of natural transformation was developed. By the first homologous recombination, the target genes were replaced by a cassette carrying kanamycin resistance gene and sacB (which confers sensitivity to sucrose) gene using kanamycin selection, followed by the second reconstruction to remove the selection cassette, with application of sucrose to further screen unmarked mutants. To improve DNA transformation frequency, several parameters have been analyzed further in this work. With this method, two unmarked deletions in one strain have been generated successfully. It is demonstrated that this system can be employed to construct multi-gene scarless deletions, which is of great help for developing live attenuated vaccines for H. parasuis.
Collapse
Affiliation(s)
- Luhua Zhang
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ying Li
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ke Dai
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xintian Wen
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Rui Wu
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xiaobo Huang
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Jin Jin
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Kui Xu
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qigui Yan
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yong Huang
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xiaoping Ma
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yiping Wen
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
- * E-mail: (YW); (SC)
| | - Sanjie Cao
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
- * E-mail: (YW); (SC)
| |
Collapse
|
15
|
Zhang L, Li Y, Dai K, Wen Y, Wen X, Wu R, Huang X, Cao S. The confirmation of the DNA uptake signal sequence needed for genetic manipulation in Haemophilus parasuis. Vet Microbiol 2015; 173:395-6. [PMID: 25389554 DOI: 10.1016/j.vetmic.2014.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Bigas A, Garrido ME, Pérez de Rozas AM, Badiola I, Barbé J, Llagostera M. Authors’ response: Recognition sequence for DNA uptake in Haemophilus parasuis. Vet Microbiol 2014; 173:397. [DOI: 10.1016/j.vetmic.2014.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Zhang B, Tang C, Liao M, Yue H. Update on the pathogenesis of Haemophilus parasuis infection and virulence factors. Vet Microbiol 2014; 168:1-7. [DOI: 10.1016/j.vetmic.2013.07.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/09/2023]
|
18
|
Costa-Hurtado M, Aragon V. Advances in the quest for virulence factors of Haemophilus parasuis. Vet J 2013; 198:571-6. [DOI: 10.1016/j.tvjl.2013.08.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/20/2013] [Accepted: 08/25/2013] [Indexed: 10/26/2022]
|
19
|
Luan SL, Chaudhuri RR, Peters SE, Mayho M, Weinert LA, Crowther SA, Wang J, Langford PR, Rycroft A, Wren BW, Tucker AW, Maskell DJ. Generation of a Tn5 transposon library in Haemophilus parasuis and analysis by transposon-directed insertion-site sequencing (TraDIS). Vet Microbiol 2013; 166:558-66. [PMID: 23928120 DOI: 10.1016/j.vetmic.2013.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
Haemophilus parasuis is an important respiratory tract pathogen of swine and the etiological agent of Glässer's disease. The molecular pathogenesis of H. parasuis is not well studied, mainly due to the lack of efficient tools for genetic manipulation of this bacterium. In this study we describe a Tn5-based random mutagenesis method for use in H. parasuis. A novel chloramphenicol-resistant Tn5 transposome was electroporated into the virulent H. parasuis serovar 5 strain 29755. High transposition efficiency of Tn5, up to 10(4) transformants/μg of transposon DNA, was obtained by modification of the Tn5 DNA in the H. parasuis strain HS071 and establishment of optimal electrotransformation conditions, and a library of approximately 10,500 mutants was constructed. Analysis of the library using transposon-directed insertion-site sequencing (TraDIS) revealed that the insertion of Tn5 was evenly distributed throughout the genome. 10,001 individual mutants were identified, with 1561 genes being disrupted (69.4% of the genome). This newly-developed, efficient mutagenesis approach will be a powerful tool for genetic manipulation of H. parasuis in order to study its physiology and pathogenesis.
