1
|
Yaseen K, Ali S, Rahman SU, Sajid MS. Comparative Molecular Virulence Typing and Antibiotic Resistance of Campylobacter Species at the Human-Animal-Environment Interface. Foodborne Pathog Dis 2025; 22:109-117. [PMID: 38394319 DOI: 10.1089/fpd.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
This study holds significant importance due to its focus on Campylobacter, the leading bacterial cause of gastroenteritis worldwide, responsible for ∼96 million cases each year. By investigating the prevalence of both Campylobacter jejuni and Campylobacter coli in humans, animals, and the environment, this research sheds light on the broader impact of these pathogens, which can harm both human and animal populations. Traditional microbiological methods were implemented followed by optimized multiplex polymerase chain reaction targeting 16S rDNA and virulence gene markers by using specific primers. The findings revealed that a total of 219 Campylobacter isolates were recovered from 528 collected specimens from human, animal, and environmental sources. Campylobacter species showed a prevalence of 41.5%, with C. jejuni accounting for 53% and C. coli for 47%. Antimicrobial resistance rates were high, with tetracycline at 89%, ceftriaxone at 75%, cefotaxime at 70%, erythromycin at 69%, nalidixic acid at 54%, ciprofloxacin at 39%, and gentamicin at 23%. Commonly prevalent virulence-associated genes observed in the Campylobacter were cadF at 93%, flaA at 91%, cdtB at 88%, cheY at 86%, sodB at 78%, and iamA at 32%. The study confirmed multidrug-resistant Campylobacter prevalence at the human-animal-environment interface, harboring virulence-associated genes with potential harm to humans. Data analysis showed a nonsignificant (p ≥ 0.05) correlation between virulence genes and antibiotic susceptibility. To effectively manage Campylobacter infections, a multifaceted strategy incorporating preventative interventions at different levels is required. This strategy should take into account practicability, effectiveness, and sustainability while strengthening surveillance systems and addressing the economics of disease prevention.
Collapse
Affiliation(s)
- Kashaf Yaseen
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Sultan Ali
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Sajjad-Ur Rahman
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sohail Sajid
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
2
|
Sabotič J, Janež N, Volk M, Klančnik A. Molecular structures mediating adhesion of Campylobacter jejuni to abiotic and biotic surfaces. Vet Microbiol 2023; 287:109918. [PMID: 38029692 DOI: 10.1016/j.vetmic.2023.109918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Microaerophilic, Gram-negative Campylobacter jejuni is the causative agent of campylobacteriosis, the most common bacterial gastrointestinal infection worldwide. Adhesion is the crucial first step in both infection or interaction with the host and biofilm formation, and is a critical factor for bacterial persistence. Here we describe the proteins and other surface structures that promote adhesion to various surfaces, including abiotic surfaces, microorganisms, and animal and human hosts. In addition, we provide insight into the distribution of adhesion proteins among strains from different ecological niches and highlight unexplored proteins involved in C. jejuni adhesion. Protein-protein, protein-glycan, and glycan-glycan interactions are involved in C. jejuni adhesion, with different factors contributing to adhesion to varying degrees under different circumstances. As adhesion is essential for survival and persistence, it represents an interesting target for C. jejuni control. Knowledge of the adhesion process is incomplete, as different molecular and functional aspects have been studied for different structures involved in adhesion. Therefore, it is important to strive for an integration of different approaches to obtain a clearer picture of the adhesion process on different surfaces and to consider the involvement of proteins, glycoconjugates, and polysaccharides and their cooperation.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Manca Volk
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia.
| |
Collapse
|
3
|
Awad A, Yeh HY, Ramadan H, Rothrock MJ. Genotypic characterization, antimicrobial susceptibility and virulence determinants of Campylobacter jejuni and Campylobacter coli isolated from pastured poultry farms. Front Microbiol 2023; 14:1271551. [PMID: 38029099 PMCID: PMC10668334 DOI: 10.3389/fmicb.2023.1271551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Aim Campylobacter is the leading bacterial pathogen that causes foodborne illnesses worldwide. Pasture farming is regarded as an important source of agricultural production for small farming communities. Consumer preference for pasture-raised animal products has increased; however, there is a paucity of information on the microbiological quality of pasture-raised poultry products. The purpose of this study was to explore genetic relatedness of thermophilic Campylobacter isolates, to assess antibiotic resistance phenotypically and genotypically, and to screen the presence of virulence determinants of Campylobacter isolates from pasture-raised poultry farms from southeastern United States. Methods Ninety-seven Campylobacter isolates previously identified by Q7 BAX® System Real-Time PCR were genotyped by multilocus sequence typing (MLST). Campylobacter isolates were then evaluated for their phenotypic antimicrobial susceptibility against nine antimicrobial agents using Sensititre plates. Additionally, Campylobacter isolates were tested for the presence of antimicrobial resistance-associated elements. Furthermore, Campylobacter isolates were screened for the presence of 13 genes encoding putative virulence factors by PCR. These included genes involved in motility (flaA and flhA), adhesion and colonization (cadF, docC, racR, and virB11), toxin production (cdtA, cdtB, cdtC, wlaN, and ceuE) and invasion (ciaB and iamA). Results Among 97 Campylobacter isolates, Campylobacter jejuni (n = 79) and Campylobacter coli (n = 18) were identified. By MLST, C. jejuni isolates were assigned to seven clonal complexes. Among them, ST-353, ST-607 and ST-21 were the most common STs recognized. All C. coli (n = 18) isolates were included in CC-828. Interestingly, eight STs identified were not belonging any previous identified clonal complex. Campylobacter isolates displayed a high resistance rate against tetracycline (81.4%), while a low rate of resistance was observed against macrolides (azithromycin and erythromycin), quinolones and fluoroquinolones (nalidixic acid and ciprofloxacin), aminoglycosides (gentamicin), ketolide (telithromycin), amphenicol (florfenicol) and lincomycin (clindamycin). Thirteen isolates (13.54%) were pan-susceptible to all tested antibiotics, while nine isolates were multi-antimicrobial resistant (MAR; resist to three or more antimicrobial classes). Interestingly, there were no isolates resistant to all antimicrobial classes. Thr86Ile mutation was identified in all quinolones resistant strains. Erythromycin encoding gene (ermB) was identified in 75% of erythromycin resistant isolates. The A2075 mutation was detected in one erythromycin resistant strain, while A2074 could not be identified. The tetO gene was identified in 93.7% of tetracycline resistant isolates and six tetracycline susceptible isolates. In conclusion, the results of this study revealed that Campylobacter isolates from pasture-raised poultry farms showed the ST relatedness to Campylobacter isolates commonly associated with humans, indicating pasture-raised broiler flocks, similar to conventionally-reared broiler flocks, as a potential vector for antibiotic-resistant and pathogenic strains of thermophilic Campylobacter to humans.
Collapse
Affiliation(s)
- Amal Awad
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hung-Yueh Yeh
- U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Hazem Ramadan
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Michael J. Rothrock
- U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| |
Collapse
|
4
|
Genomic Characterization and Wetland Occurrence of a Novel Campylobacter Isolate from Canada Geese. Microorganisms 2023; 11:microorganisms11030648. [PMID: 36985221 PMCID: PMC10056850 DOI: 10.3390/microorganisms11030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Populations of resident, non-migratory Canada geese are rapidly increasing. Canada geese are known to transmit viral and bacterial diseases, posing a possible threat to human health. The most prevalent pathogens vectored by geese are Campylobacter species, yet the current understanding of the identity and virulence of these pathogens is limited. In our previous study, we observed a high prevalence of Campylobacter spp. in the Banklick Creek wetland—a constructed treatment wetland (CTW) located in northern KY (USA) used to understand sources of fecal contamination originating from humans and waterfowl frequenting the area. To identify the types of Campylobacter spp. found contaminating the CTW, we performed genetic analyses of Campylobacter 16s ribosomal RNA amplified from CTW water samples and collected fecal material from birds frequenting those areas. Our results showed a high occurrence of a Campylobacter canadensis-like clade from the sampling sites. Whole-genome sequence analyses of an isolate from Canada goose fecal material, called MG1, were used to confirm the identity of the CTW isolates. Further, we examined the phylogenomic position, virulence gene content, and antimicrobial resistance gene profile of MG1. Lastly, we developed an MG1-specific real-time PCR assay and confirmed the presence of MG1 in Canada goose fecal samples surrounding the CTW. Our findings reveal that the Canada goose-vectored Campylobacter sp. MG1 is a novel isolate compared to C. canadensis that possesses possible zoonotic potential, which may be of human health concern.
