1
|
Kumar P, Tiwari S, Uguz S, Li Z, Gonzalez J, Wei L, Samuel RS, Zhang Y, Yang X. Bioaerosols downwind from animal feeding operations: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135825. [PMID: 39326148 DOI: 10.1016/j.jhazmat.2024.135825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Bioaerosols originating from animal feeding operations (AFOs) may carry pathogens, allergens, and other hazardous biocomponents, such as endotoxins, posing a potential risk to community health and the environment when dispersed downwind. This review summarizes and synthesizes existing literature data on bioaerosols downwind from three major types of AFOs (swine, poultry, and cattle), covering their composition, concentration, dispersion patterns, measurement methodologies, potential health effects, and mitigation strategies. While many of these bioaerosols are typically detected only near AFOs, evidence indicates that certain bioaerosols, particularly viruses, can travel up to tens of kilometers downwind and remain infectious. Despite the critical importance of these bioaerosols, a refined modeling framework to simulate their transport and fate in downwind air has not yet been developed, nor have source attribution methods been established to track their origins in complex agricultural environments where multiple bioaerosols could co-exist. Therefore, it is imperative to further research downwind bioaerosols from AFOs, including their assessment, modeling, source attribution, and mitigation, to address the public health and environmental challenges associated with animal agriculture.
Collapse
Affiliation(s)
- Pradeep Kumar
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA
| | - Shalini Tiwari
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA
| | - Seyit Uguz
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA; Biosystems Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16240, Turkey
| | - Zonggang Li
- Department of Agricultural & Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jose Gonzalez
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007, USA
| | - Lin Wei
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Yuanhui Zhang
- Department of Agricultural & Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xufei Yang
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
2
|
Lugo Mesa V, Quinonez Munoz A, Sobhy NM, Corzo CA, Goyal SM. Survival of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in the Environment. Vet Sci 2024; 11:22. [PMID: 38250928 PMCID: PMC10820812 DOI: 10.3390/vetsci11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases of swine, with losses due to poor reproductive performance and high piglet and growing pig mortality. Transmission of porcine reproductive and respiratory syndrome virus (PRRSV) may occur by both direct and indirect routes; the latter includes exposure to PRRSV-contaminated fomites, aerosols, and arthropod vectors. This review has collected available data on the ex-vivo environmental stability and persistence of PRRSV in an effort to highlight important sources of the virus and to determine the role of environmental conditions on the stability of the virus, especially temperature. The ex-vivo settings include fomites (solid, porous, and liquid fomites), insects, people, and pork meat, as well as the role of environmental conditions on the stability of the virus, especially temperature.
Collapse
Affiliation(s)
- Valeria Lugo Mesa
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (V.L.M.); (A.Q.M.); (N.M.S.); (C.A.C.)
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Angie Quinonez Munoz
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (V.L.M.); (A.Q.M.); (N.M.S.); (C.A.C.)
| | - Nader M. Sobhy
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (V.L.M.); (A.Q.M.); (N.M.S.); (C.A.C.)
| | - Cesar A. Corzo
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (V.L.M.); (A.Q.M.); (N.M.S.); (C.A.C.)
| | - Sagar M. Goyal
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (V.L.M.); (A.Q.M.); (N.M.S.); (C.A.C.)
