1
|
Bialer MG, Ferrero MC, Delpino MV, Ruiz-Ranwez V, Posadas DM, Baldi PC, Zorreguieta A. Adhesive Functions or Pseudogenization of Type Va Autotransporters in Brucella Species. Front Cell Infect Microbiol 2021; 11:607610. [PMID: 33987105 PMCID: PMC8111173 DOI: 10.3389/fcimb.2021.607610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/01/2021] [Indexed: 01/18/2023] Open
Abstract
Adhesion to host cells is a key step for successful infection of many bacterial pathogens and may define tropism to different host tissues. To do so, bacteria display adhesins on their surfaces. Brucella is an intracellular pathogen capable of proliferating in a wide variety of cell types. It has been described that BmaC, a large protein that belongs to the classical (type Va) autotransporter family, is required for efficient adhesion of Brucella suis strain 1330 to epithelial cells and fibronectin. Here we show that B. suis 1330 harbors two other type Va autotransporters (BmaA and BmaB), which, although much smaller, share significant sequence similarities with BmaC and contain the essential domains to mediate proper protein translocation to the bacterial surface. Gain and loss of function studies indicated that BmaA, BmaB, and BmaC contribute, to a greater or lesser degree, to adhesion of B. suis 1330 to different cells such as synovial fibroblasts, osteoblasts, trophoblasts, and polarized epithelial cells as well as to extracellular matrix components. It was previously shown that BmaC localizes to a single bacterial pole. Interestingly, we observed here that, similar to BmaC, the BmaB adhesin is localized mostly at a single cell pole, reinforcing the hypothesis that Brucella displays an adhesive pole. Although Brucella species have strikingly similar genomes, they clearly differ in their host preferences. Mainly, the differences identified between species appear to be at loci encoding surface proteins. A careful in silico analysis of the putative type Va autotransporter orthologues from several Brucella strains showed that the bmaB locus from Brucella abortus and both, the bmaA and bmaC loci from Brucella melitensis are pseudogenes in all strains analyzed. Results reported here evidence that all three autotransporters play a role in the adhesion properties of B. suis 1330. However, Brucella spp. exhibit extensive variations in the repertoire of functional adhesins of the classical autotransporter family that can be displayed on the bacterial surface, making them an interesting target for future studies on host preference and tropism.
Collapse
Affiliation(s)
- Magalí G Bialer
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina
| | - Mariana C Ferrero
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Diana M Posadas
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina
| | - Pablo C Baldi
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
3
|
Bialer MG, Sycz G, Muñoz González F, Ferrero MC, Baldi PC, Zorreguieta A. Adhesins of Brucella: Their Roles in the Interaction with the Host. Pathogens 2020; 9:E942. [PMID: 33198223 PMCID: PMC7697752 DOI: 10.3390/pathogens9110942] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
A central aspect of Brucella pathogenicity is its ability to invade, survive, and replicate in diverse phagocytic and non-phagocytic cell types, leading to chronic infections and chronic inflammatory phenomena. Adhesion to the target cell is a critical first step in the invasion process. Several Brucella adhesins have been shown to mediate adhesion to cells, extracellular matrix components (ECM), or both. These include the sialic acid-binding proteins SP29 and SP41 (binding to erythrocytes and epithelial cells, respectively), the BigA and BigB proteins that contain an Ig-like domain (binding to cell adhesion molecules in epithelial cells), the monomeric autotransporters BmaA, BmaB, and BmaC (binding to ECM components, epithelial cells, osteoblasts, synoviocytes, and trophoblasts), the trimeric autotransporters BtaE and BtaF (binding to ECM components and epithelial cells) and Bp26 (binding to ECM components). An in vivo role has also been shown for the trimeric autotransporters, as deletion mutants display decreased colonization after oral and/or respiratory infection in mice, and it has also been suggested for BigA and BigB. Several adhesins have shown unipolar localization, suggesting that Brucella would express an adhesive pole. Adhesin-based vaccines may be useful to prevent brucellosis, as intranasal immunization in mice with BtaF conferred high levels of protection against oral challenge with B. suis.
