1
|
Del Río L, Salinas J, Ortega N, Buendía AJ, Navarro JA, Caro MR. IL-10 Overexpression Reduces the Protective Response of an Experimental Chlamydia abortus Vaccine in a Murine Model. Animals (Basel) 2024; 14:2322. [PMID: 39199857 PMCID: PMC11350884 DOI: 10.3390/ani14162322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
In ovine populations, the enzootic nature of Chlamydia abortus (C. abortus) is attributed to its capacity to establish persistent intracellular infections, which necessitate a cellular immune response mediated by interferon-gamma (IFN-γ) for effective resolution. In both natural hosts and murine models, interleukin-10 (IL-10) has been demonstrated to modulate the cellular immune response crucial for the eradication of C. abortus. During gestation, it has also been shown to play a role in preventing inflammatory damage to gestational tissues and foetal loss through the downregulation of pro-inflammatory cytokines. This paradigm can be key for events leading to a protective response towards an infectious abortion. Previous research successfully established a mouse model of chronic C. abortus infection using transgenic mice overexpressing IL-10 (IL-10tg), simulating the dynamics of chronic infection observed in non-pregnant natural host. This study aims to evaluate the efficacy of an experimental inactivated vaccine against C. abortus and to elucidate the immune mechanisms involved in protection during chronic infection using this model. Transgenic and wild-type (WT) control mice were immunized and subsequently challenged with C. abortus. Vaccine effectiveness and immune response were assessed via immunohistochemistry and cytokine serum levels over a 28-day period. Morbidity, measured by daily weight loss, was more pronounced in non-vaccinated transgenic IL-10 mice, though no mortality was observed in any group. Vaccinated control mice eliminated the bacterial infection by day 9 post-infection (p.i.), whereas presence of bacteria was noted in vaccinated transgenic IL-10 mice until day 28 p.i. Vaccination induced an early post-infection increase in IFN-γ production, but did not alter IL-10 production in transgenic mice. Histological analysis indicated suboptimal recruitment of inflammatory cells in vaccinated transgenic IL-10 mice compared to WT controls. In summary, the findings suggest that IL-10 overexpression in transgenic mice diminishes the protective efficacy of vaccination, confirming that this model can be useful for validating the efficacy of vaccines against intracellular pathogens such as C. abortus that require robust cell-mediated immunity.
Collapse
Affiliation(s)
- Laura Del Río
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 31000 Murcia, Spain; (J.S.); (N.O.); (M.R.C.)
| | - Jesús Salinas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 31000 Murcia, Spain; (J.S.); (N.O.); (M.R.C.)
| | - Nieves Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 31000 Murcia, Spain; (J.S.); (N.O.); (M.R.C.)
| | - Antonio J. Buendía
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 31000 Murcia, Spain; (A.J.B.); (J.A.N.)
| | - Jose A. Navarro
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 31000 Murcia, Spain; (A.J.B.); (J.A.N.)
| | - María Rosa Caro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 31000 Murcia, Spain; (J.S.); (N.O.); (M.R.C.)
| |
Collapse
|
2
|
Richardson S, Bell CR, Medhavi F, Tanner T, Lundy S, Omosun Y, Igietseme JU, Eko FO. A novel cold-chain free VCG-based subunit vaccine protects against Chlamydia abortus-induced neonatal mortality in a pregnant mouse model. Front Immunol 2023; 14:1243743. [PMID: 37915580 PMCID: PMC10616880 DOI: 10.3389/fimmu.2023.1243743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
Chlamydia abortus (Cab) causes spontaneous abortion and neonatal mortality in infected ruminants and pregnant women. Most Cab infections are asymptomatic, although they can be treated with antibiotics, signifying that control of these infections may require alternative strategies, including the use of effective vaccines. However, the limitations imposed by live attenuated and inactivated vaccines further suggest that employment of subunit vaccines may need to be considered. The efficacy of a newly generated Vibrio cholerae ghost (rVCG)-based subunit vaccine harboring the N-terminal portion of the Cab Pmp18D protein (rVCG-Pmp18.3) in preventing Cab-induced abortion or neonatal mortality was evaluated in pregnant mice. Mice were intranasally (IN) immunized and boosted twice, 2 weeks apart with the vaccine, and immunized and unimmunized mice were caged with males 4 weeks postimmunization. The mice were then infected either IN or transcervically (TC) 10 days after pregnancy, and the fertility rate was determined 7 days postpartum. Eight days after delivery, the mice were sacrificed, and Cab infectivity in the lungs and spleens was evaluated by culturing tissue homogenates in tissue culture. Our results demonstrated that the vaccine induced immune effectors that mediated complete clearance of infection in the lungs and significantly reduced Cab infectivity in the spleen following IN immunization. Vaccine immunization also afforded protection against Cab-induced upper genital tract pathology (uterine dilation). Furthermore, while there was no incidence of abortion in both immunized and unimmunized mice, immunized mice were completely protected against neonatal mortality compared to unimmunized infected controls, which lost a significant percentage of their litter 7 days postpartum. Our results establish the capability of the rVCG-Pmp18.3 vaccine to prevent infection in the lungs (mucosal) and spleen (systemic) and protect mice from Cab-induced tubal pathologies and neonatal mortality, a hallmark of Cab infection in ruminants. To advance the commercial potential of this vaccine, future studies will optimize the antigen dose and the number of vaccine doses required for protection of ruminants.