| |
Collapse
|
3
|
Ouyang H, Wang L, Sapkota D, Yang M, Morán J, Li L, Olson BA, Schwartz M, Hogan CJ, Torremorell M. Control technologies to prevent aerosol-based disease transmission in animal agriculture production settings: a review of established and emerging approaches. Front Vet Sci 2023; 10:1291312. [PMID: 38033641 PMCID: PMC10682736 DOI: 10.3389/fvets.2023.1291312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Transmission of infectious agents via aerosols is an ever-present concern in animal agriculture production settings, as the aerosol route to disease transmission can lead to difficult-to-control and costly diseases, such as porcine respiratory and reproductive syndrome virus and influenza A virus. It is increasingly necessary to implement control technologies to mitigate aerosol-based disease transmission. Here, we review currently utilized and prospective future aerosol control technologies to collect and potentially inactivate pathogens in aerosols, with an emphasis on technologies that can be incorporated into mechanically driven (forced air) ventilation systems to prevent aerosol-based disease spread from facility to facility. Broadly, we find that control technologies can be grouped into three categories: (1) currently implemented technologies; (2) scaled technologies used in industrial and medical settings; and (3) emerging technologies. Category (1) solely consists of fibrous filter media, which have been demonstrated to reduce the spread of PRRSV between swine production facilities. We review the mechanisms by which filters function and are rated (minimum efficiency reporting values). Category (2) consists of electrostatic precipitators (ESPs), used industrially to collect aerosol particles in higher flow rate systems, and ultraviolet C (UV-C) systems, used in medical settings to inactivate pathogens. Finally, category (3) consists of a variety of technologies, including ionization-based systems, microwaves, and those generating reactive oxygen species, often with the goal of pathogen inactivation in aerosols. As such technologies are typically first tested through varied means at the laboratory scale, we additionally review control technology testing techniques at various stages of development, from laboratory studies to field demonstration, and in doing so, suggest uniform testing and report standards are needed. Testing standards should consider the cost-benefit of implementing the technologies applicable to the livestock species of interest. Finally, we examine economic models for implementing aerosol control technologies, defining the collected infectious particles per unit energy demand.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Texas-Dallas, Richardson, TX, United States
| | - Lan Wang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Deepak Sapkota
- Department of Mechanical Engineering, University of Texas-Dallas, Richardson, TX, United States
| | - My Yang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - José Morán
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Li Li
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Bernard A. Olson
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Mark Schwartz
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- Schwartz Farms, Sleepy Eye, MN, United States
| | - Christopher J. Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
4
|
Thornton GM, Fleck BA, Kroeker E, Dandnayak D, Fleck N, Zhong L, Hartling L. The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of filtration. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002389. [PMID: 37725631 PMCID: PMC10508630 DOI: 10.1371/journal.pgph.0002389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Historically, viruses have demonstrated airborne transmission. Emerging evidence suggests the novel coronavirus (SARS-CoV-2) that causes COVID-19 also spreads by airborne transmission. This is more likely in indoor environments, particularly with poor ventilation. In the context of airborne transmission, a vital mitigation strategy for the built environment is heating, ventilation, and air conditioning (HVAC) systems. HVAC features could modify virus transmission potential. A systematic review was conducted to identify and synthesize research examining the effectiveness of filters within HVAC systems in reducing virus transmission. A comprehensive search of OVID MEDLINE, Compendex, and Web of Science Core was conducted to January 2021. Two authors were involved in study selection, data extraction, and risk of bias assessments. Study characteristics and results were displayed in evidence tables and findings were synthesized narratively. Twenty-three relevant studies showed that: filtration was associated with decreased transmission; filters removed viruses from the air; increasing filter efficiency (efficiency of particle removal) was associated with decreased transmission, decreased infection risk, and increased viral filtration efficiency (efficiency of virus removal); increasing filter efficiency above MERV 13 was associated with limited benefit in further reduction of virus concentration and infection risk; and filters with the same efficiency rating from different companies showed variable performance. Adapting HVAC systems to mitigate virus transmission requires a multi-factorial approach and filtration is one factor offering demonstrated potential for decreased transmission. For filtration to be effective, proper installation is required. Of note, similarly rated filters from different companies may offer different virus reduction results. While increasing filtration efficiency (i.e., increasing MERV rating or moving from MERV to HEPA) is associated with virus mitigation, there are diminishing returns for filters rated MERV 13 or higher. Although costs increase with filtration efficiency, they are lower than the cost of ventilation options with the equivalent reduction in transmission. Systematic review registration: PROSPERO 2020 CRD42020193968.
Collapse
Affiliation(s)
- Gail M. Thornton
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Brian A. Fleck
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Emily Kroeker
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Dhyey Dandnayak
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Natalie Fleck
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Lexuan Zhong
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Lisa Hartling
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Desrosiers R, Cousin V. Air filtration to prevent porcine reproductive and respiratory syndrome virus infection. JOURNAL OF SWINE HEALTH AND PRODUCTION 2023. [DOI: 10.54846/jshap/1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
This commentary reviews results obtained in France and North America with different air filtration systems to prevent porcine reproductive and respiratory syndrome virus (PRRSV) infection. Most systems installed in France use high-efficiency particulate air (HEPA) filters and positive-pressure ventilation systems, while those in North America initially used mainly negative-pressure ventilation systems and filters with minimum efficiency rating values of 14 to 16. Major reductions in PRRSV cases were observed in most studies where the latter were used. Installing HEPA filters resulted in an almost complete elimination of PRRSV cases. No cases were recorded in 95% of farms where they were used.