Collapse
Affiliation(s)
- Magalí G. Bialer
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
| | - Gabriela Sycz
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
| | - Florencia Muñoz González
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Mariana C. Ferrero
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Pablo C. Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|
4
|
ElTahir Y, Al-Araimi A, Nair RR, Autio KJ, Tu H, Leo JC, Al-Marzooqi W, Johnson EH. Binding of Brucella protein, Bp26, to select extracellular matrix molecules. BMC Mol Cell Biol 2019; 20:55. [PMID: 31783731 PMCID: PMC6884894 DOI: 10.1186/s12860-019-0239-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 11/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brucella is a facultative intracellular pathogen responsible for zoonotic disease brucellosis. Little is known about the molecular basis of Brucella adherence to host cells. In the present study, the possible role of Bp26 protein as an adhesin was explored. The ability of Brucella protein Bp26 to bind to extracellular matrix (ECM) proteins was determined by enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). RESULTS ELISA experiments showed that Bp26 bound in a dose-dependent manner to both immobilized type I collagen and vitronectin. Bp26 bound weakly to soluble fibronectin but did not bind to immobilized fibronectin. No binding to laminin was detected. Biolayer interferometry showed high binding affinity of Bp26 to immobilized type I collagen and no binding to fibronectin or laminin. Mapping of Bp26 antigenic epitopes by biotinylated overlapping peptides spanning the entire sequence of Bp26 using anti Bp26 mouse serum led to the identification of five linear epitopes. Collagen and vitronectin bound to peptides from several regions of Bp26, with many of the binding sites for the ligands overlapping. The strongest binding for anti-Bp26 mouse serum, collagen and vitronectin was to the peptides at the C-terminus of Bp26. Fibronectin did not bind to any of the peptides, although it bound to the whole Bp26 protein. CONCLUSIONS Our results highlight the possible role of Bp26 protein in the adhesion process of Brucella to host cells through ECM components. This study revealed that Bp26 binds to both immobilized and soluble type I collagen and vitronectin. It also binds to soluble but not immobilized fibronectin. However, Bp26 does not bind to laminin. These are novel findings that offer insight into understanding the interplay between Brucella and host target cells, which may aid in future identification of a new target for diagnosis and/or vaccine development and prevention of brucellosis.
Collapse
Affiliation(s)
- Yasmin ElTahir
- Department of Animal & Veterinary Sciences, Sultan Qaboos University. College of Agricultural & Marine Sciences, P.O.box 34. 123 Alkhod, Muscat, Sultanate of Oman.
| | - Amna Al-Araimi
- Department of Animal & Veterinary Sciences, Sultan Qaboos University. College of Agricultural & Marine Sciences, P.O.box 34. 123 Alkhod, Muscat, Sultanate of Oman
| | - Remya R Nair
- Department of Animal & Veterinary Sciences, Sultan Qaboos University. College of Agricultural & Marine Sciences, P.O.box 34. 123 Alkhod, Muscat, Sultanate of Oman
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014, Oulu, Finland
| | - Hongmin Tu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014, Oulu, Finland
| | - Jack C Leo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0361, Oslo, Norway.,Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham, NG1 4FQ, UK
| | - Waleed Al-Marzooqi
- Department of Animal & Veterinary Sciences, Sultan Qaboos University. College of Agricultural & Marine Sciences, P.O.box 34. 123 Alkhod, Muscat, Sultanate of Oman
| | - Eugene H Johnson
- Department of Animal & Veterinary Sciences, Sultan Qaboos University. College of Agricultural & Marine Sciences, P.O.box 34. 123 Alkhod, Muscat, Sultanate of Oman
| |
Collapse
|
5
|