Collapse
Affiliation(s)
- Shakyra Richardson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Courtnee R. Bell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Fnu Medhavi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Tayhlor Tanner
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Stephanie Lundy
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Joseph U. Igietseme
- National Center for Emerging Zoonotic and Infectious Diseases, Center for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Francis O. Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Turin L, Surini S, Wheelhouse N, Rocchi MS. Recent advances and public health implications for environmental exposure to Chlamydia abortus: from enzootic to zoonotic disease. Vet Res 2022; 53:37. [PMID: 35642008 PMCID: PMC9152823 DOI: 10.1186/s13567-022-01052-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Environmental transmission of Chlamydia abortus as a result of enzootic disease or disease outbreaks and the threats posed by this pathogen has been previously reported, however a state-of-the-science review of these reports and the identification of future research priorities in this area is still lacking. This study provides an overview of the current knowledge of host–pathogen–environment interactions, addressing public health risks and identifying critical questions and research gaps. We performed a systematic PubMed and Web of Science search for publications related to Chlamydia abortus in the past four decades, and we reviewed and combined the evidence critically discussing and commenting the results. A total of 182 studies, 5 chapters of specific books and the “OIE terrestrial manual” were included in this review. There were substantial variations between the studies in topic addressed and experimental design. Overall, the literature largely supports the crucial role played by environmental exposure on the acquisition of zoonotic disease caused by Chlamydia abortus. We also identify the paucity of information related to interspecies transmission and pathogen adaptation in relation to environmental dissemination and zoonotic risk. This analysis further highlights the need for additional research given that environmental transmission represents a serious risk not only to susceptible patients (pregnant women and immunocompromised individuals), but also for other species including wildlife.
Collapse
Affiliation(s)
- Lauretta Turin
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy.
| | - Sara Surini
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| | - Nick Wheelhouse
- School of Applied Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh, EH11 4BN, UK
| | - Mara Silvia Rocchi
- Moredun Research Institute, Bush Loan, Pentlands Science Park, Penicuik, EH26 0PZ, Scotland, UK
| |
Collapse
|
4
|
Arif ED, Saeed NM, Rachid SK, Dyary HO, Rashid PM. Expression Level of the mip, pmp18D, and ompA Genes in Chlamydia abortus Isolated from Aborted Ewes. Pol J Microbiol 2022; 71:115-121. [PMID: 35635174 PMCID: PMC9152909 DOI: 10.33073/pjm-2022-014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/20/2022] [Indexed: 11/22/2022] Open
Abstract
In this manuscript, we report the proteins macrophage infectivity potentiator (mip, CAB080), major outer membrane protein (momp, CAB048), and polymorphic outer membrane protein (pmp18D, CAB776) that are expressed in different times of pregnancy in mice infected with Chlamydia abortus. Enzootic abortion of ewes (EAE) by C. abortus, an obligate intracellular pathogen, is a critical zoonotic disease-causing significant economic loss to livestock farming globally. This study was carried out for the detection and characterization of macrophage infectivity potentiator (mip, CAB080), major outer membrane protein (momp, CAB048), and polymorphic outer membrane protein (pmp18D, CAB776) using RT-qPCR. These proteins are believed to be expressed as virulence factors in C. abortus isolated from aborted ewes. BALB/c mice (pregnant and nonpregnant) were used as an animal model to be injected intraperitoneally with C. abortus culture in Vero cells since the endometrial lymphoid tissues of these animals resembles that of ewes. Also, the short duration of pregnancy in mice makes them a suitable animal model for obstetric studies. Tissue samples were taken from the mice after 10, 15, and 20 days of pregnancy to compare the expression of the genes mip, pmp18D, and ompA. Transcription level was quantified using RT-qPCR, the GAPDH transcription quantification, as a normalization signal. Abortion occurred in pregnant mice, and apparent differences between the transcriptional levels of the mip, pmp18D, and ompA genes in the samples taken during different time intervals of pregnancy were not observed (p > 0.05). The result indicated that the three bacterial genes, mip, pmp18D, and ompA, play a role as virulence factors in abortion and are differentially expressed in pregnant and nonpregnant animals. Inactivation of the genes is suggested to confirm the hypothesis.