Collapse
|
6
|
Havas KA, Brands L, Cochrane R, Spronk GD, Nerem J, Dee SA. An assessment of enhanced biosecurity interventions and their impact on porcine reproductive and respiratory syndrome virus outbreaks within a managed group of farrow-to-wean farms, 2020-2021. Front Vet Sci 2023; 9:952383. [PMID: 36713879 PMCID: PMC9879578 DOI: 10.3389/fvets.2022.952383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) has been a challenge for the U.S. swine industry for over 30 years, costing producers more than $600 million annually through reproductive disease in sows and respiratory disease in growing pigs. In this study, the impact of enhanced biosecurity practices of site location, air filtration, and feed mitigation was assessed on farrow-to-wean sites managed by a large swine production management company in the Midwest United States. Those three factors varied in the system that otherwise had implemented a stringent biosecurity protocol on farrow-to-wean sites. The routine biosecurity followed commonplace activities for farrow-to-wean sites that included but were not limited to visitor registration, transport disinfection, shower-in/shower-out procedures, and decontamination and disinfection of delivered items and were audited. Methods Logistic regression was used to evaluate PRRSV infection by site based on the state where the site is located and air filtration use while controlling for other variables such as vaccine status, herd size, and pen vs. stall. A descriptive analysis was used to evaluate the impact of feed mitigation stratified by air filtration use. Results Sites that used feed mitigates as additives in the diets, air filtration of barns, and that were in less swine-dense areas appeared to experience fewer outbreaks associated with PRRSV infection. Specifically, 23.1% of farms that utilized a feed mitigation program experienced PRRSV outbreaks, in contrast to 100% of those that did not. Sites that did not use air filtration had 20 times greater odds of having a PRRSV outbreak. The strongest protective effect was found when both air filtration and feed mitigation were used. Locations outside of Minnesota and Iowa had 98.5-99% lesser odds of infection as well. Discussion Enhanced biosecurity practices may yield significant protective effects and should be considered for producers in swine-dense areas or when the site contains valuable genetics or many pigs.
Collapse
Affiliation(s)
- Karyn A. Havas
- Pipestone Research, Pipestone Holdings, Pipestone, MN, United States,*Correspondence: Karyn A. Havas ✉
| | - Lisa Brands
- Pipestone Research, Pipestone Holdings, Pipestone, MN, United States
| | - Roger Cochrane
- Pipestone Nutrition, Pipestone Holdings, Pipestone, MN, United States
| | - Gordon D. Spronk
- Pipestone Veterinary Services, Pipestone Holdings, Pipestone, MN, United States
| | - Joel Nerem
- Pipestone Veterinary Services, Pipestone Holdings, Pipestone, MN, United States
| | - Scott A. Dee
- Pipestone Research, Pipestone Holdings, Pipestone, MN, United States
| |
Collapse
|
7
|
Zhao P, Wang C, Cao W, Fang R, Zhao J. Risk Factors and Spatial-Temporal Analysis of Porcine Reproductive and Respiratory Syndrome Seroprevalence in China Before and After African Swine Fever Outbreak. Front Vet Sci 2022; 9:929596. [PMID: 35982921 PMCID: PMC9379090 DOI: 10.3389/fvets.2022.929596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious viral disease that causes great harm to the pig industry. PRRS virus (PRRSV), the causative agent of PRRS, is characterized by severe reproductive failure and respiratory confusion. This study performed a cross-sectional investigation of PRRSV seroprevalence and collected 14,134 serum samples in pig farms without PRRSV vaccination from 12 provinces and two cities in China from 2017 to 2021 to detect PRRSV antibodies by enzyme-linked immunosorbent assay (ELISA). The apparent and true PRRSV antibody prevalence was estimated and compared based on the Clopper-Pearson method and Pearson chi-square test, respectively. Risk factors associated with the PRRSV serological status of pig farms were analyzed through univariate and multivariable logistic regression analysis. An automatic autoregressive integrated moving average (ARIMA) model procedure was used for time-series analysis for PRRSV seroprevalence. Spatial clusters of high PRRSV seroprevalence were detected by SaTScan software. The total true PRRSV seroprevalence of the animal level was 62.56% (95% confidence interval [CI]: 61.74–63.37%). Additionally, 286 out of 316 pig farms were positive for PRRSV antibodies at the herd level. Pig farms without pseudorabies virus (PRV) infection were 5.413 (95% CI: 1.977–17.435) times more likely to be PRRSV antibody positive than those with PRV. Identically, the possibility of pig farms being PRRSV antibody positive before an African swine fever (ASF) outbreak was 3.104 (95% CI: 1.122–10.326) times more than after ASF. The odd ratio values of medium and large pig farms with PRRSV infection are 3.076 (95% CI: 1.005–9.498) and 6.098 (95% CI: 1.814–21.290). A fluctuant decline pattern for PRRSV prevalence was observed in the temporal analysis. Three significant clusters of high PRRSV seroprevalence were first detected in China, covering a time frame from January 2018 to September 2018, which reveals high PRRSV prevalence before the outbreak of ASF. These findings show the epidemic situation and spatial-temporal distribution of PRRSV infection in China in recent years and could help develop reasonable measures to prevent PRRSV infection.