Collapse
Affiliation(s)
- Shi-Lu Luan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The role of galU and galE of Haemophilus parasuis SC096 in serum resistance and biofilm formation. Vet Microbiol 2013; 162:278-84. [DOI: 10.1016/j.vetmic.2012.08.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/20/2022]
|
21
|
Zehr ES, Lavrov DV, Tabatabai LB. Comparison of Haemophilus parasuis reference strains and field isolates by using random amplified polymorphic DNA and protein profiles. BMC Microbiol 2012; 12:108. [PMID: 22703293 PMCID: PMC3499290 DOI: 10.1186/1471-2180-12-108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/31/2012] [Indexed: 11/10/2022] Open
Abstract
Background Haemophilus parasuis is the causative agent of Glässer’s disease and is a pathogen of swine in high-health status herds. Reports on serotyping of field strains from outbreaks describe that approximately 30% of them are nontypeable and therefore cannot be traced. Molecular typing methods have been used as alternatives to serotyping. This study was done to compare random amplified polymorphic DNA (RAPD) profiles and whole cell protein (WCP) lysate profiles as methods for distinguishing H. parasuis reference strains and field isolates. Results The DNA and WCP lysate profiles of 15 reference strains and 31 field isolates of H. parasuis were analyzed using the Dice and neighbor joining algorithms. The results revealed unique and reproducible DNA and protein profiles among the reference strains and field isolates studied. Simpson’s index of diversity showed significant discrimination between isolates when three 10mer primers were combined for the RAPD method and also when both the RAPD and WCP lysate typing methods were combined. Conclusions The RAPD profiles seen among the reference strains and field isolates did not appear to change over time which may reflect a lack of DNA mutations in the genes of the samples. The recent field isolates had different WCP lysate profiles than the reference strains, possibly because the number of passages of the type strains may affect their protein expression.
Collapse
Affiliation(s)
- Emilie S Zehr
- Ruminant Diseases and Immunology, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA 50010, USA.
| | | | | |
Collapse
|
22
|
Zhang NZ, Chu YF, Gao PC, Zhao P, He Y, Lu ZX. Immunological identification and characterization of extracellular serine protease-like protein encoded in a putative espP2 gene of Haemophilus parasuis. J Vet Med Sci 2012; 74:983-7. [PMID: 22446405 DOI: 10.1292/jvms.11-0260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Haemophilus parasuis is known to produce a group of virulence-associated autotransporter (AT) proteins, VtaAs; however, no other ATs have been characterized yet. On the basis of the reported sequence of a putative espP2 gene for extracellular serine protease (ESP)-like protein of H. parasuis, this putative AT gene was successfully amplified from H. parasuis serotype 5 field strain HPS0819, cloned and sequenced. The confirmed ORF sequence showed 100% identity with the reported putative espP2 gene. The recombinant ESP-like protein purified from Escherichia coli with a pET expression system was used for immunological characterization. An approximately 85 kDa antigen was detected in cultured H. parasuis by using antiserum to the purified ESP-like protein, and antibodies against the recombinant ESP-like protein were detected in a selected serum from pigs with experimental H. parasuis infection. The results indicated that H. parasuis could produce ESP-like protein in vitro and in vivo. In an immune protection study using guinea pigs, 6 out of 10 animals immunized with the recombinant ESP-like protein survived after challenge with 5 × 10(9) bacteria of strain HPS0819, whereas 7 out of 10 animals immunized with formalin-inactivated H0819 bacterin survived after challenge. The results suggest that ESP-like protein could be one of the vaccine antigen candidates for H. parasuis infection.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | | | | | | | | | | |
Collapse
|
23
|
Electrotransformation of Haemophilus parasuis with in vitro modified DNA based on a novel shuttle vector. Vet Microbiol 2012; 155:310-6. [DOI: 10.1016/j.vetmic.2011.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 11/22/2022]
|
24
|
Zhang B, Xu C, Zhou S, Feng S, Zhang L, He Y, Liao M. Comparative proteomic analysis of a Haemophilus parasuis SC096 mutant deficient in the outer membrane protein P5. Microb Pathog 2012; 52:117-24. [DOI: 10.1016/j.micpath.2011.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/14/2011] [Accepted: 11/21/2011] [Indexed: 11/25/2022]
|
25
|
Zhang B, Feng S, Xu C, Zhou S, He Y, Zhang L, Zhang J, Guo L, Liao M. Serum resistance in Haemophilus parasuis SC096 strain requires outer membrane protein P2 expression. FEMS Microbiol Lett 2011; 326:109-15. [PMID: 22092746 DOI: 10.1111/j.1574-6968.2011.02433.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 11/30/2022] Open
Abstract