Di DD, Jiang H, Tian LL, Kang JL, Zhang W, Yi XP, Ye F, Zhong Q, Ni B, He YY, Xia L, Yu Y, Cui BY, Mao X, Fan WX. Comparative genomic analysis between newly sequenced Brucella suis Vaccine Strain S2 and the Virulent Brucella suis Strain 1330. BMC Genomics 2016; 17:741. [PMID: 27645563 PMCID: PMC5029015 DOI: 10.1186/s12864-016-3076-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/07/2016] [Indexed: 11/16/2022] Open
Abstract
Background Brucellosis is a bacterial disease caused by Brucella infection. In the late fifties, Brucella suis vaccine strain S2 with reduced virulence was obtained by serial transfer of a virulent B. suis biovar 1 strain in China. It has been widely used for vaccination in China since 1971. Until now, the mechanisms underlie virulence attenuation of S2 are still unknown. Results In this paper, the whole genome sequencing of S2 was carried out by Illumina Hiseq2000 sequencing method. We further performed the comparative genomic analysis to find out the differences between S2 and the virulent Brucella suis strain 1330. We found premature stops in outer membrane autotransporter omaA and eryD genes. Single mutations were found in phosphatidylcholine synthase, phosphorglucosamine mutase, pyruvate kinase and FliF, which have been reported to be related to the virulence of Brucella or other bacteria. Of the other different proteins between S2 and 1330, such as Omp2b, periplasmic sugar-binding protein, and oligopeptide ABC transporter, no definitive implications related to bacterial virulence were found, which await further investigation. Conclusions The data presented here provided the rational basis for designing Brucella vaccines that could be used in other strains. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3076-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong-Dong Di
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Hai Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Li-Li Tian
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Jing-Li Kang
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Wen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xin-Ping Yi
- Xinjiang Academy of Animal Science, Institute of Veterinary Research, Urumuqi, Xinjiang, China
| | - Feng Ye
- Xinjiang Academy of Animal Science, Institute of Veterinary Research, Urumuqi, Xinjiang, China
| | - Qi Zhong
- Xinjiang Academy of Animal Science, Institute of Veterinary Research, Urumuqi, Xinjiang, China
| | - Bo Ni
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - You-Yu He
- ZhongXin Biotechology Shanghai Co, Ltd. 12F, Building 1, 100 Qinzhou Road, Shanghai, China
| | - Lin Xia
- ZhongXin Biotechology Shanghai Co, Ltd. 12F, Building 1, 100 Qinzhou Road, Shanghai, China
| | - Yao Yu
- ZhongXin Biotechology Shanghai Co, Ltd. 12F, Building 1, 100 Qinzhou Road, Shanghai, China
| | - Bu-Yun Cui
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, China.
| | - Xiang Mao
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China.
| | - Wei-Xing Fan
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Ben-Tekaya H, Gorvel JP, Dehio C. Bartonella and Brucella--weapons and strategies for stealth attack. Cold Spring Harb Perspect Med 2013; 3:3/8/a010231. [PMID: 23906880 DOI: 10.1101/cshperspect.a010231] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bartonella spp. and Brucella spp. are closely related α-proteobacterial pathogens that by distinct stealth-attack strategies cause chronic infections in mammals including humans. Human infections manifest by a broad spectrum of clinical symptoms, ranging from mild to fatal disease. Both pathogens establish intracellular replication niches and subvert diverse pathways of the host's immune system. Several virulence factors allow them to adhere to, invade, proliferate, and persist within various host-cell types. In particular, type IV secretion systems (T4SS) represent essential virulence factors that transfer effector proteins tailored to recruit host components and modulate cellular processes to the benefit of the bacterial intruders. This article puts the remarkable features of these two pathogens into perspective, highlighting the mechanisms they use to hijack signaling and trafficking pathways of the host as the basis for their stealthy infection strategies.