Collapse
|
8
|
Kanankege KST, Graham K, Corzo CA, VanderWaal K, Perez AM, Durr PA. Adapting an Atmospheric Dispersion Model to Assess the Risk of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms. Viruses 2022; 14:v14081658. [PMID: 36016281 PMCID: PMC9416339 DOI: 10.3390/v14081658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Modeling the windborne transmission of aerosolized pathogens is challenging. We adapted an atmospheric dispersion model (ADM) to simulate the windborne dispersion of porcine reproductive and respiratory syndrome virus (PRRSv) between swine farms. This work focuses on determining ADM applicable parameter values for PRRSv through a literature and expert opinion-based approach. The parameters included epidemiological features of PRRSv, characteristics of the aerosolized particles, and survival of aerosolized virus in relation to key meteorological features. A case study was undertaken to perform a sensitivity analysis on key parameters. Farms experiencing ongoing PRRSv outbreaks were assigned as particle emitting sources. The wind data from the North American Mesoscale Forecast System was used to simulate dispersion. The risk was estimated semi-quantitatively based on the median daily deposition of particles and the distance to the closest emitting farm. Among the parameters tested, the ADM was most sensitive to the number of particles emitted, followed by the model runtime, and the release height was the least sensitive. Farms within 25 km from an emitting farm were at the highest risk; with 53.66% being within 10 km. An ADM-based risk estimation of windborne transmission of PRRSv may inform optimum time intervals for air sampling, plan preventive measures, and aid in ruling out the windborne dispersion in outbreak investigations.
Collapse
Affiliation(s)
- Kaushi S. T. Kanankege
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA; (C.A.C.); (K.V.); (A.M.P.)
- Correspondence: ; Tel.: +1-(612)-625-7755; Fax: +1-(612)-625-6241
| | - Kerryne Graham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC 3219, Australia; (K.G.); (P.A.D.)
| | - Cesar A. Corzo
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA; (C.A.C.); (K.V.); (A.M.P.)
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA; (C.A.C.); (K.V.); (A.M.P.)
| | - Andres M. Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA; (C.A.C.); (K.V.); (A.M.P.)
| | - Peter A. Durr
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC 3219, Australia; (K.G.); (P.A.D.)
| |
Collapse
|
9
|
Islam MA, Ikeguchi A, Naide T. Effectiveness of an air cleaner device in reducing aerosol numbers and airborne bacteria from an enclosed type dairy barn. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53022-53035. [PMID: 35277823 DOI: 10.1007/s11356-022-19514-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
There is growing pressure to find technically feasible and economically viable solutions in reducing emissions of pollutants from various occupational settings to minimise environmental pollution. Hence, it is essential to develop and test methods for controlling pollutants from occupational backgrounds. We have tested an air cleaner device in reducing aerosol numbers by filtration and airborne bacteria by photocatalysis from an enclosed type dairy barn. Here, we had shown a significant reduction of larger size aerosol numbers (2.0-10.0 µm) and airborne total aerobic bacteria and Staphylococcus aureus (S. aureus) and complete clearance of Escherichia coli (E. coli) in the exhaust air of the air cleaner device. A greater 8.05% and 61.56% reduction of 5.0-10.0 µm aerosol numbers and airborne E. coli, respectively, were observed in the instantly treated central air of the dairy barn. We had found an increasing trend of aerosol numbers and airborne bacteria concentrations in the central air of the dairy barn after stopping the air cleaner device. We also had observed increased bacterial load in the filter paper of the air treatment chamber of the air cleaner device with the advancement of cleaning time. These findings are essential to validate air cleanings from various types of dairy microenvironments.