Collapse
|
5
|
El-Adawy H, Hotzel H, García-Soto S, Tomaso H, Hafez HM, Schwarz S, Neubauer H, Linde J. Genomic insight into Campylobacter jejuni isolated from commercial turkey flocks in Germany using whole-genome sequencing analysis. Front Vet Sci 2023; 10:1092179. [PMID: 36875995 PMCID: PMC9978446 DOI: 10.3389/fvets.2023.1092179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Campylobacter (C.) jejuni is a zoonotic bacterium of public health significance. The present investigation was designed to assess the epidemiology and genetic heterogeneity of C. jejuni recovered from commercial turkey farms in Germany using whole-genome sequencing. The Illumina MiSeq® technology was used to sequence 66 C. jejuni isolates obtained between 2010 and 2011 from commercial meat turkey flocks located in ten German federal states. Phenotypic antimicrobial resistance was determined. Phylogeny, resistome, plasmidome and virulome profiles were analyzed using whole-genome sequencing data. Genetic resistance markers were identified with bioinformatics tools (AMRFinder, ResFinder, NCBI and ABRicate) and compared with the phenotypic antimicrobial resistance. The isolates were assigned to 28 different sequence types and 11 clonal complexes. The average pairwise single nucleotide-polymorphisms distance of 14,585 SNPs (range: 0-26,540 SNPs) revealed a high genetic distinction between the isolates. Thirteen virulence-associated genes were identified in C. jejuni isolates. Most of the isolates harbored the genes flaA (83.3%) and flaB (78.8%). The wlaN gene associated with the Guillain-Barré syndrome was detected in nine (13.6%) isolates. The genes for resistance to ampicillin (bla OXA), tetracycline [tet(O)], neomycin [aph(3')-IIIa], streptomycin (aadE) and streptothricin (sat4) were detected in isolated C. jejuni using WGS. A gene cluster comprising the genes sat4, aph(3')-IIIa and aadE was present in six isolates. The single point mutation T86I in the housekeeping gene gyrA conferring resistance to quinolones was retrieved in 93.6% of phenotypically fluoroquinolone-resistant isolates. Five phenotypically erythromycin-susceptible isolates carried the mutation A103V in the gene for the ribosomal protein L22 inferring macrolide resistance. An assortment of 13 β-lactam resistance genes (bla OXA variants) was detected in 58 C. jejuni isolates. Out of 66 sequenced isolates, 28 (42.4%) carried plasmid-borne contigs. Six isolates harbored a pTet-like plasmid-borne contig which carries the tet(O) gene. This study emphasized the potential of whole-genome sequencing to ameliorate the routine surveillance of C. jejuni. Whole-genome sequencing can predict antimicrobial resistance with a high degree of accuracy. However, resistance gene databases need curation and updates to revoke inaccuracy when using WGS-based analysis pipelines for AMR detection.
Collapse
Affiliation(s)
- Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany.,Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Silvia García-Soto
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Hafez M Hafez
- Institute of Poultry Diseases, Free University Berlin, Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Veterinary Centre of Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
6
|
Wysok B, Sołtysiuk M, Stenzel T. Wildlife Waterfowl as a Source of Pathogenic Campylobacter Strains. Pathogens 2022; 11:113. [PMID: 35215056 PMCID: PMC8879909 DOI: 10.3390/pathogens11020113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The aim of the study was to determine whether free-living birds belonging to game species whose meat is used for human consumption can constitute a reservoir of pathogenic Campylobacter strains, spreading these bacteria to other hosts or directly contributing to human infection. METHODS A total of 91 cloacal swabs were taken from different species of wildlife waterfowl to estimate the Campylobacter prevalence, the genetic diversity of the isolates, and the presence of virulence genes and to evaluate the antimicrobial resistance. RESULTS The presence of Campylobacter spp. was confirmed in 32.9% of samples. Based on flaA-SVR sequencing, a total of 19 different alleles among the tested Campylobacter isolates were revealed. The virulence genes involved in adhesion were detected at high frequencies among Campylobacter isolates regardless of the host species. The highest resistance was observed for ciprofloxacin. The resistance rates to erythromycin and tetracycline were observed at the same level. CONCLUSIONS These results suggest that wildlife waterfowl belonging to game species may constitute a reservoir of Campylobacter, spreading these bacteria to other hosts or directly contributing to human disease. The high distribution of virulence-associated genes among wildlife waterfowl Campylobacter isolates make them potentially able to induce infection in humans.
Collapse
Affiliation(s)
- Beata Wysok
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.W.); (M.S.)
| | - Marta Sołtysiuk
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.W.); (M.S.)
| | - Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
7
|
Würfel SDFR, Prates DDF, Kleinubing NR, Vecchia JD, Vaniel C, Haubert L, Dellagostin OA, Silva WPD. Comprehensive characterization reveals antimicrobial-resistant and potentially virulent Campylobacter isolates from poultry meat products in Southern Brazil. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Bai J, Chen Z, Luo K, Zeng F, Qu X, Zhang H, Chen K, Lin Q, He H, Liao M, Zhang J. Highly Prevalent Multidrug-Resistant Campylobacter spp. Isolated From a Yellow-Feathered Broiler Slaughterhouse in South China. Front Microbiol 2021; 12:682741. [PMID: 34220768 PMCID: PMC8242590 DOI: 10.3389/fmicb.2021.682741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to investigate the prevalence, antimicrobial resistance, virulence genes, and genetic diversity of Campylobacter spp. along the yellow-feathered broiler slaughtering line in Southern China from December 2018 to June 2019. A total of 157 Campylobacter spp. isolates were identified from 1,102 samples (including 53.6% (75/140) of live chicken anal swab samples, 27.5% (44/160) of defeathering samples, 18.1% (29/160) of evisceration samples, 2.1% (3/140) of washing samples, 1.4% (2/140) of chilling samples, and 1.1% (4/362) of environmental samples). The prevalence of Campylobacter spp. was 14.2%, including 43.9% Campylobacter jejuni, 53.5% Campylobacter coli, and 2.5% other Campylobacter species. The highest antimicrobial resistance rate was found to be against sulfamethoxazole (138/157, 87.9%), and 90.4% (142/157) of the isolates were multidrug resistant (MDR). Examination of resistance-related genes revealed the double base mutated Thr-86-Ile, which informed ACA-TTA, with an Arg-79-Lys substitution in gyrA. Eleven virulence-associated genes (cadF, cdtA, cdtB, ciaB, flaA, imaA, dnaJ, plaA, virB11, racR, and cdtC) were also detected by a polymerase chain reaction (PCR) analysis, and cadF (81.5%) was the most prevalent. Based on an analysis of pulsed-field gel electrophoresis (PFGE) results, we found that Campylobacter spp. could be cross-contaminated throughout the entire slaughtering line. These results show that it is imperative to study the Campylobacter spp. from the yellow-feathered broiler along the slaughtering line in China to develop preventative and treatment measures for the poultry industry, as well as food safety and public health.
Collapse
Affiliation(s)
- Jie Bai
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhengquan Chen
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaijian Luo
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fanliang Zeng
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyun Qu
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxia Zhang
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaifeng Chen
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qijie Lin
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haishan He
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianmin Zhang
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Abdelmageed HA, Mandour AS, El Gedawy AA, Fawzy M, Furuya T, Ezzat M. Characterization of Campylobacter jejuni isolated from dogs and humans using flaA-SVR fragment sequencing in Ismailia, Egypt. Comp Immunol Microbiol Infect Dis 2021; 77:101675. [PMID: 34098505 DOI: 10.1016/j.cimid.2021.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Dogs are known as asymptomatic carriers forCampylobacter jejuni. The number of pet dogs is increasing in Egypt in the last decade. OBJECTIVE This study aimed to investigate the frequency ofC. jejuni infection in dogs and humans, molecular typing of associated virulence genes, and flaA-SVR gene using sequencing. METHODOLOGY 152 unpaired fecal swabs from dogs (n = 72) and humans (80) were examined for the presence of C. jejuni and Campylobacter 23S rRNA, and the pathogenicity genes including mapA genes, virB11, flaA, wlaN, iam, tetO, and aadA genes. Sequencing of the flaA- amplicon was also performed for the representative isolates. RESULTS The isolation rate ofC. jejuni was 20.8 % and 31.2 %, respectively in dogs and humans, and all isolates were tested positive for 23S rRNA and mapA genes. C. jejuni harbor virB11 and wlaN (20 %, 0%), iam (10 %, 20 %), tetO and aadA1 (40 %, both), and flaA (40 %, 20 %) in human and dog strains, respectively. The flaA-SVR sequences revealed high identity between human and dog isolates (94.8 %), but revealed 18 substitutions in the amino acid sequence, and showed that the dog and human C. jejuni were close to strains isolated from human and poultry sources. CONCLUSION this study demonstrated the comparative sequence analysis ofC. jejuni flaA-SVR fragment in dogs and some Egyptians, which indicated a high identity percentage between them. The results suggest that C. jejuni reservoirs dogs is an alarming public health concern and effective hygienic measures are necessary for house-holding pets to prevent C. jejuni zoonosis in Egypt's community.
Collapse
Affiliation(s)
- Hend A Abdelmageed
- Department of Bacteriology, Animal Health Research Institute, Ismailia lab, First District, Ismailia 41522, Egypt; Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Ahmed S Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ring road, Ismailia 41522, Egypt; Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.
| | - Attia A El Gedawy
- Department of Bacteriology, Animal Health Research Institute, P.O. Box 264, Giza 12618, Egypt
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Tetsuya Furuya
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mahmoud Ezzat
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ring road, Ismailia 41522, Egypt
| |
Collapse
|
10
|
Scheik LK, Volcan Maia DS, Würfel SDFR, Ramires T, Kleinubing NR, Haubert L, Lopes GV, da Silva WP. Biofilm-forming ability of poultry Campylobacter jejuni strains in the presence and absence of Pseudomonas aeruginosa. Can J Microbiol 2021; 67:301-309. [PMID: 33703923 DOI: 10.1139/cjm-2020-0256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of this study were to evaluate the ability of Campylobacter jejuni isolated from a poultry slaughterhouse to form biofilm in the presence and absence of Pseudomonas aeruginosa, and the effect of surface (stainless steel, polystyrene), temperature (7, 25, and 42 °C), and oxygen concentration (microaerophilic and aerobic conditions) on the formation of biofilm. The genes ahpC, cadF, clpP, dnaJ, docA, flaA, flaB, katA, kpsM, luxS, racR, and sodB, related to biofilm formation by C. jejuni, were also investigated. All isolates formed biofilm on stainless steel and on polystyrene, in both aerobic and microaerophilic atmospheres, including temperatures not optimal for C. jejuni growth (7 and 25 °C), and biofilm also was formed in the presence of P. aeruginosa. In dual-species biofilm on stainless steel, biofilm formation was 2-6 log CFU·cm-2 higher at 7 °C for all isolates, in comparison with monospecies biofilm. Ten genes (ahpC, cadF, clpP, dnaJ, docA, flaA, flaB, luxS, racR, and sodB) were detected in all isolates, but katA and kpsM were found in four and six isolates, respectively. The results obtained are of concern because the poultry C. jejuni isolates form biofilm in different conditions, which is enhanced in the presence of other biofilm formers, such as P. aeruginosa.