Collapse
Affiliation(s)
- Eman Dhahir Arif
- Department of Microbiology, College of Veterinary Medicine , University of Sulaimani , Sulaymaniyah , Iraq
| | - Nahla Mohammad Saeed
- Department of Microbiology, College of Veterinary Medicine , University of Sulaimani , Sulaymaniyah , Iraq
| | | | - Hiewa Othman Dyary
- Department of Basic Sciences, College of Veterinary Medicine , University of Sulaimani , Sulaymaniyah , Iraq
| | - Peshnyar M.A. Rashid
- Kurdistan Institution for Strategic Studies and Scientific Research , Sulaymaniyah , Iraq
- Molecular Diagnostic Laboratory , Directorate of Veterinary Services in Sulaymaniyah , Sulaymaniyah , Iraq
| |
Collapse
|
5
|
Del Rio L, Murcia-Belmonte A, Buendía AJ, Navarro JA, Ortega N, Alvarez D, Salinas J, Caro MR. Effect of Female Sex Hormones on the Immune Response against Chlamydia abortus and on Protection Conferred by an Inactivated Experimental Vaccine in a Mouse Model. Pathogens 2022; 11:pathogens11010093. [PMID: 35056041 PMCID: PMC8781621 DOI: 10.3390/pathogens11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Mice are valuable models extensively used to test vaccine candidates against Chlamydia abortus and to clarify immunopathological mechanisms of the bacteria. As this pathogen has the ability to reactivate during pregnancy, it is important to deepen the knowledge and understanding of some of the effects of female hormones on immunity and vaccination. This study is aimed at describing the role of sex hormones in the pathology of OEA during chlamydial clearance using ovariectomised mice and also gaining an understanding of how 17β-oestradiol or progesterone may impact the effectiveness of vaccination. Animals were treated with sex hormones and infected with C. abortus, and the kinetics of infection and immune response were analysed by means of bacterial isolation, histopathology, and immunohistochemistry. In a second phase of the study, protection conferred by an experimental vaccine after hormone treatment was assessed. Oestradiol showed a stimulatory effect on the immune response during infection, with a more efficient recruitment of macrophages and T-cells at the infection site. Furthermore, after vaccination, oestradiol-treated animals showed a stronger protection against infection, indicating that this hormone has a positive effect, stimulating a specific memory response to the pathogen.
Collapse
Affiliation(s)
- Laura Del Rio
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
- Correspondence:
| | - Antonio Murcia-Belmonte
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| | - Antonio Julián Buendía
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.J.B.); (J.A.N.)
| | - Jose Antonio Navarro
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.J.B.); (J.A.N.)
| | - Nieves Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| | - Daniel Alvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| | - Jesús Salinas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| | - María Rosa Caro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| |
Collapse
|
6
|
Benaissa MH, Mimoune N, Youngs CR, Kaidi R, Faye B. First report of Chlamydophila abortus infection in the dromedary camel (Camelus dromedarius) population in eastern Algeria. Comp Immunol Microbiol Infect Dis 2020; 73:101557. [PMID: 33065404 DOI: 10.1016/j.cimid.2020.101557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/05/2023]
Abstract
Chlamydiosis is caused by an obligate intracellular gram-negative bacterium of the genus Chlamydophila which is a zoonotic pathogen. The objectives of the study were to identify the seroprevalence of antibodies against Chlamydophila abortus in dromedary camel herds from four districts in eastern Algeria, as well as to estimate the association between seroprevalence and certain factors present at the animal and herd levels. Blood samples were collected from a random sample of animals within each of 82 camel herds. Serum samples were subjected to a C. abortus ELISA test, and association between the presence of antibodies and potential risk factors was estimated. Animal and herd seroprevalence were 2.5 % and 15.8 %, respectively, indicating substantial exposure of camels to C. abortus in the four districts studied. Age, breed, and sex did not influence seroprevalence in tested animals. Based on the univariate analysis, contact with sheep and goats, contact with other camel herds, and histories of abortion were major risk factors for infection. By using multivariate analysis, contact of camels with sheep and goats and with others camel herds, through shared grazing or watering points, were important factors for transmission of chlamydiosis with an odds ratio of 3.3 and 9.4, respectively. At the herd level the introduction of purchased animals was the major risk factor. This baseline information will be highly useful for launching C. abortus control programs in the region and potentially elsewhere.