Collapse
Affiliation(s)
- Md Aminul Islam
- Department of Agricultural and Environmental Engineering, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
- Department of Medicine, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Atsuo Ikeguchi
- Department of Environmental Engineering, Faculty of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, 321-8505, Japan
| | - Takanori Naide
- Earth Environmental Service Co., Ltd., 17 Kanda-konyacho, Chiyodaku, Tokyo, 101-0035, Japan
| |
Collapse
|
10
|
Li Z, Wang Y, Zheng W, Wang H, Li B, Liu C, Wang Y, Lei C. Effect of inlet-outlet configurations on the cross-transmission of airborne bacteria between animal production buildings. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128372. [PMID: 35236040 DOI: 10.1016/j.jhazmat.2022.128372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Cross-transmission of airborne pathogens between buildings facilitates the spread of both human and animal diseases. Rational spatial arrangement of buildings and air inlet-outlet design are well-established preventive measures, but the effectiveness of current configurations for mitigating pathogens cross-transmission is still under assessment. An intensive field study in a laying hen farm was conducted to elucidate the spatial distribution of airborne bacteria (AB) and the source of AB at the inlets under different wind regimes. We found higher concentrations of AB at the interspace and sidewall inlets of buildings with sidewall exhaust systems than at those with endwall exhaust systems. We observed significant differences in bacterial diversity and richness at the interspace and sidewall inlets between buildings with side exhaust systems and those with endwall exhaust systems. We further found that the AB emitted from buildings could translocate to the sidewall inlets of adjacent building to a greater extent between buildings with sidewall exhaust systems than between those with endwall exhaust systems. Our findings revealed that sidewall exhaust systems aggravate cross-transmission of AB between buildings, suggesting that endwall exhaust systems or other compensatory preventive measures combined with sidewall exhaust systems could be a better choice to suppress airborne cross-transmission.
Collapse
Affiliation(s)
- Zonggang Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weichao Zheng
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China.
| | - Hongning Wang
- College of Life Sciences, Sichuan University, Sichuan, China; Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| | - Baoming Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Chang Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Yuxin Wang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Changwei Lei
- College of Life Sciences, Sichuan University, Sichuan, China; Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| |
Collapse
|
11
|
Mitigation Strategies of Air Pollutants for Mechanical Ventilated Livestock and Poultry Housing—A Review. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030452] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fast development of large-scale intensive animal husbandry has led to an increased proportion of atmospheric pollution arising from livestock and poultry housing. Atmospheric pollutants, including particulate matter (PM), ammonia (NH3), hydrogen sulfide (H2S), and greenhouse gases (GHG), as well as other hazardous materials (e.g., gases, bacteria, fungi and viruses), have significant influences upon the local atmospheric environment and the health of animals and nearby residents. Therefore, it is imperative to develop livestock and poultry housing mitigation strategies targeting atmospheric pollution, to reduce its negative effects on the ambient atmosphere and to promote sustainable agricultural production. In this paper, we summarize the various strategies applied for reducing outlet air pollutants and purifying inlet air from mechanical ventilated livestock and poultry housing. This review highlights the current state of knowledge on the removal of various atmospheric pollutants and their relative performance. The potential optimization of processes and operational design, material selection, and other technologies, such as electrostatic spinning, are discussed in detail. The study provides a timely critical analysis to fill the main research gaps or needs in this domain by using practical and stakeholder-oriented evaluation criteria.