Collapse
Affiliation(s)
- Houchaima Ben-Tekaya
- Focal Area Infection Biology, Biozentrum, University of Basel, 4052 Basel, Switzerland
| | | | | |
Collapse
|
7
|
BtaE, an adhesin that belongs to the trimeric autotransporter family, is required for full virulence and defines a specific adhesive pole of Brucella suis. Infect Immun 2013; 81:996-1007. [PMID: 23319562 DOI: 10.1128/iai.01241-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Brucella is responsible for brucellosis, one of the most common zoonoses worldwide that causes important economic losses in several countries. Increasing evidence indicates that adhesion of Brucella spp. to host cells is an important step to establish infection. We have previously shown that the BmaC unipolar monomeric autotransporter mediates the binding of Brucella suis to host cells through cell-associated fibronectin. Our genome analysis shows that the B. suis genome encodes several additional potential adhesins. In this work, we characterized a predicted trimeric autotransporter that we named BtaE. By expressing btaE in a nonadherent Escherichia coli strain and by phenotypic characterization of a B. suis ΔbtaE mutant, we showed that BtaE is involved in the binding of B. suis to hyaluronic acid. The B. suis ΔbtaE mutant exhibited a reduction in the adhesion to HeLa and A549 epithelial cells compared with the wild-type strain, and it was outcompeted by the wild-type strain in the binding to HeLa cells. The knockout btaE mutant showed an attenuated phenotype in the mouse model, indicating that BtaE is required for full virulence. BtaE was immunodetected on the bacterial surface at one cell pole. Using old and new pole markers, we observed that both the BmaC and BtaE adhesins are consistently associated with the new cell pole, suggesting that, in Brucella, the new pole is functionally differentiated for adhesion. This is consistent with the inherent polarization of this bacterium, and its role in the invasion process.
Collapse
|
8
|
Posadas DM, Ruiz-Ranwez V, Bonomi HR, Martín FA, Zorreguieta A. BmaC, a novel autotransporter of Brucella suis, is involved in bacterial adhesion to host cells. Cell Microbiol 2012; 14:965-82. [PMID: 22321605 DOI: 10.1111/j.1462-5822.2012.01771.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Brucella is an intracellular pathogen responsible of a zoonotic disease called brucellosis. Brucella survives and proliferates within several types of phagocytic and non-phagocytic cells. Like in other pathogens, adhesion of brucellae to host surfaces was proposed to be an important step in the infection process. Indeed, Brucella has the capacity to bind to culture human cells and key components of the extracellular matrix, such as fibronectin. However, little is known about the molecular bases of Brucella adherence. In an attempt to identify bacterial genes encoding adhesins, a phage display library of Brucella suis was panned against fibronectin. Three fibronectin-binding proteins of B. suis were identified using this approach. One of the candidates, designated BmaC was a very large protein of 340 kDa that is predicted to belong to the type I (monomeric) autotransporter family. Microscopy studies showed that BmaC is located at one pole on the bacterial surface. The phage displaying the fibronectin-binding peptide of BmaC inhibited the attachment of brucellae to both, HeLa cells and immobilized fibronectin in vitro. In addition, a bmaC deletion mutant was impaired in the ability of B. suis to attach to immobilized fibronectin and to the surface of HeLa and A549 cells and was out-competed by the wild-type strain in co-infection experiments. Finally, anti-fibronectin or anti-BmaC antibodies significantly inhibited the binding of wild-type bacteria to HeLa cells. Our results highlight the role of a novel monomeric autotransporter protein in the adhesion of B. suis to the extracellular matrix and non-phagocytic cells via fibronectin binding.