Collapse
Affiliation(s)
- Mohammed Hocine Benaissa
- Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biophysical Station, PB 30240, Nezla, Touggourt, Algeria.
| | - Nora Mimoune
- National High School of Veterinary Medicine, Bab-Ezzouar, Algiers, Algeria; Institute of Veterinary Sciences, LBRA, University of Blida 1, PB 270, Soumaa, Blida, Algeria
| | - Curtis R Youngs
- Animal Science Department, Iowa State University, Ames, IA 50011 USA
| | - Rachid Kaidi
- Institute of Veterinary Sciences, LBRA, University of Blida 1, PB 270, Soumaa, Blida, Algeria
| | | |
Collapse
|
7
|
Montbrau C, Fontseca M, March R, Sitja M, Benavides J, Ortega N, Caro MR, Salinas J. Evaluation of the Efficacy of a New Commercially Available Inactivated Vaccine Against Ovine Enzootic Abortion. Front Vet Sci 2020; 7:593. [PMID: 33102549 PMCID: PMC7499823 DOI: 10.3389/fvets.2020.00593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 01/11/2023] Open
Abstract
Ovine enzootic abortion (OEA), caused by Chlamydia abortus, is an economically important disease in many countries. Inactivated vaccines have been used for many years as they induce immunity in sheep, although outbreaks of abortions have been described in vaccinated flocks. In addition, there is a commercially available live attenuated vaccine that provides good protective results. Recently however, reports question the attenuation of this vaccine and associate it with the appearance of outbreaks of OEA in vaccinated flocks. In the present study, a recently commercialized inactivated vaccine (INMEVA®; Laboratorios Hipra S.A., Amer, Spain) has been evaluated using mouse and sheep experimental models. In the mouse models (non-pregnant and pregnant models), the efficacy of INMEVA vaccine has been compared to an unvaccinated control group and to an experimental inactivated vaccine considered as a positive protection control (UMU vaccine). In the non- pregnant model, the UMU vaccine was more effective than the INMEVA vaccine regarding the impact on body weight or the presence of C. abortus in the liver, but both vaccinated groups (UMU and INMEVA) had significantly lower C. abortus in the liver compared to the control group. In the pregnant model in terms of reproductive failures, pups per mouse or the presence of C. abortus in the liver or uterus, no significant differences were found between both vaccines, inducing protection compared to the control group. In the ovine pregnant model, where INMEVA vaccine was compared only to an unvaccinated group, the results indicate that this new commercial vaccine is safe and provides a suitable level of protection against an experimental challenge with C. abortus. A 75% reduction in reproductive disorders, 55% reduction in animals with C. abortus shedding on day of parturition/abortion, and a significant reduction of the average amount of chlamydial shedding from parturition/abortion over the next 21 days was observed, in relation to the infected control group. The results suggest that this vaccine is adequate for the control and prevention of OEA; however, future studies are necessary to elucidate the type of protective immune response that it induces.
Collapse
Affiliation(s)
| | | | | | | | - Julio Benavides
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| | - Nieves Ortega
- Department of Animal Health, Faculty of Veterinary, Mare Nostrum International University of Murcia, Murcia, Spain
| | - María Rosa Caro
- Department of Animal Health, Faculty of Veterinary, Mare Nostrum International University of Murcia, Murcia, Spain
| | - Jesús Salinas
- Department of Animal Health, Faculty of Veterinary, Mare Nostrum International University of Murcia, Murcia, Spain
| |
Collapse
|
8
|
Cappelletti M, Presicce P, Kallapur SG. Immunobiology of Acute Chorioamnionitis. Front Immunol 2020; 11:649. [PMID: 32373122 PMCID: PMC7177011 DOI: 10.3389/fimmu.2020.00649] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Acute chorioamnionitis is characterized by neutrophilic infiltration and inflammation at the maternal fetal interface. It is a relatively common complication of pregnancy and can have devastating consequences including preterm labor, maternal infections, fetal infection/inflammation, fetal lung, brain, and gastrointestinal tract injury. In this review, we will discuss current understanding of the pathogenesis, immunobiology, and mechanisms of this condition. Most commonly, acute chorioamnionitis is a result of ascending infection with relatively low-virulence organisms such as the Ureaplasma species. Furthermore, recent vaginal microbiome studies suggest that there is a link between vaginal dysbiosis, vaginal inflammation, and ascending infection. Although less common, microorganisms invading the maternal-fetal interface via hematogenous route (e.g., Zika virus, Cytomegalovirus, and Listeria) can cause placental villitis and severe fetal inflammation and injury. We will provide an overview of the knowledge gleaned from different animal models of acute chorioamnionitis and the role of different immune cells in different maternal-fetal compartments. Lastly, we will discuss how infectious agents can break the maternal tolerance of fetal allograft during pregnancy and highlight the novel future therapeutic approaches.