Collapse
Affiliation(s)
- Letícia Klein Scheik
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Darla Silveira Volcan Maia
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Simone de Fátima Rauber Würfel
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Natalie Rauber Kleinubing
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Louise Haubert
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil.,Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| |
Collapse
|
11
|
Identification of pathogenic genes in Campylobacter jejuni isolated from broiler carcasses and broiler slaughterhouses. Sci Rep 2021; 11:4588. [PMID: 33633256 PMCID: PMC7907142 DOI: 10.1038/s41598-021-84149-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
Campylobacter jejuni is one of the most common causes of foodborne diseases worldwide. There are few reports on Campylobacter strains isolated from Latin-American countries. Here, 140 C. jejuni strains isolated from cloacal and transport boxes swabs, water from chiller tanks, and broiler carcasses of five poultry companies in Southern Brazil were identified using phenotypic and genotypic methods. Polymerase chain reaction (PCR) was used to analyze eight C. jejuni virulence markers: flaA, cadF, and invasion-associated (iam) genes, cdtABC operon (associated with the cytolethal distending toxin), and plasmidial virB11 and wlaN genes were present in 78.5%, 77.8%, 0%, 74.2%, 22.1%, and 10.7% of samples, respectively. There were 25 different virulence profiles: 1 (cdtA, cdtB, cdtC, flaA, and cadF), 2 (cdtA, cdtB, cdtC, flaA, cadF, and virB11), and 3 (cdtA, cdtB, cdtC, flaA, cadF, and wlaN) were the most common (> 60% of strains). We provide insight into factors related to the occurrence of this pathogen and their epidemiology.
Collapse
|
12
|
Ramires T, de Oliveira MG, Kleinubing NR, de Fátima Rauber Würfel S, Mata MM, Iglesias MA, Lopes GV, Dellagostin OA, da Silva WP. Genetic diversity, antimicrobial resistance, and virulence genes of thermophilic Campylobacter isolated from broiler production chain. Braz J Microbiol 2020; 51:2021-2032. [PMID: 32514993 PMCID: PMC7688733 DOI: 10.1007/s42770-020-00314-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 06/04/2020] [Indexed: 10/24/2022] Open
Abstract
The aim of this study was to investigate the prevalence of thermophilic Campylobacter in the broiler production chain of southern Brazil, by evaluating broiler farms and slaughter line samples, and to determine the genetic diversity, antimicrobial resistance, and virulence genes of the isolates. Of the 140 samples investigated in this study, 75 (53.6%) were positive for thermophilic Campylobacter, and all isolates were identified by phenotypic and molecular tests as C. jejuni. The resistance to nalidixic acid was the most common (74%), followed by resistance to enrofloxacin (67.3%) and ciprofloxacin (37.1%). However, there was no resistance to the macrolides tested which are recommended for the treatment of human campylobacteriosis. The PFGE showed that the isolates were grouped in eight macrorestriction patterns (P1 to P8). A representative isolate of each macrorestriction pattern was investigated for the presence of virulence genes and all isolates carried the cadF, ciaB, cdtA, cdtB, cdtC, and flaA genes. The dnaJ gene was detected in 87.5% (7/8) of the isolates. The flhA and racR genes were detected in 75% (6/8), while the pldA gene was present in 62.5% (5/8) and the wlaN gene in 25% (2/8). The presence of C. jejuni in broiler farms and in the slaughterhouse is a hazard to consumer given that this pathogen can be maintained throughout the broiler production chain and contaminates the final product. Moreover, the presence of the major virulence genes in the isolates demonstrates that they have the ability to develop campylobacteriosis in humans.
Collapse
Affiliation(s)
- Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Mauricéia Greici de Oliveira
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Natalie Rauber Kleinubing
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Marcia Magalhães Mata
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
- Centro de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
13
|
Prevalence, genotypic diversity and detection of virulence genes in thermotolerant Campylobacter at different stages of the poultry meat supply chain. Int J Food Microbiol 2020; 326:108641. [PMID: 32371295 DOI: 10.1016/j.ijfoodmicro.2020.108641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Thermotolerant Campylobacter is the leading bacterial cause of foodborne illness in humans worldwide. The objectives of this study were to estimate prevalence and to identify and characterize potential sources of thermotolerant Campylobacter contamination in broilers on farms and at the slaughterhouse; to evaluate the clonal relationship among thermotolerant Campylobacter isolates from different stages of the broiler meat supply chain, and to analyze the presence of virulence genes in different sources of thermotolerant Campylobacter. A total of 1210 samples were collected from three broiler meat supply chains in Santa Fe, Argentina. At the farms, the sampling collection included broilers one week prior to slaughter, wild-living birds, domestic dogs, wild rodents, farm workers' boots, litter, feed, drinking water, flies, and darkling beetles (Alphitobius diaperinus). At the slaughtering line, the samples taken were from the evisceration zone (broiler cecum, working surfaces, evisceration knives and workers' hands), from the chiller zone (surfaces and direct supply water) and from the packing zone (work surfaces, workers' hands and broiler carcasses). The samples taken along each supply chain were in the same batch. The isolates obtained were identified to the species level (C. jejuni and C. coli) by multiplex PCR and were analyzed using pulsed-field gel electrophoresis to compare different profiles according to the source. Finally, the presence of 11 virulence genes was examined (cadF, cdtA, cdtB, cdtC, ciaB, flaA, flhA, iam, wlaN, virB11, racR). From 254 isolates, 128 (50.4%) were Campylobacter jejuni and 126 (49.6%) Campylobacter coli. C. jejuni was the species most prevalent in farm and C. coli the species most prevalent at the slaughterhouse. We detected thermotolerant Campylobacter in samples of wild birds, darkling beetles, farm workers' boots, flies and litter. At the slaughterhouse, the prevalence varied along the process line. By analyzing PFGE results, C. jejuni showed 21 profiles with three predominant genotypes, while C. coli showed 14 profiles with four predominant genotypes. A high genotype diversity was found; however, relationships between isolates from different stages of the broiler meat chain, between broiler and potential sources of thermotolerant Campylobacter contamination and between strains in the farm and in the slaughterhouse were detected. Furthermore, there was evidence of cross-contamination at the slaughterhouse. FlaA, flhA genes were detected in all strains, and the third most prevalent virulence gene was cadF. Only those strains obtained from flies, wild-living birds and broiler carcass samples harbored 10 of 11 pathogenic genes. The prevalence of some pathogenic genes between C. jejuni and C. coli was different. This evidence should contribute the scientific basis to implement risk management measures in public health.
Collapse
|
14
|
Wysok B, Wojtacka J, Wiszniewska-Łaszczych A, Szteyn J. Antimicrobial Resistance and Virulence Properties of Campylobacter Spp. Originating from Domestic Geese in Poland. Animals (Basel) 2020; 10:E742. [PMID: 32344537 PMCID: PMC7222810 DOI: 10.3390/ani10040742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
A total of 240 samples were evaluated for the presence of Campylobacter spp. Campylobacter was found in 83.3% of the cecum contents samples and 52.5% of the neck skin samples from carcasses. The prevailing species was C. jejuni, accounting for 87.7% of all Campylobacter isolates, and the remaining 12.3% of isolates were C. coli. All Campylobacter isolates, independent of the sample origin and species, were positive for 6 out of 15 tested genes (flaA, flhA, cadF, racR, ciaB, and cdtA genes). The prevalence of dnaJ, docA, pldA, cdtB, cdtC, and iam genes was also very common (ranging from 86.5% to 98.8%). The lowest prevalence was noted for virB11 and wlaN genes, both in Campylobacter isolates from cecum (12% and 19%) and carcasses (11.1% and 17.5%). None of the isolates tested, regardless of the sample origin, carried the cgtB gene. The highest resistance rates were observed for quinolones (90.8%) and tetracyclines (79.8%). Simultaneously, only single Campylobacter isolate was resistant to macrolides (0.6%) and none of the isolates showed resistance to aminoglycosides and amphenicols. The common presence of Campylobacter on geese carcasses as well as the detection of multidrug-resistant isolates indicate that consuming goose meat might cause a potential risk, therefore leading to human campylobacteriosis.
Collapse
Affiliation(s)
- Beata Wysok
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-917 Olsztyn, Poland; (J.W.); (A.W.-Ł.); (J.S.)
| | | | | | | |
Collapse
|
15
|
Virulence Traits of Inpatient Campylobacter jejuni Isolates, and a Transcriptomic Approach to Identify Potential Genes Maintaining Intracellular Survival. Microorganisms 2020; 8:microorganisms8040531. [PMID: 32272707 PMCID: PMC7232156 DOI: 10.3390/microorganisms8040531] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
There are still major gaps in our understanding of the bacterial factors that influence the outcomes of human Campylobacter jejuni infection. The aim of this study was to compare the virulence-associated features of 192 human C. jejuni strains isolated from hospitalized patients with diarrhoea (150/192, 78.1%), bloody diarrhoea (23/192, 11.9%), gastroenteritis (3/192, 1.6%), ulcerative colitis (3/192, 1.5%), and stomach ache (2/192, 1.0%). Traits were analysed with genotypic and phenotypic methods, including PCR and extracellular matrix protein (ECMP) binding, adhesion, and invasion capacities. Results were studied alongside patient symptoms, but no distinct links with them could be determined. Since the capacity of C. jejuni to invade host epithelial cells is one of its most enigmatic attributes, a high throughput transcriptomic analysis was performed in the third hour of internalization with a C. jejuni strain originally isolated from bloody diarrhoea. Characteristic groups of genes were significantly upregulated, outlining a survival strategy of internalized C. jejuni comprising genes related (1) to oxidative stress; (2) to a protective sheath formed by the capsule, LOS, N-, and O- glycosylation systems; (3) to dynamic metabolic activity supported by different translocases and the membrane-integrated component of the flagellar apparatus; and (4) to hitherto unknown genes.