Collapse
Affiliation(s)
- Diana M Posadas
- Fundación Instituto Leloir, IIBBA CONICET and FCEyN, Universidad de Buenos Aires, Patricias Argentinas 435, (C1405BWE) Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
9
|
Cha SB, Rayamajhi N, Lee WJ, Shin MK, Jung MH, Shin SW, Kim JW, Yoo HS. Generation and envelope protein analysis of internalization defective Brucella abortus mutants in professional phagocytes, RAW 264.7. ACTA ACUST UNITED AC 2011; 64:244-54. [DOI: 10.1111/j.1574-695x.2011.00896.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Seung Bin Cha
- Department of Infectious Diseases; College of Veterinary Medicine; KRF Zoonotic Disease Priority Research Institute; Brain Korea 21 for Veterinary Science; Seoul National University; Seoul; South Korea
| | - Nabin Rayamajhi
- Department of Infectious Diseases; College of Veterinary Medicine; KRF Zoonotic Disease Priority Research Institute; Brain Korea 21 for Veterinary Science; Seoul National University; Seoul; South Korea
| | - Won Jung Lee
- Department of Infectious Diseases; College of Veterinary Medicine; KRF Zoonotic Disease Priority Research Institute; Brain Korea 21 for Veterinary Science; Seoul National University; Seoul; South Korea
| | - Min Kyung Shin
- Department of Infectious Diseases; College of Veterinary Medicine; KRF Zoonotic Disease Priority Research Institute; Brain Korea 21 for Veterinary Science; Seoul National University; Seoul; South Korea
| | - Myung Hwan Jung
- Department of Infectious Diseases; College of Veterinary Medicine; KRF Zoonotic Disease Priority Research Institute; Brain Korea 21 for Veterinary Science; Seoul National University; Seoul; South Korea
| | - Seung Won Shin
- Department of Infectious Diseases; College of Veterinary Medicine; KRF Zoonotic Disease Priority Research Institute; Brain Korea 21 for Veterinary Science; Seoul National University; Seoul; South Korea
| | - Jong Wan Kim
- Department of Animal and Plant and Fisheries Quarantine and Inspection Agency; Anyang 430-757; South Korea
| | - Han Sang Yoo
- Department of Infectious Diseases; College of Veterinary Medicine; KRF Zoonotic Disease Priority Research Institute; Brain Korea 21 for Veterinary Science; Seoul National University; Seoul; South Korea
| |
Collapse
|
10
|
Yu G. Gnom(Cmp): a quantitative approach for comparative analysis of closely related genomes of bacterial pathogens. Genome 2011; 54:402-18. [PMID: 21539441 DOI: 10.1139/g11-005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparative genome analysis is a powerful approach to understanding the biology of infectious bacterial pathogens. In this study, a quantitative approach, referred to as Gnom(Cmp), was developed to study the microevolution of bacterial pathogens. Although much more time-consuming than existing tools, this procedure provides a much higher resolution. Gnom(Cmp) accomplishes this by establishing genome-wide heterogeneity genotypes, which are then quantified and comparatively analyzed. The heterogeneity genotypes are defined as chromosomal base positions that have multiple variants within particular genomes, resulted from DNA duplications and subsequent mutations. To prove the concept, the procedure was applied on the genomes of 15 Staphylococcus aureus strains, focusing extensively on two pairs of hVISA/VISA strains. hVISA refers to heteroresistant vancomycin-intermediate S. aureus strains and VISA is their VISA mutants. hVISA/VISA displays some remarkable properties. hVISA is susceptible to vancomycin, but VISA mutants emerge soon after a short period of vancomycin therapy, therefore making the pathogen a great model organism for fast-evolving bacterial pathogens. The analysis indicated that Gnom(Cmp) could reveal variants within the genomes, which can be analyzed within the global genome context. Gnom(Cmp) discovered evolutionary hotspots and their dynamics among many closely related, even isogenic genomes. The analysis thus allows the exploration of the molecular mechanisms behind hVISA/VISA evolution, providing a working hypotheses for experimental testing and validation.
Collapse
Affiliation(s)
- GongXin Yu
- Department of Biological Science, Department of Computer Science, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
11
|
Tsolis RM, Seshadri R, Santos RL, Sangari FJ, Lobo JMG, de Jong MF, Ren Q, Myers G, Brinkac LM, Nelson WC, DeBoy RT, Angiuoli S, Khouri H, Dimitrov G, Robinson JR, Mulligan S, Walker RL, Elzer PE, Hassan KA, Paulsen IT. Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism. PLoS One 2009; 4:e5519. [PMID: 19436743 PMCID: PMC2677664 DOI: 10.1371/journal.pone.0005519] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/23/2009] [Indexed: 01/08/2023] Open
Abstract
Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis.