Collapse
Affiliation(s)
- Monica Cappelletti
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Pietro Presicce
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Suhas G Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
Lashley VD, Yaeger MJ, Ji J, Sahin O, Wu Z. Investigating the Suitability of a Laboratory Mouse Model to Study the Pathogenesis of Abortifacient Campylobacter jejuni. Vet Pathol 2019; 56:555-564. [PMID: 30895909 DOI: 10.1177/0300985819833452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to assess whether pregnant mice represent a useful model to study the reproductive pathology of Campylobacter jejuni IA3902 using the end point of positive microbial culture of the organism from the fetoplacental unit. Pregnant BALB/c and CD-1 mice (14 days' gestation) were inoculated orally and intraperitoneally (IP) with 1 × 109 colony-forming units/ml of C. jejuni IA3902. The organism was recovered by microbial culture from the fetoplacental unit in 10 of 10 BALB/c and 10 of 10 CD-1 IP-inoculated pregnant mice and in 29% (2/7) BALB/c and 38% (3/8) CD-1 orally inoculated pregnant mice. Gross reproductive lesions included necrosuppurative placentitis, fetal resorption, intrauterine fetal death, stillborn pups (dead neonates), and multifocal hepatitis. Histological changes consisted of locally extensive neutrophilic and necrotizing placentitis with intralesional bacterial colonies of C. jejuni, ulcerative endometritis, random multifocal hepatitis, and rare cholecystitis. Immunohistochemistry for the major outer membrane protein of C. jejuni revealed moderate to large numbers of the organism at the periphery of the placental discs, within trophoblasts and extracellularly, with invasion into the placental disc largely via the vascular network. The organism is trophic for neutral mucin, iron, and L-fucose within the murine placenta. C. jejuni IA3902 has affinity for the murine reproductive tract, specifically the fetoplacental unit, where it results in a necrotizing placentitis with positive microbial recovery after both IP and oral challenge in BALB/c and CD-1 pregnant mice.
Collapse
Affiliation(s)
| | - Michael J Yaeger
- 2 Department of Veterinary Pathology, Iowa State University, Ames, IA, USA
| | - Ju Ji
- 3 Department of Statistics, Iowa State University, Ames, IA, USA
| | - Orhan Sahin
- 4 Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA.,5 Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Zuowei Wu
- 5 Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
10
|
Del Río L, Murcia A, Buendía AJ, Álvarez D, Ortega N, Navarro JA, Salinas J, Caro MR. Development of an in vivo model of Chlamydia abortus chronic infection in mice overexpressing IL-10. Vet Microbiol 2017; 213:28-34. [PMID: 29292000 DOI: 10.1016/j.vetmic.2017.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/11/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Chlamydia abortus, like other members of the family Chlamydiaceae, have a unique intracellular developmental cycle that is characterized by its chronic nature. Infection of a flock can remain undetected for months, until abortion occurs the following reproductive season but, to date, neither the location nor the mechanisms that maintain this latent phase are fully understood. Studies have shown that IL-10 produced as a response to certain micro-organisms sustains the intracellular survival of pathogens and increases host susceptibility to chlamydial infections. In order to induce a sustained infection C. abortus, transgenic mice that constitutively express IL-10 were infected and the immunological mechanisms that maintain infection in these mice were compared with the mechanisms of a resistant wild-type mouse strain. Viable bacteria could be detected in different tissues of transgenic mice up to 28 days after infection, as analysed by bacterial isolation and immunohistochemistry. Chronic infection in these mice was associated with an impaired recruitment of macrophages, decreased iNOS activity at the site of infection and a more diffuse distribution of inflammatory cells in the liver. This murine model can be of great help for understanding the immunological and bacterial mechanisms that lead to chronic chlamydial infections.