Collapse
|
16
|
Kim J, Guk JH, Mun SH, An JU, Kim W, Lee S, Song H, Seong JK, Suh JG, Cho S. The Wild Mouse ( Micromys minutus): Reservoir of a Novel Campylobacter jejuni Strain. Front Microbiol 2020; 10:3066. [PMID: 31993041 PMCID: PMC6971111 DOI: 10.3389/fmicb.2019.03066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022] Open
Abstract
Campylobacter jejuni is one of the most common zoonotic pathogens worldwide. Although the main sources of human C. jejuni infection are livestock, wildlife can also affect C. jejuni transmission in humans. However, it remains unclear whether wild mice harbor C. jejuni and are involved in the "environment-wildlife-livestock-human" transmission cycle of C. jejuni in humans. Here, we characterized C. jejuni from wild mice and identified genetic traces of wild mouse-derived C. jejuni in other hosts using a traditional approach, along with comparative genomics. We captured 115 wild mice (49 Mus musculus and 66 Micromys minutus) without any clinical symptoms from 22 sesame fields in Korea over 2 years. Among them, M. minutus were typically caught in remote areas of human houses and C. jejuni was solely isolated from M. minutus (42/66, 63.6%). We identified a single clone (MLST ST-8388) in all 42 C. jejuni isolates, which had not been previously reported, and all isolates had the same virulence/survival-factor profile, except for the plasmid-mediated virB11 gene. No isolates exhibited antibiotic resistance, either in phenotypic and genetic terms. Comparative-genomic analysis and MST revealed that C. jejuni derived from M. minutus (strain SCJK2) was not genetically related to those derived from other sources (registered in the NCBI genome database and PubMLST database). Therefore, we hypothesize that C. jejuni from M. minutus is a normal component of the gut flora following adaptation to the gastro-intestinal tract. Furthermore, M. minutus-derived C. jejuni had different ancestral lineages from those derived from other sources, and there was a low chance of C. jejuni transmission from M. minutus to humans/livestock because of their habitat. In conclusion, M. minutus may be a potential reservoir for a novel C. jejuni, which is genetically different from those of other sources, but may not be involved in the transmission of C. jejuni to other hosts, including humans and livestock. This study could form the basis for further studies focused on understanding the transmission cycle of C. jejuni, as well as other zoonotic pathogens originating from wild mice.
Collapse
Affiliation(s)
- Junhyung Kim
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jae-Ho Guk
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seung-Hyun Mun
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jae-Uk An
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Woohyun Kim
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Soomin Lee
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hyokeun Song
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je Kyung Seong
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jun Gyo Suh
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Seongbeom Cho
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
17
|
Lye D, Struewing I, Gruber TM, Oshima K, Villegas EN, Lu J. A Gallus gallus Model for Determining Infectivity of Zoonotic Campylobacter. Front Microbiol 2019; 10:2292. [PMID: 31695684 PMCID: PMC6817472 DOI: 10.3389/fmicb.2019.02292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/19/2019] [Indexed: 12/02/2022] Open
Abstract
To better understand public health implications of waterfowl as reservoirs for zoonotic sources of Campylobacter in recreational waters, we developed a Gallus gallus (chick) model of infection to assess the pathogenicity of environmental isolates of Campylobacter. This method involved exposure of 1-day-old chicks through ingestion of water, the natural route of infection. Viable Campylobacter from laboratory-infected animals were monitored by using a modified non-invasive sampling of fresh chick excreta followed by a passive polycarbonate-filter migration culture assay. The method was used to evaluate the infectivities of three laboratory strains of Campylobacter spp. (Campylobacter coli, Campylobacter jejuni, and Campylobacter lari), three clinical isolates of C. jejuni, and four environmental Campylobacter spp. isolated from California gulls (Larus californicus). The results revealed that chicks were successfully infected with all laboratory and clinical isolates of Campylobacter spp. through ingestion of Campylobacter-spiked water, with infection rates ranging from <10 to >90% in a dose-dependent manner. More importantly, exposure of chicks with Campylobacter spp. isolated from Gallus gallus excreta also resulted in successful establishment of infection (≤90%). Each monitored Campylobacter spp. contained ≥7.5 × 104 CFU⋅g–1 of feces 7 days post-exposure. These results suggest that a G. gallus model can be used to assess infectivity of Campylobacter isolates, including gull and human clinical isolates. Use of an avian animal model can be applied to assess the importance of birds, such as the G. gallus, as potential contributors of waterborne-associated outbreaks of campylobacteriosis.
Collapse
Affiliation(s)
- Dennis Lye
- Office of Research and Development, USEPA, Cincinnati, OH, United States
| | - Ian Struewing
- Pegasus Technical Services, Inc., Cincinnati, OH, United States
| | - Theresa M Gruber
- Office of Research and Development, USEPA, Cincinnati, OH, United States
| | - Kevin Oshima
- Office of Research and Development, USEPA, Cincinnati, OH, United States
| | - Eric N Villegas
- Office of Research and Development, USEPA, Cincinnati, OH, United States
| | - Jingrang Lu
- Office of Research and Development, USEPA, Cincinnati, OH, United States
| |
Collapse
|
18
|
Han X, Guan X, Zeng H, Li J, Huang X, Wen Y, Zhao Q, Huang X, Yan Q, Huang Y, Cao S, Wu R, Ma X, Zou L. Prevalence, antimicrobial resistance profiles and virulence-associated genes of thermophilic Campylobacter spp. isolated from ducks in a Chinese slaughterhouse. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Chukwu MO, Luther King Abia A, Ubomba-Jaswa E, Obi L, Dewar JB. Characterization and Phylogenetic Analysis of Campylobacter Species Isolated from Paediatric Stool and Water Samples in the Northwest Province, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2205. [PMID: 31234440 PMCID: PMC6617328 DOI: 10.3390/ijerph16122205] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022]
Abstract
Antibiotic-resistant Campylobacter could adversely affect treatment outcomes, especially in children. We investigated the antibiotic susceptibility profiles, virulence potentials and genetic relatedness of Campylobacter spp. from paediatric and water samples in the North West Province, South Africa. Overall, 237 human and 20 water isolates were identified using culture and real-time polymerase chain reaction (PCR). The antibiotic susceptibility profiles were determined using the disk diffusion method. Gradient strips were used to determine the minimum inhibitory concentration of each antibiotic. Antibiotic resistance (gryA, tetO and 23S rRNA 2075G and 2074C) and virulence (cadF and ciaB) genes were also investigated using PCR. A phylogenetic tree to ascertain the clonality between water and clinical isolates was constructed using MEGA 7. Overall, 95% (water) and 64.7% (human) of the isolates were resistant to at least one antibiotic tested. The highest resistance was against clarithromycin (95%) for water and ampicillin (60.7%) for human isolates. The 23S rRNA 2075G/2074C mutation was the most expressed resistance gene. Phylogenetic reconstruction revealed eight intermixed clades within water and human Campylobacter isolates. This study suggests the possible circulation of potentially pathogenic antibiotic-resistant Campylobacter in the Northwest Province, South Africa with drinking water being a possible vector for disease transmission in this area.
Collapse
Affiliation(s)
- Martina O Chukwu
- Department of Life and Consumer science, College of Agriculture and Environmental Sciences, University of South Africa, Corner Christiaan De wet and Pioneer Avenue, 1724 Florida park Roodepoort, Gauteng 1709, South Africa.
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| | - Eunice Ubomba-Jaswa
- Department of Biotechnology, University of Johannesburg, 37 Nind Street, Doornfontein, Gauteng 2094, South Africa.
- Water Research Commission, Lynnwood Bridge Office Park, Bloukrans Building, 4 Daventry Street, Lynnwood Manor, Pretoria 0081, South Africa.
| | - Lawrence Obi
- Sefako Makgatho Health Science University, Molotlegi Street, Ga-Rankuwa,Pretoria, Gauteng, P.O Box 60, Medunsa 0204, South Africa.
| | - John Barr Dewar
- Department of Life and Consumer science, College of Agriculture and Environmental Sciences, University of South Africa, Corner Christiaan De wet and Pioneer Avenue, 1724 Florida park Roodepoort, Gauteng 1709, South Africa.
| |
Collapse
|
20
|
Wheeler NE, Blackmore T, Reynolds AD, Midwinter AC, Marshall J, French NP, Savoian MS, Gardner PP, Biggs PJ. Genomic correlates of extraintestinal infection are linked with changes in cell morphology in Campylobacter jejuni. Microb Genom 2019; 5:e000251. [PMID: 30777818 PMCID: PMC6421344 DOI: 10.1099/mgen.0.000251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/16/2018] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni is the most common cause of bacterial diarrheal disease in the world. Clinical outcomes of infection can range from asymptomatic infection to life-threatening extraintestinal infections. This variability in outcomes for infected patients has raised questions as to whether genetic differences between C. jejuni isolates contribute to their likelihood of causing severe disease. In this study, we compare the genomes of ten C. jejuni isolates that were implicated in extraintestinal infections with reference gastrointestinal isolates, in order to identify unusual patterns of sequence variation associated with infection outcome. We identified a collection of genes that display a higher burden of uncommon mutations in invasive isolates compared with gastrointestinal close relatives, including some that have been previously linked to virulence and invasiveness in C. jejuni. Among the top genes identified were mreB and pgp1, which are both involved in determining cell shape. Electron microscopy confirmed morphological differences in isolates carrying unusual sequence variants of these genes, indicating a possible relationship between extraintestinal infection and changes in cell morphology.