Collapse
|
12
|
Porcine Reproductive and Respiratory Syndrome (PRRS) Epidemiology in an Integrated Pig Company of Northern Italy: A Multilevel Threat Requiring Multilevel Interventions. Viruses 2021; 13:v13122510. [PMID: 34960778 PMCID: PMC8705972 DOI: 10.3390/v13122510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is probably the most relevant viral disease affecting pig farming. Despite the remarkable efforts paid in terms of vaccination administration and biosecurity, eradication and long-term control have often been frustrated. Unfortunately, few studies are currently available that objectively link, using a formal statistical approach, viral molecular epidemiology to the risk factors determining the observed scenario. The purpose of the present study is to contribute to filling this knowledge gap taking advantage of the advancements in the field of phylodynamics. Approximately one-thousand ORF7 sequences were obtained from strains collected between 2004 and 2021 from the largest Italian pig company, which implements strict compartmentalization among independent three-sites (i.e., sow herds, nurseries and finishing units) pig flows. The history and dynamics of the viral population and its evolution over time were reconstructed and linked to managerial choices. The viral fluxes within and among independent pig flows were evaluated, and the contribution of other integrated pig companies and rurally risen pigs in mediating such spreading was investigated. Moreover, viral circulation in Northern Italy was reconstructed using a continuous phylogeographic approach, and the impact of several environmental features on PRRSV strain persistence and spreading velocity was assessed. The results demonstrate that PRRSV epidemiology is shaped by a multitude of factors, including pig herd management (e.g., immunization strategy), implementation of strict-independent pig flows, and environmental features (e.g., climate, altitude, pig density, road density, etc.) among the others. Small farms and rurally raised animals also emerged as a potential threat for larger, integrated companies. These pieces of evidence suggest that none of the implemented measures can be considered effective alone, and a multidimensional approach, ranging from individual herd management to collaboration and information sharing among different companies, is mandatory for effective infection control.
Collapse
|
13
|
Graham SP, Cheong YK, Furniss S, Nixon E, Smith JA, Yang X, Fruengel R, Hussain S, Tchorzewska MA, La Ragione RM, Ren G. Antiviral Efficacy of Metal and Metal Oxide Nanoparticles against the Porcine Reproductive and Respiratory Syndrome Virus. NANOMATERIALS 2021; 11:nano11082120. [PMID: 34443950 PMCID: PMC8398903 DOI: 10.3390/nano11082120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Porcine reproductive and respiratory syndrome viruses (PRRSV) are responsible for one of the most economically important diseases affecting the global pig industry. On-farm high-efficiency particulate air (HEPA) filtration systems can effectively reduce airborne transmission of PRRSV and the incidence of PRRS, but they are costly, and their adoption is limited. Therefore, there is a need for low-cost alternatives, such as antimicrobial filters impregnated with antiviral nanoparticles (AVNP). During the past 10 years, tailored intermetallic/multi-elemental AVNP compositions have demonstrated effective performance against human viruses. In this study, a panel of five AVNP was evaluated for viricidal activity against PRRSV. Three AVNP materials: AVNP2, copper nanoparticles (CuNP), and copper oxide nanoparticles (CuONP), were shown to exert a significant reduction (>99.99%) in virus titers at 1.0% (w/v) concentration. Among the three, CuNP was the most effective at lower concentrations. Further experiments revealed that AVNP generated significant reductions in viral titers within just 1.5 min. For an optimal reduction in viral titers, direct contact between viruses and AVNP was required. This was further explained by the inert nature of these AVNP, where only negligible leaching concentrations of Ag/Cu ions (0.06–4.06 ppm) were detected in AVNP supernatants. Real-time dynamic light scatting (DLS) and transmission electron microscopic (TEM) analyses suggested that the mono-dispersive hydrodynamic behavior of AVNPs may have enhanced their antiviral activity against PRRSV. Collectively, these data support the further evaluation of these AVNP as candidate nanoparticles for incorporation into antimicrobial air-filtration systems to reduce transmission of PRRSV and other airborne pathogens.
Collapse
Affiliation(s)
- Simon P. Graham
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
- The Pirbright Institute, Woking GU24 0NF, UK
- Correspondence: (S.P.G.); (G.R.); Tel.: +44-(0)1483-231-478 (S.P.G.); +44-(0)7940-767-589 (G.R.)
| | - Yuen-Ki Cheong
- School of Physics, Engineering and Computer Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (Y.-K.C.); (X.Y.)
| | - Summer Furniss
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
| | - Emma Nixon
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
| | - Joseph A. Smith
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
| | - Xiuyi Yang
- School of Physics, Engineering and Computer Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (Y.-K.C.); (X.Y.)
| | - Rieke Fruengel
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
| | - Sabha Hussain
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
| | - Monika A. Tchorzewska
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
| | - Roberto M. La Ragione
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
| | - Guogang Ren
- School of Physics, Engineering and Computer Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (Y.-K.C.); (X.Y.)