Haemophilus parasuis outer membrane protein P2 (OmpP2), the most abundant protein in the outer membrane, has been identified as an antigenic protein and a potential virulence factor. To study the precise function of OmpP2, an ompP2-deficient mutant (ΔompP2) of a H. parasuis serovar 4 clinical strain SC096 was constructed by a modified natural transformation system. Compared with the wild-type SC096 strain, the ΔompP2 mutant showed a pronounced growth defect and exhibited significantly greater sensitivity to the bactericidal action of porcine and rabbit sera, whereas the complemented strain could restore the growth and serum resistance phenotypes. The results indicated that H. parasuis OmpP2 from SC096 strain is an important surface protein involved in serum resistance.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Xu Z, Yue M, Zhou R, Jin Q, Fan Y, Bei W, Chen H. Genomic characterization of Haemophilus parasuis SH0165, a highly virulent strain of serovar 5 prevalent in China. PLoS One 2011; 6:e19631. [PMID: 21611187 PMCID: PMC3096633 DOI: 10.1371/journal.pone.0019631] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 04/11/2011] [Indexed: 11/19/2022] Open
Abstract
Haemophilus parasuis can be either a commensal bacterium of the porcine respiratory tract or an opportunistic pathogen causing Glässer's disease, a severe systemic disease that has led to significant economical losses in the pig industry worldwide. We determined the complete genomic sequence of H. parasuis SH0165, a highly virulent strain of serovar 5, which was isolated from a hog pen in North China. The single circular chromosome was 2,269,156 base pairs in length and contained 2,031 protein-coding genes. Together with the full spectrum of genes detected by the analysis of metabolic pathways, we confirmed that H. parasuis generates ATP via both fermentation and respiration, and possesses an intact TCA cycle for anabolism. In addition to possessing the complete pathway essential for the biosynthesis of heme, this pathogen was also found to be well-equipped with different iron acquisition systems, such as the TonB system and ABC-type transport complexes, to overcome iron limitation during infection and persistence. We identified a number of genes encoding potential virulence factors, such as type IV fimbriae and surface polysaccharides. Analysis of the genome confirmed that H. parasuis is naturally competent, as genes related to DNA uptake are present. A nine-mer DNA uptake signal sequence (ACAAGCGGT), identical to that found in Actinobacillus pleuropneumoniae and Mannheimia haemolytica, followed by similar downstream motifs, was identified in the SH0165 genome. Genomic and phylogenetic comparisons with other Pasteurellaceae species further indicated that H. parasuis was closely related to another swine pathogenic bacteria A. pleuropneumoniae. The comprehensive genetic analysis presented here provides a foundation for future research on the metabolism, natural competence and virulence of H. parasuis.
Collapse
Affiliation(s)
- Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Yue
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Jin
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Fan
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
New plasmid tools for genetic analysis of Actinobacillus pleuropneumoniae and other pasteurellaceae. Appl Environ Microbiol 2009; 75:6124-31. [PMID: 19666733 DOI: 10.1128/aem.00809-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have generated a set of plasmids, based on the mobilizable shuttle vector pMIDG100, which can be used as tools for genetic manipulation of Actinobacillus pleuropneumoniae and other members of the Pasteurellaceae. A tandem reporter plasmid, pMC-Tandem, carrying promoterless xylE and gfpmut3 genes downstream of a multiple-cloning site (MCS), can be used for identification of transcriptional regulators and conditions which favor gene expression from different cloned promoters. The ability to detect transcriptional regulators using the tandem reporter system was validated in A. pleuropneumoniae using the cloned rpoE (sigma(E)) promoter (P). The resulting plasmid, pMCrpoEP, was used to identify a mutant defective in production of RseA, the negative regulator of sigma(E), among a bank of random transposon mutants, as well as to detect induction of sigma(E) following exposure of A. pleuropneumoniae to ethanol or heat shock. pMCsodCP, carrying the cloned sodC promoter of A. pleuropneumoniae, was functional in A. pleuropneumoniae, Haemophilus influenzae, Haemophilus parasuis, Mannheimia haemolytica, and Pasteurella multocida. Two general expression vectors, pMK-Express and pMC-Express, which differ in their antibiotic resistance markers (kanamycin and chloramphenicol, respectively), were constructed for the Pasteurellaceae. Both plasmids have the A. pleuropneumoniae sodC promoter upstream of the gfpmut3 gene and an extended MCS. Replacement of gfpmut3 with a gene of interest allows complementation and heterologous gene expression, as evidenced by expression of the Haemophilus ducreyi nadV gene in A. pleuropneumoniae, rendering the latter NAD independent.