Collapse
Affiliation(s)
- Nicole E. Wheeler
- Center for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Hinxton, UK
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | | | - Angela D. Reynolds
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Jonathan Marshall
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Nigel P. French
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Palmerston North, New Zealand
| | - Matthew S. Savoian
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Paul P. Gardner
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Patrick J. Biggs
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Genomics Ltd (NZGL – as Massey Genome Service) Massey University, Palmerston North, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
| |
Collapse
|
21
|
Farfán M, Lártiga N, Benavides MB, Alegría-Morán R, Sáenz L, Salcedo C, Lapierre L. Capacity to adhere to and invade human epithelial cells, as related to the presence of virulence genes in, motility of, and biofilm formation of Campylobacter jejuni strains isolated from chicken and cattle. Can J Microbiol 2018; 65:126-134. [PMID: 30339767 DOI: 10.1139/cjm-2018-0503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Campylobacter jejuni is a zoonotic pathogen transmitted through the "farm to fork" route. Outbreaks are generally associated with the consumption of chicken meat; however, dairy cows, birds, wild and domestic food animals, and pets are other important sources. Currently, there are not enough data comparing the virulence of strains isolated from these reservoirs. In this study, we compared C. jejuni strains isolated from broiler chickens and dairy cattle by determining their ability to adhere to and invade in vitro human colonic epithelial cells in the T84 cell line with their motility, formation of biofilms, and presence of eight virulence genes. A Wilcoxon Rank Sum test was performed to establish the relationship between presence of the studied genes and cellular invasion and adhesion, as well as differences between the animal species of origin of the isolate. A Spearman correlation was performed to assess the relationship between invasion and motility, along with invasion and biofilm generation. The virB11 gene was positively associated with the adherence capacity of the strains (mean difference = 0.21, p = 0.006), and strains isolated from chickens showed a significant difference for adherence compared with strains isolated from cattle (p = 0.0001). Our results indicate that strains of C. jejuni have a difference in their adherence capacity depending on the animal reservoir from which they came, with chicken isolates displaying higher virulence than dairy cattle isolates.
Collapse
Affiliation(s)
- Mauricio Farfán
- a Faculty of Medicine, University of Chile, Antonio Varas 360, Providencia, Santiago, Chile
| | - Natalia Lártiga
- a Faculty of Medicine, University of Chile, Antonio Varas 360, Providencia, Santiago, Chile.,b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - María Belén Benavides
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Raúl Alegría-Morán
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Leonardo Sáenz
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Cristal Salcedo
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Lisette Lapierre
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| |
Collapse
|
22
|
Gomes CN, Passaglia J, Vilela FP, Pereira da Silva FM, Duque SS, Falcão JP. High survival rates of Campylobacter coli under different stress conditions suggest that more rigorous food control measures might be needed in Brazil. Food Microbiol 2018. [DOI: 10.1016/j.fm.2018.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Wieczorek K, Wołkowicz T, Osek J. Antimicrobial Resistance and Virulence-Associated Traits of Campylobacter jejuni Isolated From Poultry Food Chain and Humans With Diarrhea. Front Microbiol 2018; 9:1508. [PMID: 30022977 PMCID: PMC6039573 DOI: 10.3389/fmicb.2018.01508] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023] Open
Abstract
The objective of this study was to test the prevalence of virulence-associated markers and antimicrobial resistance in 624 C. jejuni isolated from poultry food chain, i. e., chicken feces (n = 160), poultry carcasses (n = 157), poultry meat (n = 152) and from humans (n = 155). All human strains were positive for 9 out of 13 putative virulence genes responsible for expression of pathogenic factors involved in different stages of the infection. The presence of all markers was also high in strains from chicken feces, carcasses and meat although not all of them were identified in 100% of the isolates. On the other hand, the virB11, wlaN, and iam putative pathogenic genes were detected in only 1.9, 15.2, and 20.5% of strains, respectively. C. jejuni isolates, irrespective of the origin, were highly resistant to ciprofloxacin (92.5% isolates), followed by nalidixic acid (88.9%) and tetracycline (68.4%). In case of ciprofloxacin, significantly more isolates from poultry feces, carcasses and meat were resistant than those obtained from humans and the same relationship was observed for tetracycline where the isolates from chicken feces were more often resistant than C. jejuni of carcasses and meat origin. A low number of strains was resistant to streptomycin (18.4% isolates) and only 5 strains (0.8%) displayed resistance to erythromycin. A relationship between resistance to fluoroquinolones and presence of selected pathogenic markers was observed, e.g., from 83.3% strains with the virB11 to 93.4% with the docA genes were resistant to ciprofloxacin. The isolates that did not possess any of the pathogenic traits were also mainly resistant to this antimicrobial, although the number of such strains was usually low, except virB11 (612 isolates), wlaN (529 strains), and iam (496 isolates). Furthermore, resistance to tetracycline was somehow associated with the presence of the virulence associated genes wlaN and virB11 (56.8 and 75.0% isolates, respectively). The present study shows a high antimicrobial resistance to quinolones and tetracycline of C. jejuni isolated along poultry food chain and from patients with diarrhea, which was closely correlated with the presence of several virulence genes playing a role in the pathogenesis of Campylobacter infection.
Collapse
Affiliation(s)
- Kinga Wieczorek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Puławy, Poland
| | - Tomasz Wołkowicz
- Department of Bacteriology and Biocontamination Control, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
24
|
Ghorbanalizadgan M, Bakhshi B, Najar-Peerayeh S. Heterogeneity of cytolethal distending toxin sequence types of Campylobacter jejuni and correlation to invasion/cytotoxicity potential: The first molecular survey from Iran. Microb Pathog 2017; 114:213-218. [PMID: 29174703 DOI: 10.1016/j.micpath.2017.11.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/19/2017] [Accepted: 11/22/2017] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the cytotoxicity and attachment/invasion potential of thermophilic Campylobacter isolates regarding their cdtABC sequence types and virulence-associated gene content. A total of 33 Campylobacter spp. were identified from 750 stool samples isolated from patients characterized with diarrhea. The prevalence rates of flaA, ciaB, and pldA genes among the isolates were 97, 100, and 15%, respectively. The iam gene was found in 100% of the C. coli isolates while it was not detected in C. jejuni isolates. Four PCR primer pairs jointly amplifying the entire cdtABC genes array and sequence analysis revealed variations dispersed along the sequence array. The isolates attachment to HeLa cells ranged from 89 ± 2-100%, and the range of invasions was also from 0 to 11 ± 0.04%. The cytotoxicity value was between 2 and 32 in cdt+ isolates with no significant correlation to any of the cdtABC sequence types. Moreover, the cdtABC encoding strains had increased invasion to HeLa cells, and all of the related patients presented much higher white and red blood cell shedding in stool specimens (P-value≤ 0.001). No significant difference was observed between cdt+ and cdt- isolates in their attachment rate to HeLa cells. About 48% of all the Iranian Campylobacter population lacked a complete set of cdtABC genes array, suggesting low invasion and cytotoxicity potential of the isolates which are heterogeneous in their cdt genes and virulence.
Collapse
Affiliation(s)
- Mahdi Ghorbanalizadgan
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Jribi H, Sellami H, Hassena AB, Gdoura R. Prevalence of Putative Virulence Genes in Campylobacter and Arcobacter Species Isolated from Poultry and Poultry By-Products in Tunisia. J Food Prot 2017; 80:1705-1710. [PMID: 28906158 DOI: 10.4315/0362-028x.jfp-16-509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Campylobacter and Arcobacter spp. are common causes of gastroenteritis in humans; these infections are commonly due to undercooked poultry. However, their virulence mechanism is still poorly understood. The aim of this study was to evaluate the presence of genotypic virulence markers in Campylobacter and Arcobacter species using PCR. The prevalence of virulence and cytolethal distending toxin (CDT) genes was estimated in 71 Campylobacteraceae isolates. PCR was used to detect the presence of virulence genes (iam, cadF, virB1, flaA, cdtA, cdtB, and cdtC) using specific primers for a total of 45 Campylobacter isolates, including 37 C. jejuni and 8 C. coli. All the Campylobacter isolates were positive for the cadF gene. The plasmid gene virB11 was not detected in any strain. The invasion associated marker was not detected in C. jejuni. Lower detection rates were observed for flaA, cdtA, cdtB, and cdtC. The presence of nine putative Arcobacter virulence genes (cadF, ciaB, cj1349, mviN, pldA, tlyA, irgA, hecA, and hecB) was checked in a set of 22 Arcobacter butzleri and 4 Arcobacter cryaerophilus isolates. The pldA and mviN genes were predominant (88.64%). Lower detection rates were observed for tlyA (84.76%), ciaB (84.61%), cadF and cj1349 (76.92%), IrgA and hecA (61.53%), and hecB (57.69%). The findings revealed that a majority of the Campylobacteraceae strains have these putative virulence genes that may lead to pathogenic effects in humans.
Collapse
Affiliation(s)
- Hela Jribi
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia
| | - Hanen Sellami
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia.,2 Laboratoire de Traitement et de Valorisation des Rejets Hydriques (LTVRH), Water Researches and Technologies Center (CERTE), University of Carthage, Tourist route Soliman, BP 273-8020, Nabeul 8000, Tunisia
| | - Amal Ben Hassena
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia
| | - Radhouane Gdoura
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia
| |
Collapse
|
26
|
Oh E, McMullen LM, Chui L, Jeon B. Differential Survival of Hyper-Aerotolerant Campylobacter jejuni under Different Gas Conditions. Front Microbiol 2017; 8:954. [PMID: 28611753 PMCID: PMC5447730 DOI: 10.3389/fmicb.2017.00954] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/12/2017] [Indexed: 01/14/2023] Open
Abstract
Campylobacter jejuni accounts for a significant number of foodborne illnesses around the world. C. jejuni is microaerophilic and typically does not survive efficiently in oxygen-rich conditions. We recently reported that hyper-aerotolerant (HAT) C. jejuni are highly prevalent in retail poultry meat. To assess the capabilities of HAT C. jejuni in foodborne transmission and infection, in this study, we investigated the prevalence of virulence genes in HAT C. jejuni and the survival in poultry meat in atmosphere at a refrigeration temperature. When we examined the prevalence of eight virulence genes in 70 C. jejuni strains from raw poultry meat, interestingly, the frequencies of detecting virulence genes were significantly higher in HAT C. jejuni strains than aerosenstive C. jejuni strains. This suggests that HAT C. jejuni would potentially be more pathogenic than aerosensitive C. jejuni. Under aerobic conditions, aerosensitive C. jejuni survived at 4°C in raw poultry meat for 3 days, whereas HAT C. jejuni survived in poultry meat for a substantially extended time; there was a five-log CFU reduction over 2 weeks. In addition, we measured the effect of other gas conditions, including N2 and CO2, on the viability of HAT C. jejuni in comparison with aerosensitive and aerotolerant strains. N2 marginally affected the viability of C. jejuni. However, CO2 significantly reduced the viability of C. jejuni both in culture media and poultry meat. Based on the results, modified atmosphere packaging using CO2 may help us to control poultry contamination with HAT C. jejuni.