Collapse
Affiliation(s)
- Laura Del Río
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, Universidad de Murcia, Spain.
| | - Antonio Murcia
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, Universidad de Murcia, Spain.
| | - Antonio J Buendía
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, Universidad de Murcia, Spain.
| | - Daniel Álvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, Universidad de Murcia, Spain.
| | - Nieves Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, Universidad de Murcia, Spain.
| | - José A Navarro
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, Universidad de Murcia, Spain.
| | - Jesús Salinas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, Universidad de Murcia, Spain.
| | - María Rosa Caro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, Universidad de Murcia, Spain.
| |
Collapse
|
11
|
Álvarez D, Salinas J, Buendía AJ, Ortega N, del Río L, Sánchez J, Navarro JA, Gallego MC, Murcia-Belmonte A, Cuello F, Caro MR. Intratracheal infection as an efficient route for testing vaccines against Chlamydia abortus in sheep. Vet J 2015; 205:393-8. [PMID: 26095034 DOI: 10.1016/j.tvjl.2015.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/23/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Pregnant ewes have been widely used to test vaccines against Chlamydia abortus. However, this model entails many disadvantages such as high economic costs and long periods of pregnancy. The murine model is very useful for specific studies but cannot replace the natural host for the later stages of vaccine evaluation. Therefore, a non-pregnant model of the natural host might be useful for a vaccine trial to select the best vaccine candidates prior to use of the pregnant model. With this aim, two routes of infection were assessed in young non-pregnant sheep, namely, intranasal (IN) and intratracheal (IT). In addition, groups of non-vaccinated sheep and sheep immunised with an inactivated vaccine were established to investigate the suitability of the model for testing vaccines. After the experimental infection, isolation of the microorganism in several organs, with pathological and immunohistochemical analyses, antibody production assessment and investigation by PCR of the presence of chlamydia in the vagina or rectum were carried out. Experimental IT inoculation of C. abortus induced pneumonia in sheep during the first few days post-infection, confirming the suitability of the IT route for testing vaccines in the natural host. The course of infection and the resulting pathological signs were less severe in vaccinated sheep compared with non-vaccinated animals, demonstrating the success of vaccination. IN infection did not produce evident lesions or demonstrate the presence of chlamydial antigen in the lungs and cannot be considered an appropriate model for testing vaccines.
Collapse
Affiliation(s)
- D Álvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - J Salinas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - A J Buendía
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - N Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - L del Río
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - J Sánchez
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - J A Navarro
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - M C Gallego
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - A Murcia-Belmonte
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - F Cuello
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain
| | - M R Caro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum', Universidad de Murcia, Spain.
| |
Collapse
|
12
|
CHLAMYDIACEAE AND CHLAMYDIA-LIKE ORGANISMS IN FREE-LIVING SMALL MAMMALS IN EUROPE AND AFGHANISTAN. J Wildl Dis 2014; 50:195-204. [DOI: 10.7589/2013-08-194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Seroprevalence and risk factors associated with Chlamydophila spp. infection in ewes in the northeast of Algeria. Trop Anim Health Prod 2013; 46:467-73. [DOI: 10.1007/s11250-013-0515-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
|
14
|
Krishnan L, Nguyen T, McComb S. From mice to women: the conundrum of immunity to infection during pregnancy. J Reprod Immunol 2013; 97:62-73. [PMID: 23432873 PMCID: PMC3748615 DOI: 10.1016/j.jri.2012.10.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022]
Abstract
Resistance to infection is the ability of the host to evoke a strong immune response sufficient to eliminate the infectious agent. In contrast, maternal tolerance to the fetus necessitates careful regulation of immune responses. Successful pregnancy requires the maternal host to effectively balance the opposing processes of maternal immune reactivity and tolerance to the fetus. However, this balance can be perturbed by infections which are recognized as the major cause of adverse pregnancy outcome including pre-term labor. Select pathogens also pose a serious threat of severe maternal illness. These include intracellular and chronic pathogens that have evolved immune evasive strategies. Murine models of intracellular bacteria and parasites that mimic pathogenesis of infection in humans have been developed. While human epidemiological studies provide insight into maternal immunity to infection, experimental infection in pregnant mice is a vital tool to unravel the complex molecular mechanisms of placental infection, congenital transmission and maternal illness. We will provide a comprehensive review of the pathogenesis of several infection models in pregnant mice and their clinical relevance. These models have revealed the immunological function of the placenta in responding to, and resisting infection. Murine feto-placental infection provides an effective way to evaluate new intervention strategies for managing infections during pregnancy, adverse fetal outcome and long-term effects on the offspring and mother.