Collapse
|
28
|
Characterization and comparative analysis of the genes encoding Haemophilus parasuis outer membrane proteins P2 and P5. J Bacteriol 2009; 191:5988-6002. [PMID: 19633080 DOI: 10.1128/jb.00469-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus parasuis is a swine pathogen of significant industry concern, but little is known about how the organism causes disease. A related human pathogen, Haemophilus influenzae, has been better studied, and many of its virulence factors have been identified. Two of these, outer membrane proteins P2 and P5, are known to have important virulence properties. The goals of this study were to identify, analyze, and compare the genetic relatedness of orthologous genes encoding P2 and P5 proteins in a diverse group of 35 H. parasuis strains. Genes encoding P2 and P5 proteins were detected in all H. parasuis strains evaluated. The predicted amino acid sequences for both P2 and P5 proteins exhibit considerable heterogeneity, particularly in regions corresponding to predicted extracellular loops. Twenty-five variants of P2 and 17 variants of P5 were identified. The P2 proteins of seven strains were predicted to contain a highly conserved additional extracellular loop compared to the remaining strains and to H. influenzae P2. Antigenic-site predictions coincided with predicted extracellular loop regions of both P2 and P5. Neighbor-joining trees constructed using P2 and P5 sequences predicted divergent evolutionary histories distinct from those predicted by a multilocus sequence typing phylogeny based on partial sequencing of seven housekeeping genes. Real-time reverse transcription-PCR indicated that both genes are expressed in all of the strains.
Collapse
|
29
|
Trimeric autotransporters of Haemophilus parasuis: generation of an extensive passenger domain repertoire specific for pathogenic strains. J Bacteriol 2008; 191:576-87. [PMID: 19011035 DOI: 10.1128/jb.00703-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus parasuis is the agent responsible for causing Glässer's disease, but little is known about the pathogenic determinants of this major pig disease. Here we describe, for the pathogenic strain Nagasaki, the molecular characterization of 13 trimeric autotransporters as assessed by the presence of YadA C-terminal translocator domains which were classified into three groups. All passenger domains possess motifs and repeats characteristic of adhesins, hemagglutinins, and invasins with various centrally located copies of collagen-like repeats. This domain architecture is shared with two trimeric autotransporter proteins of H. somnus 129Pt. Genomic comparison by microarray hybridization demonstrated homologies among H. parasuis virulent strains and high divergence with respect to nonvirulent strains. Therefore, these genes were named vtaA (virulence-associated trimeric autotransporters). The sequencing of 17 homologous vtaA genes of different invasive strains highlighted an extensive mosaic structure. Based also on the presence of DNA uptake signal sequences within the vtaA genes, we propose a mechanism of evolution by which gene duplication and the accumulation of mutations and recombinations, plus the lateral gene transfer of the passenger domain, led to the diversity of this multigene family. This study provides insights to help understand the tissue colonization and invasiveness characteristic of H. parasuis pathogenic strains.