Collapse
Affiliation(s)
- Euna Oh
- School of Public Health, University of Alberta, EdmontonAB, Canada
| | - Lynn M McMullen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAB, Canada
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta, EdmontonAB, Canada.,Provincial Laboratory for Public Health, EdmontonAB, Canada
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta, EdmontonAB, Canada
| |
Collapse
|
27
|
Frazão MR, Medeiros MIC, Duque SDS, Falcão JP. Pathogenic potential and genotypic diversity of Campylobacter jejuni: a neglected food-borne pathogen in Brazil. J Med Microbiol 2017; 66:350-359. [PMID: 28317494 DOI: 10.1099/jmm.0.000424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose and methodology.Campylobacter jejuni is a major zoonotic pathogen that causes food-borne gastroenteritis worldwide. However, there are only a few studies available that have molecularly characterized C. jejuni strains isolated in Brazil. The aim of this study was to genotype 111 C. jejuni strains isolated from sick humans (43), monkey faeces (19), chicken faeces (14), chicken meat (33) and sewage (2) between 1996 and 2016 in Brazil using flaA-SVR (short variable region) sequencing and PFGE. Furthermore, the presence of 16 virulence genes was analysed by PCR. RESULTS Using PFGE and flaA-SVR sequencing, the 111 C. jejuni strains studied were grouped into three and two clusters, respectively, and some strains of different origin presented a similarity of ≥80 %. In total, 35 flaA-SVR alleles were detected. Alleles gt45, gt49 and gt57 were the most prevalent, in contrast with those frequently described in the PubMLST database. All 111 C. jejuni strains contained the genes flaA, flhA, cadF, docA, cdtA, cdtB, cdtC, iamA, ciaB, sodB, dnaJ, pldA, racR and csrA. The wlaN gene was detected in 11 strains (9.9 %), and the virB11 in just one strain (0.9 %). CONCLUSIONS In conclusion, the pathogenic potential of the C. jejuni strains studied was highlighted by the high frequency of the majority of the virulence genes searched. The flaA-SVR sequencing and PFGE results showed that some of the strains studied presented a high genotypic similarity, suggesting potential for transmission between animal sources and humans in this country. Altogether, the results characterize further C. jejuni isolates from Brazil, an important producer and exporter of chicken meat.
Collapse
Affiliation(s)
- Miliane Rodrigues Frazão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
28
|
Raeisi M, Khoshbakht R, Ghaemi EA, Bayani M, Hashemi M, Seyedghasemi NS, Shirzad-Aski H. Antimicrobial Resistance and Virulence-Associated Genes of Campylobacter spp. Isolated from Raw Milk, Fish, Poultry, and Red Meat. Microb Drug Resist 2017; 23:925-933. [PMID: 28177853 DOI: 10.1089/mdr.2016.0183] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This study was designed and conducted to evaluate the frequency, antimicrobial resistance, and presence of six virulence-associated genes among thermophilic Campylobacters isolated from raw milk, poultry (chicken, turkey, and duck), fish, cattle, and sheep meat. Out of 590 samples, which were recovered from different origins, 141 (23.9%) samples were positive for Campylobacters. Campylobacter spp. was isolated in 40.8% (106/260), 14% (28/200), and 8.7% (7/80) of poultry meat, red meat, and milk samples, respectively. Antimicrobial susceptibility test indicated a high frequency of resistance to ciprofloxacin, tetracycline, and nalidixic acid among the isolates. Furthermore, prevalence of waaC, ciaB, and pldA genes were 91.7%, 86.7%, and 80.8%, respectively; and, none of the isolates harbored both wlaN and cgtB genes, simultaneously. Moreover, there was a weak correlation between antibiotics resistance and presence of the pathogen genes. However, the existence of Campylobacter spp. isolates in food animal products, with high resistance to antibiotics and several virulence gene possessions, is alarming and increases the attention to the widespread use of antibiotics.
Collapse
Affiliation(s)
- Mojtaba Raeisi
- 1 Infectious Diseases Research Center, Golestan University of Medical Sciences , Gorgan, Iran .,2 Department of Nutrition, Faculty of Health, Golestan University of Medical Sciences , Gorgan, Iran
| | - Rahem Khoshbakht
- 3 Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies , Amol, Iran
| | - Ezzat Allah Ghaemi
- 1 Infectious Diseases Research Center, Golestan University of Medical Sciences , Gorgan, Iran
| | - Mahsan Bayani
- 4 Faculty of Veterinary Medicine, Semnan University , Semnan, Iran
| | - Mohammad Hashemi
- 5 Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad, Iran
| | | | - Hesamaddin Shirzad-Aski
- 1 Infectious Diseases Research Center, Golestan University of Medical Sciences , Gorgan, Iran
| |
Collapse
|
29
|
Zhang T, Luo Q, Chen Y, Li T, Wen G, Zhang R, Luo L, Lu Q, Ai D, Wang H, Shao H. Molecular epidemiology, virulence determinants and antimicrobial resistance of Campylobacter spreading in retail chicken meat in Central China. Gut Pathog 2016; 8:48. [PMID: 27800028 PMCID: PMC5080698 DOI: 10.1186/s13099-016-0132-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/12/2016] [Indexed: 11/21/2022] Open
Abstract
Background Campylobacter species are the major food-borne pathogens which could cause bacterial gastroenteritis in humans. Contaminated chicken products have been recognized as the primary vehicles of Campylobacter transmission to human beings. In this study, the prevalence of Campylobacter in retail chicken meat in Central China was investigated, and the isolates were further characterized using molecular approaches and tested for antibiotic resistance. Results A total of 302 chicken samples purchased from April 2014 to April 2015 were tested. The level of Campylobacter contamination was enumerated by most probable number-PCR (MPN-PCR). The Campylobacter positive rate was 17.2% (52/302), with bacterial count varying from 3.6 to 360 MPN/g in positive samples. A total of 52 Campylobacter strains, including 40 Campylobacter jejuni and 12 Campylobacter coli, were isolated from the positive samples. To examine the genetic diversity of the isolates, multilocus sequence typing (MLST) technology was applied, which identified 23 sequence types (STs) belonging to seven clonal complexes (CCs) and unassigned. Among them, the dominant CCs of C. jejuni included CC-353 and CC-464, and the dominant CCs of C. coli were CC-828 and CC-1150. Antibiotic resistance analysis showed that all of the isolates were resistant to norfloxacin and ciprofloxacin. 23 virulence-associated genes were tested in the isolates, which showed that the number of virulence-associated genes detected in the C. jejuni isolates ranged from 16 to 21, while in most of the C. coli isolates ranged from 12 to 16. Virulence-associated genes, flaA, flgB, flgE2, fliM, fliY and cadF were detected in all isolates. VirB11, however, was not detected in any of the isolates. Conclusions To the best of our knowledge, this is the first report on the contamination level and molecular biological features of Campylobacter strains in retail chicken meat in Central China, which showed high genetic diversity and remarkable antibiotic resistance. This study provided scientific data for the risk assessment and evaluation of Campylobacter contamination in retail chicken products. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0132-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tengfei Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Qingping Luo
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Yiluo Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China ; College of Animal Science, Yangtze University, Jingzhou, 434025 China
| | - Tingting Li
- Hubei Animal Disease Prevention and Control Center, Wuhan, 430070 China
| | - Guoyuan Wen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Rongrong Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Ling Luo
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Qin Lu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Diyun Ai
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Hongcai Wang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Huabin Shao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| |
Collapse
|
30
|
Casabonne C, Gonzalez A, Aquili V, Subils T, Balague C. Prevalence of Seven Virulence Genes of Campylobacter jejuni Isolated from Patients with Diarrhea in Rosario, Argentina. ACTA ACUST UNITED AC 2016. [DOI: 10.17795/iji-37727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Nguyen TNM, Hotzel H, El-Adawy H, Tran HT, Le MTH, Tomaso H, Neubauer H, Hafez HM. Genotyping and antibiotic resistance of thermophilic Campylobacter isolated from chicken and pig meat in Vietnam. Gut Pathog 2016; 8:19. [PMID: 27175218 PMCID: PMC4863348 DOI: 10.1186/s13099-016-0100-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/20/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Campylobacter species are recognized as the most common cause of foodborne bacterial gastroenteritis in humans. In this study nine Campylobacter strains isolated from chicken meat and pork in Hanoi, Vietnam, were characterized using molecular methods and tested for antibiotic resistance. RESULTS The nine isolates (eight C. jejuni and one C. coli) were identified by multiplex PCR, and tested for the presence or absence of 29 gene loci associated with virulence, lipooligosaccharide (LOS) biosynthesis and further functions. flaA typing, multilocus sequence typing and microarray assay investigation showed a high degree of genetic diversity among these isolates. In all isolates motility genes (flaA, flaB, flhA, fliM), colonization associated genes (cadF, docB), toxin production genes (cdtA, cdtB, secD, secF), and the LOS biosynthesis gene pglB were detected. Eight gene loci (fliY, virB11, Cje1278, Cj1434c, Cj1138, Cj1438c, Cj1440c, Cj1136) could not be detected by PCR. A differing presence of the gene loci ciaB (22.2 %), Cje1280 (77.8 %), docC (66.7 %), and cgtB (55.6 %) was found. iamA, cdtC, and the type 6 secretion system were present in all C. jejuni isolates but not in C. coli. flaA typing resulted in five different genotypes within C. jejuni, MLST classified the isolates into seven sequence types (ST-5155, ST-6736, ST-2837, ST-4395, ST-5799, ST-4099 and ST-860). The microarray assay analysis showed a high genetic diversity within Vietnamese Campylobacter isolates which resulted in eight different types for C. jejuni. Antibiotic susceptibility profiles showed that all isolates were sensitive to gentamicin and most isolates (88.8 %) were sensitive to chloramphenicol, erythromycin and streptomycin. Resistance rates to nalidixic acid, tetracycline and ciprofloxacin were 88.9, 77.8 and 66.7 %, respectively. CONCLUSIONS To the best of our knowledge, this study is the first report that shows high genetic diversity and remarkable antibiotic resistance of Campylobacter strains isolated from meat in Vietnam which can be considered of high public health significance. These preliminary data show that large scale screenings are justified to assess the relevance of Campylobacter infections on human health in Vietnam.