Collapse
Affiliation(s)
- Renee M. Tsolis
- Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Rekha Seshadri
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Renato L. Santos
- Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Escola de Veteranaria, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felix J. Sangari
- Molecular Biology Department, University of Cantabria, Santander, Spain
| | | | - Maarten F. de Jong
- Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Qinghu Ren
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Garry Myers
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Lauren M. Brinkac
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - William C. Nelson
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Robert T. DeBoy
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Samuel Angiuoli
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Hoda Khouri
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - George Dimitrov
- J. Craig Venter Institute, La Jolla, California, United States of America
| | | | - Stephanie Mulligan
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Richard L. Walker
- California Animal Health and Food Safety Laboratory, Davis, California, United States of America
| | - Philip E. Elzer
- Department of Veterinary Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- J. Craig Venter Institute, La Jolla, California, United States of America
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- * E-mail:
| |
Collapse
|
12
|
Hernández-Castro R, Verdugo-Rodríguez A, Puente JL, Suárez-Güemes F. The BMEI0216 gene of Brucella melitensis is required for internalization in HeLa cells. Microb Pathog 2007; 44:28-33. [PMID: 17881185 DOI: 10.1016/j.micpath.2007.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 08/01/2007] [Indexed: 01/18/2023]
Abstract
Brucella is an intracellular facultative bacterium able to survive and multiply in professional and non-professional phagocytes. However, its adhesion and invasion mechanisms have not been elucidated yet. In this work, we assess the interruption of a BMEI0216 gene of Brucella melitensis, by using HeLa epithelial cells and murine macrophages for invasion and replication assays. The mutation did not affect survival or multiplication within macrophages. Likewise, invasion assays with HeLa cells revealed no differences at 30 and 45 min, whereas, at 1 and 2h, the infection ability of the mutant was drastically reduced. These results suggest that the BMEI0216 gene is required for B. melitensis internalization.
Collapse
Affiliation(s)
- Rigoberto Hernández-Castro
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico
| | | | | | | |
Collapse
|
13
|
Yu G, Snyder E, Boyle S, Crasta O, Czar M, Mane S, Purkayastha A, Sobral B, Setubal J. A versatile computational pipeline for bacterial genome annotation improvement and comparative analysis, with Brucella as a use case. Nucleic Acids Res 2007; 35:3953-62. [PMID: 17553834 PMCID: PMC1919506 DOI: 10.1093/nar/gkm377] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We present a bacterial genome computational analysis pipeline, called GenVar. The pipeline, based on the program GeneWise, is designed to analyze an annotated genome and automatically identify missed gene calls and sequence variants such as genes with disrupted reading frames (split genes) and those with insertions and deletions (indels). For a given genome to be analyzed, GenVar relies on a database containing closely related genomes (such as other species or strains) as well as a few additional reference genomes. GenVar also helps identify gene disruptions probably caused by sequencing errors. We exemplify GenVar's capabilities by presenting results from the analysis of four Brucella genomes. Brucella is an important human pathogen and zoonotic agent. The analysis revealed hundreds of missed gene calls, new split genes and indels, several of which are species specific and hence provide valuable clues to the understanding of the genome basis of Brucella pathogenicity and host specificity.
Collapse
Affiliation(s)
- G.X. Yu
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - E.E. Snyder
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - S.M. Boyle
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - O.R. Crasta
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - M. Czar
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - S.P. Mane
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - A. Purkayastha
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - B. Sobral
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - J.C. Setubal
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- *To whom correspondence should be addressed. +1 540 231 9464+1 540 231 2606
| |
Collapse
|