Collapse
|
30
|
Johnsborg O, Eldholm V, Håvarstein LS. Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 2007; 158:767-78. [PMID: 17997281 DOI: 10.1016/j.resmic.2007.09.004] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/04/2007] [Accepted: 09/21/2007] [Indexed: 02/02/2023]
Abstract
Studies show that gene acquisition through natural transformation has contributed significantly to the adaptation and ecological diversification of several bacterial species. Relatively little is still known, however, about the prevalence and phylogenetic distribution of organisms possessing this property. Thus, whether natural transformation only benefits a limited number of species or has a large impact on lateral gene flow in nature remains a matter of speculation. Here we will review the most recent advances in our understanding of the phenomenon and discuss its possible biological functions.
Collapse
Affiliation(s)
- Ola Johnsborg
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | | | | |
Collapse
|
31
|
Bakkali M. Genome dynamics of short oligonucleotides: the example of bacterial DNA uptake enhancing sequences. PLoS One 2007; 2:e741. [PMID: 17710141 PMCID: PMC1939737 DOI: 10.1371/journal.pone.0000741] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 06/29/2007] [Indexed: 11/19/2022] Open
Abstract
Among the many bacteria naturally competent for transformation by DNA uptake-a phenomenon with significant clinical and financial implications- Pasteurellaceae and Neisseriaceae species preferentially take up DNA containing specific short sequences. The genomic overrepresentation of these DNA uptake enhancing sequences (DUES) causes preferential uptake of conspecific DNA, but the function(s) behind this overrepresentation and its evolution are still a matter for discovery. Here I analyze DUES genome dynamics and evolution and test the validity of the results to other selectively constrained oligonucleotides. I use statistical methods and computer simulations to examine DUESs accumulation in Haemophilus influenzae and Neisseria gonorrhoeae genomes. I analyze DUESs sequence and nucleotide frequencies, as well as those of all their mismatched forms, and prove the dependence of DUESs genomic overrepresentation on their preferential uptake by quantifying and correlating both characteristics. I then argue that mutation, uptake bias, and weak selection against DUESs in less constrained parts of the genome combined are sufficient enough to cause DUESs accumulation in susceptible parts of the genome with no need for other DUES function. The distribution of overrepresentation values across sequences with different mismatch loads compared to the DUES suggests a gradual yet not linear molecular drive of DNA sequences depending on their similarity to the DUES. Other genomically overrepresented sequences, both pro- and eukaryotic, show similar distribution of frequencies suggesting that the molecular drive reported above applies to other frequent oligonucleotides. Rare oligonucleotides, however, seem to be gradually drawn to genomic underrepresentation, thus, suggesting a molecular drag. To my knowledge this work provides the first clear evidence of the gradual evolution of selectively constrained oligonucleotides, including repeated, palindromic and protein/transcription factor-binding DNAs.
Collapse
Affiliation(s)
- Mohammed Bakkali
- Institute of Genetics, Queen's Medical Center, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
32
|
Olvera A, Cerdà-Cuéllar M, Aragon V. Study of the population structure of Haemophilus parasuis by multilocus sequence typing. MICROBIOLOGY-SGM 2007; 152:3683-3690. [PMID: 17159221 DOI: 10.1099/mic.0.29254-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Haemophilus parasuis is the aetiological agent of Glässer's disease in swine. In addition, this bacterium causes other clinical outcomes and can also be isolated from the upper respiratory tract of healthy pigs. Isolates of H. parasuis differ in phenotypic features (e.g. protein profiles, colony morphology or capsule production) and pathogenic capacity. Differences among strains have also been demonstrated at the genetic level. Several typing methods have been used to classify H. parasuis field strains, but they had resolution or implementation problems. To overcome these limitations, a multilocus sequence typing (MLST) system, using partial sequences of the house-keeping genes mdh, 6pgd, atpD, g3pd, frdB, infB and rpoB, was developed. Eleven reference strains and 120 field strains were included in this study. The number of alleles per locus ranged from 14 to 41, 6pgd being the locus with the highest diversity. The high genetic heterogeneity of this bacterium was confirmed with MLST, since the strains were divided into 109 sequence types, and only 13 small clonal complexes were detected by the Burst algorithm. Further analysis by unweighted-pair group method with arithmetic mean (UPGMA) identified six clusters. When the clinical background of the isolates was examined, one cluster was statistically associated with nasal isolation (putative non-virulent), while another cluster showed a significant association with isolation from clinical lesions (putative virulent). The remaining clusters did not show a statistical association with the clinical background of the isolates. Finally, although recombination among H. parasuis strains was detected, two divergent branches were found when a neighbour-joining tree was constructed with the concatenated sequences. Interestingly, one branch included almost all isolates of the putative virulent UPGMA cluster.