Collapse
Affiliation(s)
- Tuan Ngoc Minh Nguyen
- />HungVuong University, Viet Tri, PhuTho Vietnam
- />Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- />Institute of Poultry Diseases, Free University Berlin, Berlin, Germany
| | - Helmut Hotzel
- />Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Hosny El-Adawy
- />Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- />Department of Poultry Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Hanh Thi Tran
- />Institute of Tropical Diseases and Zoonoses Vietnam, Hanoi, Vietnam
| | - Minh Thi Hong Le
- />Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Herbert Tomaso
- />Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Heinrich Neubauer
- />Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | | |
Collapse
|
32
|
Prevalence, genetic diversity and antimicrobial susceptibility of Campylobacter jejuni isolated from retail food in China. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.09.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Koolman L, Whyte P, Burgess C, Bolton D. Distribution of virulence-associated genes in a selection of Campylobacter isolates. Foodborne Pathog Dis 2015; 12:424-32. [PMID: 25826607 DOI: 10.1089/fpd.2014.1883] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This study tested 24 Campylobacter isolates for the presence of 35 virulence genes using the polymerase chain reaction. The target genes included those involved in motility (flaA, flaB, flhA, flhB, flgB, flgE2, fliM, fliY), chemotaxis (cheA, cheB, cheR, cheW, cheY, cheZ), cell adhesion (cadF, dnaJ, jlpA, pldA, racR, virB11), invasion (iamA, ciaB, ceuE), cytotoxin production (cdtA, cdtB, cdtC, wlaN), capsule (kpsM), multidrug and bile resistance (cmeA, cmeB, cmeC), stress response/survival (katA, sodB), and the iron uptake system (cfrA, fur). The motility genes (with the exception of flaB), the CmeABC efflux system, cdtABC genes, and the sodB gene were commonly distributed among Campylobacter strains while the virB11 and wlaN genes were rarely detected. Interestingly, the findings suggest that flaB is not essential for full motility and C. coli lacking the flhA gene may be highly invasive. This study provides additional information on the distribution of Campylobacter virulence factors and the effect of their presence/absence on adhesion and invasion. It will inform future studies designed to elucidate the exact mechanisms of pathogenesis in Campylobacter.
Collapse
Affiliation(s)
- Leonard Koolman
- 1 Food Safety Department, Teagasc Food Research Centre , Ashtown, Dublin, Ireland
| | | | | | | |
Collapse
|
34
|
Ghorbanalizadgan M, Bakhshi B, Kazemnejad Lili A, Najar-Peerayeh S, Nikmanesh B. A molecular survey of Campylobacter jejuni and Campylobacter coli virulence and diversity. IRANIAN BIOMEDICAL JOURNAL 2015; 18:158-64. [PMID: 24842142 PMCID: PMC4048480 DOI: 10.6091/ibj.1359.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background: The aim of this study was to determine the prevalence of virulence-associated genes and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) analysis of Campylobacter spp. isolated from children with diarrhea in Iran. Methods: A total of 200 stool specimens were obtained from children under 5 years during July 2012 to July 2013. Detection of C. jejuni and C. coli was performed by standard biochemical and molecular methods. The presence of virulence-associated genes and genetic diversity of isolates was examined using PCR and ERIC-PCR analyses. Results: A total of 12 (6%) Campylobacter spp. were isolated from patients including 10 (4.5%) C. jejuni and 2 (1.5%) C.coli. The flaA, cadF and ciaB genes were present in 100% of isolates, while no plasmid of virB11 gene was present in their genome. The prevalence of invasion-associated marker was 100% among C. coli and was not detected in C. jejuni isolates. The distribution of both pldA and the genes associated with cytolethal distending toxin (CDT) was 58.3% in C. jejuni isolates. Seven distinct ERIC-PCR profiles were distinguished in three clusters using ERIC-PCR analysis. Genotyping analysis showed a relative correlation with geographic location of patients and virulence gene content of isolates. Conclusion: To our knowledge, this is the first molecular survey of Campylobacter spp. in Iran concerning genotyping and virulence gene content of both C. jejuni and C. coli. ERIC-PCR revealed appropriate discriminatory power for clustering C. jejuni isolates with identical virulence gene content. However, more studies are needed to clearly understand the pathogenesis properties of specific genotypes.
Collapse
Affiliation(s)
- Mahdi Ghorbanalizadgan
- Dept. of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Dept. of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Shahin Najar-Peerayeh
- Dept. of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Nikmanesh
- Children’s Hospital Medical Center, Tehran university of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Yang JW, Kim SH, Lee WW, Kim YH. Prevalence of virulence-associated genes and antimicrobial resistance of Campylobacter jejuni from ducks in Gyeongnam Province, Korea. ACTA ACUST UNITED AC 2014. [DOI: 10.7853/kjvs.2014.37.2.85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Castillo S, Heredia N, Arechiga-Carvajal E, García S. Citrus Extracts as Inhibitors of Quorum Sensing, Biofilm Formation and Motility ofCampylobacter jejuni. FOOD BIOTECHNOL 2014. [DOI: 10.1080/08905436.2014.895947] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Prevalence of virulence and cytolethal distending toxin (CDT) genes in thermophilic Campylobacter spp. from dogs and humans in Gyeongnam and Busan, Korea. ACTA ACUST UNITED AC 2014. [DOI: 10.14405/kjvr.2014.54.1.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Antimicrobial resistance and genetic characterization of Campylobacter spp. from three countries. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
39
|
Mundi A, Delcenserie V, Amiri-Jami M, Moorhead S, Griffiths MW. Cell-free preparations of Lactobacillus acidophilus strain La-5 and Bifidobacterium longum strain NCC2705 affect virulence gene expression in Campylobacter jejuni. J Food Prot 2013; 76:1740-6. [PMID: 24112574 DOI: 10.4315/0362-028x.jfp-13-084] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Campylobacter spp. are among the most commonly reported bacterial causes of acute diarrheal disease in humans worldwide. Potential virulence factors include motility, chemotaxis, colonization ability, adhesion to intestinal cells, invasion and epithelial translocation, intracellular survival, and formation of toxins. Probiotic Lactobacillus and Bifidobacterium strains are known to have an inhibitory effect against the growth of various foodborne pathogens. The objective of this study was to investigate the effect of Lactobacillus acidophilus strain La-5 and Bifidobacterium longum strain NCC2705 cell-free spent media (CFSM) on the expression of virulence genes (cadF, cdtB, flaA, and ciaB) of Campylobacter jejuni strain 81-176 and a luxS mutant, using real-time PCR. Our results demonstrated that the CFSM of both probiotic strains were able to down-regulate the expression of ciaB (ratio of -2.80 and -5.51, respectively) and flaA (ratio of -7.00 and -5.13, respectively) in the wild-type Campylobacter strain. In the luxS mutant, where the activated methyl cycle is disrupted, only the ciaB gene (ratio -7.21) was repressed in the presence of La-5 CFSM. A supplementation of homocysteine to restore the disrupted cycle was able to partially reestablish the probiotic effect of both strains. luxS and the activated methyl cycle might play an active role in the modulation of virulence of C. jejuni by probiotic extracts.
Collapse
Affiliation(s)
- A Mundi
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1 and Canadian Research Institute for Food Safety, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
40
|
Khoshbakht R, Tabatabaei M, Hosseinzadeh S, Shekarforoush SS, Aski HS. Distribution of nine virulence-associated genes in Campylobacter jejuni and C. coli isolated from broiler feces in Shiraz, Southern Iran. Foodborne Pathog Dis 2013; 10:764-70. [PMID: 23789768 DOI: 10.1089/fpd.2013.1489] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To investigate the prevalence of nine virulence and toxin genes of Campylobacter, a total of 90 Campylobacter strains including 48 C. jejuni and 42 C. coli were recovered from chicken feces by cultivation methods. The isolates were identified on the basis of polymerase chain reaction (PCR) detection of 16SrRNA and multiplex PCR for determining two species. For confirmed strains, PCR was carried out for the presence of virulence genes using specific primers. Data were analyzed by SPSS software, version 12.0.1. The cadF gene and three genes associated with cytolethal distending toxin were present in 100% of isolates. Plasmid virB11 gene was not found in any of the Campylobacter isolates, and the prevalence of pldA, wlaN, iamA, and cgtB genes were 92.22%, 82.22%, 81.11%, and 22.22%, respectively. The findings revealed that the distribution of the majority of these genes were not dissimilar among Campylobacter species. The results emphasized that many of the pathogenic C. jejuni and C. coli may have these genes, and the Campylobacter strains with poultry origin have pathogenic potential properties for humans.