Collapse
Affiliation(s)
- Lakshmi Krishnan
- Human Health Therapeutics, Division of Life Sciences, National Research Council, Ottawa, ON, Canada.
| | | | | |
Collapse
|
15
|
Ou C, Tian D, Ling Y, Pan Q, He Q, Eko FO, He C. Evaluation of an ompA-based phage-mediated DNA vaccine against Chlamydia abortus in piglets. Int Immunopharmacol 2013; 16:505-10. [PMID: 23669337 DOI: 10.1016/j.intimp.2013.04.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/20/2013] [Accepted: 04/23/2013] [Indexed: 11/29/2022]
Abstract
Chlamydia abortus (C. abortus) is an obligate intracellular pathogen that causes abortion in pigs and poses a zoonotic risk in pregnant women. Although attenuated and inactivated vaccines are available, they do not provide complete protection in animals underlining the need to develop new vaccines. In this study, we tested the hypothesis that intramuscular immunization with an ompA-based phage-mediated DNA chlamydial vaccine candidate will induce significant antigen-specific cellular and humoral immune responses. Thus, groups of piglets (five per group) were immunized intramuscularly with the phage-MOMP vaccine (λ-MOMP) or a commercial live-attenuated vaccine (1B vaccine) or a GFP-expressing phage (λ-GFP) or phosphate buffered saline (PBS) (control) and antigen-specific cell-mediated and humoral immune responses were evaluated. By day 63 post-immunization, the λ-MOMP vaccine elicited significantly higher (P<0.05) levels of antigen-specific serum IgG antibody responses than the 1B vaccine or control did. Also, piglets immunized with λ-MOMP vaccine had significantly higher (P<0.05) MOMP-specific lymphocyte proliferative responses compared to those immunized with the 1B vaccine or control. Furthermore, the total T-cell numbers (CD3+) and the proportion of CD4+ and CD8+ T-cell subsets as well as the ratio of CD4+/CD8+ T cells elicited following immunization were comparable between the λ-MOMP- and 1B-vaccinated animals on both days 63 and 70. Interestingly, although the proportion of CD3+CD4-CD8- double negative T cells on day 63 was significantly higher (P<0.05) in the 1B vaccine group compared to the λ-MOMP-immunized group, there was a significant decrease in the proportion of this T-cell population on day 70 in the 1B compared to the λ-MOMP vaccinated group. These results indicate that the λ-MOMP DNA vaccine is capable of inducing antigen-specific cellular and humoral immune responses that may provide protective immunity against a live challenge infection with C. abortus.
Collapse
Affiliation(s)
- Changbo Ou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Longbottom D, Livingstone M, Maley S, van der Zon A, Rocchi M, Wilson K, Wheelhouse N, Dagleish M, Aitchison K, Wattegedera S, Nath M, Entrican G, Buxton D. Intranasal infection with Chlamydia abortus induces dose-dependent latency and abortion in sheep. PLoS One 2013; 8:e57950. [PMID: 23469113 PMCID: PMC3585262 DOI: 10.1371/journal.pone.0057950] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/27/2013] [Indexed: 02/07/2023] Open
Abstract
Background Latency is a key feature of the animal pathogen Chlamydia abortus, where infection remains inapparent in the non-pregnant animal and only becomes evident during a subsequent pregnancy. Often the first sign that an animal is infected is abortion occurring late in gestation. Despite this, little is understood of the underlying mechanisms that control latency or the recrudescence of infection that occurs during subsequent pregnancy. The aim of this study was to develop an experimental model of latency by mimicking the natural route of infection through the intranasal inoculation of non-pregnant sheep with C. abortus. Methodology/Principal Findings Three groups of sheep (groups 1, 2 and 3) were experimentally infected with different doses of C. abortus (5×103, 5×105 and 5×107 inclusion forming units (IFU), respectively) prior to mating and monitored over 2 breeding cycles for clinical, microbiological, pathological, immunological and serological outcomes. Two further groups received either negative control inoculum (group 4a,b) or were inoculated subcutaneously on day 70 of gestation with 2×106 IFU C. abortus (group 5). Animals in groups 1, 2 and 5 experienced an abortion rate of 50–67%, while only one animal aborted in group 3 and none in group 4a,b. Pathological, microbiological, immunological and serological analyses support the view that the maternal protective immune response is influenced by initial exposure to the bacterium. Conclusions/Significance The results show that intranasal administration of non-pregnant sheep with a low/medium dose of C. abortus results in a latent infection that leads in a subsequent pregnancy to infection of the placenta and abortion. In contrast a high dose stimulates protective immunity, resulting in a much lower abortion rate. This model will be useful in understanding the mechanisms of infection underlying latency and onset of disease, as well as in the development of novel therapeutics and vaccines for controlling infection.