Collapse
Affiliation(s)
- Alex Olvera
- Centre de Recerca en Sanitat Animal (CReSA), Campus de Bellaterra-Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Marta Cerdà-Cuéllar
- Centre de Recerca en Sanitat Animal (CReSA), Campus de Bellaterra-Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Virginia Aragon
- Centre de Recerca en Sanitat Animal (CReSA), Campus de Bellaterra-Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
33
|
Olvera A, Segalés J, Aragón V. Update on the diagnosis of Haemophilus parasuis infection in pigs and novel genotyping methods. Vet J 2006; 174:522-9. [PMID: 17175186 DOI: 10.1016/j.tvjl.2006.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 09/15/2006] [Accepted: 10/20/2006] [Indexed: 11/24/2022]
Abstract
Haemophilus parasuis causes Glässer's disease as well as a number of other diseases in pigs. The diagnosis of H. parasuis-associated disease is usually established by clinical signs, pathological findings and bacterial isolation but diagnosis is complicated by the existence of non-virulent strains and the early colonisation of the upper respiratory tract of healthy piglets. Moreover, several strains can be found on a farm and even within a single animal so it is important to determine the specific strain that is causing the clinical outbreak. Recently, genotyping methods have been developed with the goal of correlating genotype with the degree of virulence of H. parasuis strains. The association between genotype and virulence in H. parasuis is challenging due to the lack of knowledge of the complete genomic sequence and virulence factors of this bacterium.
Collapse
Affiliation(s)
- Alex Olvera
- Centre de Recerca en Sanitat Animal (CReSA), Campus de Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
34
|
Bigas A, Garrido MAE, Badiola I, Barbé J, Llagostera M. Non-viability of Haemophilus parasuis fur-defective mutants. Vet Microbiol 2006; 118:107-16. [PMID: 16911861 DOI: 10.1016/j.vetmic.2006.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 06/22/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022]
Abstract
By complementation of an Escherichia coli fur mutant, the Haemophilus parasuis fur gene has been isolated from a genomic library of this organism. The H. parasuis fur gene is the distal one of a three-gene operon. Two genes placed upstream of the H. parasuis fur open-reading frame encode for a hypothetical protein and a flavodoxin, respectively. Attempts performed to isolate an H. parasuis fur-defective mutant either through manganese-resistance selection or exchange markers were unsuccessful. Likewise, anaerobic growth conditions do not enable the attainment of H. parasuis fur-defective mutants either. Nevertheless, H. parasuis clones carrying a knockout mutation in the chromosomal fur gene by insertion of a KmR cassette were obtained when a stable plasmid, containing an additional copy of the transcriptional unit to which the fur gene belongs, was present. Likewise, the presence of a plasmid in which the H. parasuis fur gene is under the control of the Escherichia coli tac promoter allows for the isolation of fur::Km mutants of this organism. Nonetheless, no fur-defective mutants may be isolated from H. parasuis cells harbouring a stable plasmid in which only the single fur gene is contained. These data clearly indicate that H. parasuis cell viability requires the presence of a wild-type fur gene.