Collapse
Affiliation(s)
- Rahem Khoshbakht
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | | | | | | |
Collapse
|
41
|
Acik MN, Karahan M, Ongor H, Cetinkaya B. Investigation of virulence and cytolethal distending toxin genes in Campylobacter spp. isolated from sheep in Turkey. Foodborne Pathog Dis 2013; 10:589-94. [PMID: 23611104 DOI: 10.1089/fpd.2012.1447] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The presence of virulence and cytolethal distending toxin (Cdt) genes was investigated in isolates of Campylobacter jejuni, C. coli, C. lanienae, and C. lari that originated from intestinal contents and gallbladders of clinically healthy sheep. These genes have important roles in the pathogenicity of campylobacters. A total of 363 Campylobacter isolates (221 C. jejuni, 135 C. coli, five C. lanienae, and two C. lari) were used in this study. The frequency of racR, dnaJ, ciaB, pldA, flaA, and cadF virulence genes in all the isolates were determined to be 34.4%, 30%, 24.8%, 30.9%, 95%, and 81.3%, respectively, while the virB11 virulence gene could not be detected in any isolates. CdtA, cdtB, and cdtC genes were detected in 54.5%, 55.9%, and 52.3% of the isolates, respectively. None of the virulence and toxin genes examined here were detected in a total of 19 Campylobacter isolates consisting of 10 C. jejuni and nine C. coli. This is the first study investigating the presence of virulence and toxin genes in a large number of Campylobacter species isolated from clinically healthy sheep by scanning a large area. In addition, this is the first report investigating the presence of virulence and toxin genes in sheep-originated C. lanienae and C. lari isolates.
Collapse
Affiliation(s)
- Mehmet N Acik
- Department of Microbiology, Faculty of Veterinary Medicine, Bingol University, 12000 Bingol, Turkey.
| | | | | | | |
Collapse
|
42
|
Molecular characterization and antibiotic resistance profiling of Campylobacter isolated from cattle in Polish slaughterhouses. Food Microbiol 2012; 34:130-6. [PMID: 23498189 DOI: 10.1016/j.fm.2012.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 07/31/2012] [Accepted: 12/07/2012] [Indexed: 11/21/2022]
Abstract
A total of 812 samples from bovine hides and the corresponding carcasses collected at the slaughterhouse level in the eastern part of Poland were examined for the presence of Campylobacter jejuni and Campylobacter coli. Recovered isolates were confirmed using species-specific PCR, characterized by the presence of 11 putative virulence genes and antimicrobial susceptibility was determined using a microbroth dilution method. Furthermore, the genotypic relatedness of the isolates was determined by PFGE profiling and virulence pattern cluster analysis. The prevalence of Campylobacter was 25.6% and 2.7% in bovine hide and carcass samples, respectively. The presence of virulence markers varied between C. jejuni and C. coli species however, the majority of strains possessed the cadF, flhA, flaA genes, irrespective of the bacterial species and origin. The lower number of the strains was positive for the invasive associated markers -virB11 and wlaN. Antibiotic profiling showed that campylobacters were most frequently resistant to quinolones and fluoroquinolones (nalidixic acid and ciprofloxacin, 38.3% of each, respectively) followed by streptomycin (24.3%) and tetracycline (20.9%). Resistance to erythromycin and gentamicin was demonstrated in 4.3% and 2.6% of strains, respectively. Comparisons of the PFGE and virulence marker profiles of the isolates reflected the high genetic diversity of Campylobacter tested. Moreover, a poor correlation between the PFGE type, pathogenic gene marker and antimicrobial resistance patterns was observed.
Collapse
|
43
|
Moorhead SM, Griffiths MW. Expression and characterization of cell-signalling molecules in Campylobacter jejuni. J Appl Microbiol 2011; 110:786-800. [PMID: 21205102 DOI: 10.1111/j.1365-2672.2010.04934.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS This study investigated the production and effects of cell-signalling compounds on selected survival and virulence mechanisms of Campylobacter jejuni. METHODS AND RESULTS The production of Autoinducer 1 (AI-1) compounds by Camp. jejuni was investigated in-vitro using a variety of available AI-1 bioassays. We further examined the role of a range of commercially available homoserine lactones (HSL) and a novel compound (cjA) isolated from Camp. jejuni. The selected attributes included the transformation to a viable but nonculturable (VBNC) state, biofilm formation, interleukin 8 (IL-8) stimulation in INT-407 cells and virulence gene expression as determined by qRT-PCR. This study is the first to report an HSL or HSL mimic produced by Camp. jejuni. Short chained HSLs and the novel compound cjA prolonged the delay to a VBNC state as well as inhibiting biofilm formation and the majority of HSLs examined and the HSL mimic cjA significantly affected virulence gene expression as well as increasing the production of IL-8 in challenged INT-407 cells. CONCLUSIONS Despite the lack of a homologous HSL kinase or sensor, Camp. jejuni appears to produce, as well as detect, exogenous signalling molecules and respond accordingly to aid in the survival and virulence capabilities of this micro-organism. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests that Camp. jejuni is able to detect and utilize as well as possibly produce cell-signalling molecules that enhance both survival and virulence attributes. This possibility opens a new field in the search for Camp. jejuni reduction and elimination strategies.
Collapse
Affiliation(s)
- S M Moorhead
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
44
|
Molecular typing and cdt genes prevalence of Campylobacter jejuni isolates from various sources. Trop Anim Health Prod 2010; 43:711-9. [DOI: 10.1007/s11250-010-9758-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2010] [Indexed: 11/27/2022]
|
45
|
Hamidian M, Sanaei M, Azimi-Rad M, Tajbakhsh M, Dabiri H, Zali MR. fla-typing, RAPD analysis, isolation rate and antimicrobial resistance profile of Campylobacter jejuni and Campylobacter coli of human origin collected from hospitals in Tehran, Iran. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0141-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
46
|
Oporto B, Juste RA, López-Portolés JA, Hurtado A. Genetic Diversity among Campylobacter jejuni Isolates from Healthy Livestock and Their Links to Human Isolates in Spain. Zoonoses Public Health 2010; 58:365-75. [DOI: 10.1111/j.1863-2378.2010.01373.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Hanning I, Biswas D, Herrera P, Roesler M, Ricke SC. Prevalence and Characterization of Campylobacter jejuni Isolated from Pasture Flock Poultry. J Food Sci 2010; 75:M496-502. [DOI: 10.1111/j.1750-3841.2010.01747.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Intranasal immunization with chitosan/pCAGGS-flaA nanoparticles inhibits Campylobacter jejuni in a White Leghorn model. J Biomed Biotechnol 2010; 2010. [PMID: 20936115 PMCID: PMC2948919 DOI: 10.1155/2010/589476] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/04/2010] [Accepted: 06/26/2010] [Indexed: 11/18/2022] Open
Abstract
Campylobacter jejuni is the most common zoonotic bacterium associated with human diarrhea, and chickens are considered to be one of the most important sources for human infection, with no effective prophylactic treatment available. We describe here a prophylactic strategy using chitosan-DNA intranasal immunization to induce specific immune responses. The chitosan used for intranasal administration is a natural mucus absorption enhancer, which results in transgenic DNA expression in chicken nasopharynx. Chickens immunized with chitosan-DNA nanoparticles, which carried a gene for the major structural protein FlaA, produced significantly increased levels of serum anti-Campylobacter jejuni IgG and intestinal mucosal antibody (IgA), compared to those treated with chitosan-DNA (pCAGGS). Chitosan-pCAGGS-flaA intranasal immunization induced reductions of bacterial expellation by 2-3 log10 and 2 log10 in large intestine and cecum of chickens, respectively, when administered with the isolated C. jejuni strain. This study demonstrated that intranasal delivery of chitosan-DNA vaccine successfully induced effective immune response and might be a promising vaccine candidate against C. jejuni infection.
Collapse
|
49
|
Thakur S, Zhao S, McDermott PF, Harbottle H, Abbott J, English L, Gebreyes WA, White DG. Antimicrobial Resistance, Virulence, and Genotypic Profile Comparison ofCampylobacter jejuniandCampylobacter coliIsolated from Humans and Retail Meats. Foodborne Pathog Dis 2010; 7:835-44. [DOI: 10.1089/fpd.2009.0487] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Shaohua Zhao
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Patrick F. McDermott
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Heather Harbottle
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Jason Abbott
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Linda English
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Wondwossen A. Gebreyes
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - David G. White
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| |
Collapse
|
50
|
Comparison of PCR binary typing (P-BIT), a new approach to epidemiological subtyping of Campylobacter jejuni, with serotyping, pulsed-field gel electrophoresis, and multilocus sequence typing methods. Appl Environ Microbiol 2009; 76:1533-44. [PMID: 20023103 DOI: 10.1128/aem.02215-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To overcome some of the deficiencies with current molecular typing schema for Campylobacter spp., we developed a prototype PCR binary typing (P-BIT) approach. We investigated the distribution of 68 gene targets in 58 Campylobacter jejuni strains, one Campylobacter lari strain, and two Campylobacter coli strains for this purpose. Gene targets were selected on the basis of distribution in multiple genomes or plasmids, and known or putative status as an epidemicity factor. Strains were examined with Penner serotyping, pulsed-field gel electrophoresis (PFGE; using SmaI and KpnI enzymes), and multilocus sequence typing (MLST) approaches for comparison. P-BIT provided 100% typeability for strains and gave a diversity index of 98.5%, compared with 97.0% for SmaI PFGE, 99.4% for KpnI PFGE, 96.1% for MLST, and 92.8% for serotyping. Numerical analysis of the P-BIT data clearly distinguished strains of the three Campylobacter species examined and correlated somewhat with MLST clonal complex assignations and with previous classifications of "high" and "low" risk. We identified 18 gene targets that conferred the same level of discrimination as the 68 initially examined. We conclude that P-BIT is a useful approach for subtyping, offering advantages of speed, cost, and potential for strain risk ranking unavailable from current molecular typing schema for Campylobacter spp.
Collapse
|