Collapse
|
17
|
del Rio L, Barberá-Cremades M, Navarro JA, Buendía AJ, Cuello F, Ortega N, Gallego MC, Salinas J, Caro MR. IFN-γ expression in placenta is associated to resistance to Chlamydia abortus after intragastric infection. Microb Pathog 2012; 56:1-7. [PMID: 23287018 DOI: 10.1016/j.micpath.2012.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/26/2022]
Abstract
Intragastric infection mimics the natural route of infection of Chlamydia abortus (etiological agent of ovine enzootic abortion). In the mouse model, intragastric experimental infection induces very mild signs of infection followed by late term abortions, as it is shown by the natural ovine host. In order to evaluate the immune mechanisms associated to the dissemination of the pathogen from the gastrointestinal tract, we have administered an intragastric dose of C. abortus to pregnant mice. Systemic and local expression of cytokines, tissue colonization and excretion of bacteria after parturition were monitored during pregnancy. Susceptible CBA/J mice showed a higher bacterial colonization of the placenta and excretion of live bacteria after parturition that were related to a higher local IL-10 expression. By contrast, resistant C57BL/6 mouse strain had higher local IFN-γ mRNA expression in the placenta just before parturition and a transient bacterial colonization of the reproductive tract, with no excretion of C. abortus after parturition. In summary, intragastric infection not only mimics the natural route of infection of C. abortus, but can also be useful in order to understand the immunopathogenesis of chlamydial abortion in the mouse.
Collapse
Affiliation(s)
- L del Rio
- Department of Animal Health, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ling Y, Liu W, Clark JR, March JB, Yang J, He C. Protection of mice against Chlamydophila abortus infection with a bacteriophage-mediated DNA vaccine expressing the major outer membrane protein. Vet Immunol Immunopathol 2011; 144:389-95. [DOI: 10.1016/j.vetimm.2011.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 07/19/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
|
19
|
Inflammatory cytokine responses in a pregnant mouse model of Chlamydophila abortus infection. Vet Microbiol 2010; 144:392-8. [DOI: 10.1016/j.vetmic.2010.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/26/2010] [Accepted: 01/28/2010] [Indexed: 11/22/2022]
|
20
|
B cells are essential for moderating the inflammatory response and controlling bacterial multiplication in a mouse model of vaccination against Chlamydophila abortus infection. Infect Immun 2009; 77:4868-76. [PMID: 19703981 DOI: 10.1128/iai.00503-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The use of inactivated vaccines associated with suitable adjuvants has been demonstrated to confer a good level of protection against Chlamydophila abortus. However, the basis of the immune protective response induced by these vaccines has been poorly studied. B cells act as an immune regulatory population during primary infection by C. abortus. Thus, it was considered of interest to study the role of B cells in an infection after immunization with a killed vaccine. For this, C57BL/6 and B-cell-deficient mice were immunized with a killed vaccine against C. abortus using QS-21 as the adjuvant. After challenge, the course of infection was established by analysis of morbidity, C. abortus burden in the liver, and histopathological changes. The immune response induced was studied by real-time PCR techniques. Experiments involving transfer of immune serum from vaccinated or previously infected mice were also carried out. The lack of B cells reduced the protection conferred by the QS-21 adjuvant vaccine. Vaccinated B-cell-deficient mice showed a 1,000-fold-greater bacterial burden in the liver than their wild-type counterparts. Obvious differences existed in the liver, where a severe neutrophilic reaction and extended areas of necrosis were observed with vaccinated B-cell-deficient mice. An analysis of the immune response pointed to a significant increase in inflammatory cytokines and chemokines and the deficient production of transforming growth factor beta. The transfer of antibodies restored the level of protection. This study demonstrates that B cells play a crucial role in controlling C. abortus multiplication and prevent an exacerbated inflammatory response.
Collapse
|