Collapse
Affiliation(s)
- Anna Bigas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | |
Collapse
|
35
|
Redfield RJ, Findlay WA, Bossé J, Kroll JS, Cameron ADS, Nash JHE. Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol Biol 2006; 6:82. [PMID: 17038178 PMCID: PMC1626085 DOI: 10.1186/1471-2148-6-82] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 10/12/2006] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Many bacteria can take up DNA, but the evolutionary history and function of natural competence and transformation remain obscure. The sporadic distribution of competence suggests it is frequently lost and/or gained, but this has not been examined in an explicitly phylogenetic context. Additional insight may come from the sequence specificity of uptake by species such as Haemophilus influenzae, where a 9 bp uptake signal sequence (USS) repeat is both highly overrepresented in the genome and needed for efficient DNA uptake. We used the distribution of competence genes and DNA uptake specificity in H. influenzae's family, the Pasteurellaceae, to examine the ancestry of competence. RESULTS A phylogeny of the Pasteurellaceae based on 12 protein coding genes from species with sequenced genomes shows two strongly supported subclades: the Hin subclade (H. influenzae, Actinobacillus actinomycetemcomitans, Pasteurella multocida, Mannheimia succiniciproducens, and H. somnus), and the Apl subclade (A. pleuropneumoniae, M. haemolytica, and H. ducreyi). All species contained homologues of all known H. influenzae competence genes, consistent with an ancestral origin of competence. Competence gene defects were identified in three species (H. somnus, H. ducreyi and M. haemolytica); each appeared to be of recent origin. The assumption that USS arise by mutation rather than copying was first confirmed using alignments of H. influenzae proteins with distant homologues. Abundant USS-like repeats were found in all eight Pasteurellacean genomes; the repeat consensuses of species in the Hin subclade were identical to that of H. influenzae (AAGTGCGGT), whereas members of the Apl subclade shared the consensus ACAAGCGGT. All species' USSs had the strong consensus and flanking AT-rich repeats of H. influenzae USSs. DNA uptake and competition experiments demonstrated that the Apl-type repeat is a true USS distinct from the Hin-type USS: A. pleuropneumoniae preferentially takes up DNA fragments containing the Apl-type USS over both H. influenzae and unrelated DNAs, and H. influenzae prefers its own USS over the Apl type. CONCLUSION Competence and DNA uptake specificity are ancestral properties of the Pasteurellaceae, with divergent USSs and uptake specificity distinguishing only the two major subclades. The conservation of most competence genes over the approximately 350 million year history of the family suggests that lineages that lose competence may be evolutionary dead ends.
Collapse
Affiliation(s)
| | - Wendy A Findlay
- Institute for Biological Sciences, National Research Council of Canada, Ottawa ON Canada
| | - Janine Bossé
- Dept. of Paediatrics, Faculty of Medicine, Imperial College London, London W2 1PG UK
| | - J Simon Kroll
- Dept. of Paediatrics, Faculty of Medicine, Imperial College London, London W2 1PG UK
| | - Andrew DS Cameron
- Dept. of Microbiology and Immunology, University of British Columbia, Vancouver BC Canada
| | - John HE Nash
- Institute for Biological Sciences, National Research Council of Canada, Ottawa ON Canada
| |
Collapse
|
36
|
Olvera A, Calsamiglia M, Aragon V. Genotypic diversity of Haemophilus parasuis field strains. Appl Environ Microbiol 2006; 72:3984-92. [PMID: 16751506 PMCID: PMC1489591 DOI: 10.1128/aem.02834-05] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus parasuis is the cause of Glässer's disease and other clinical disorders in pigs. It can also be isolated from the upper respiratory tracts of healthy pigs, and isolates can have significant differences in virulence. In this work, a partial sequence from the 60-kDa heat shock protein (Hsp60) gene was assessed as an epidemiological marker. We analyzed partial sequences of hsp60 and 16S rRNA genes from 103 strains of H. parasuis and other related species to obtain a better classification of the strains and examine the correlation with virulence. The results were compared with those obtained by enterobacterial repetitive intergenic consensus PCR. Our results showed that hsp60 is a reliable marker for epidemiological studies of H. parasuis and that the analysis of its sequence is a better approach than fingerprinting methods. Furthermore, the analysis of the hsp60 and 16S rRNA gene sequences revealed the presence of a separate lineage of virulent strains and indicated the occurrence of lateral gene transfer among H. parasuis and Actinobacillus strains.
Collapse
Affiliation(s)
- A Olvera
- Centre de Recerca en Sanitat Animal (CReSA), Campus de Bellaterra, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|