- Correspondence: (S.P.G.); (G.R.); Tel.: +44-(0)1483-231-478 (S.P.G.); +44-(0)7940-767-589 (G.R.)
| |
Collapse
|
14
|
Correia-Gomes C, Duncan A, Ward A, Pearce M, Eppink L, Webster G, McGowan A, Thomson J. Porcine reproductive and respiratory syndrome virus seroprevalence in Scottish finishing pigs between 2006 and 2018. Vet Rec 2021; 190:e349. [PMID: 34057743 DOI: 10.1002/vetr.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/20/2021] [Accepted: 03/17/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) is a major endemic pig disease worldwide and is associated with considerable economic costs. METHODS In Scotland, three abattoir surveys were conducted in 2006 (158 farms), 2012-2013 (94 farms) and 2017-2018 (97 farms) to estimate seroprevalence to PRRS virus (PRRSV) in commercial finishing pigs. These surveys covered around 79%, 59% and 66% of the Quality Meat Scotland assured farms slaughtering pigs in Scotland in 2006, 2012-13 and, 2017-18 respectively. In the 2006 survey, six pigs per farm were sampled and tested using the CIVTEST SUIS PRRS E/S test. In the 2012-2013 and 2017-2018 surveys, 10 pigs per farm were sampled and tested using the IDEXX PRRS X3 Ab test. A farm was considered positive if it had one or more seropositive samples. RESULTS The prevalence of positive farms was 45.6% (95% CI: 38.0-53.4), 47.8% (95% CI: 38.1-57.9) and 45.4% (95% CI: 35.8-55.3) in the 2006, 2012-2013 and 2017-2018 surveys, respectively, and 70%-75.5% farms did not change their status between sampling periods. CONCLUSION The prevalence of PRRSV exposure in Scottish pig herds was high and changed little from 2006 to 2018. These surveys have informed planning for a prospective PRRS control programme in Scotland.
Collapse
Affiliation(s)
- Carla Correia-Gomes
- Epidemiology Research Unit, Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Inverness, Scotland
| | - Andrew Duncan
- Inverness College UHI, Inverness, Scotland.,Epidemiology Research Unit, Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Inverness, Scotland
| | - Allan Ward
- Rural Centre, Quality Meat Scotland, Newbridge, UK
| | - Michael Pearce
- Epidemiology Research Unit, Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Inverness, Scotland
| | - Lysan Eppink
- Boehringer Ingelheim Animal Health UK Ltd, Berkshire, UK
| | | | - Andy McGowan
- Wholesome Pigs (Scotland) Ltd, Aberdeenshire, Scotland
| | - Jill Thomson
- SRUC Veterinary Services, Pentlands Science Park, Midlothian, UK
| |
Collapse
|
15
|
Wu JY, Zhu YS, Guo C, Xia Y, Guo ZM, Li QL, Lu JH. A Comparative Study of Associated Microbiota Between Pig Farm and Pig Slaughterhouse in Guangdong, China. Curr Microbiol 2020; 77:3310-3320. [PMID: 32915289 PMCID: PMC7485193 DOI: 10.1007/s00284-020-02187-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The goal of this study was to compare the microbiota in different pig-present settings in China. Bioaerosol samples from pig farms and slaughterhouses and nasal samples from pig farmers and slaughterhouse workers were collected in Guangdong, southern China. The bacterial genomic DNA was isolated and subjected to 16S sequencing. The data were analyzed using QIIME2 with the DADA2 pipeline. A total of 14,923,551 clean reads and 2785 operational taxonomic units (OTUs) were obtained, which were mostly grouped into 4 phyla (Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria) and 220 families. The microbiota richness of nasal samples in pig-present workers was higher than that of bioaerosols collected in the vicinity of the pig enclosures. There were 31.7% (620/1954) shared OTUs between pig farm bioaerosols and pig farmers which was higher than that between pig slaughterhouses and slaughterhouse workers (23.4%, 364/1553) (p < 0.001). Acinetobacter and Pseudomonas were the most abundant in pig-present bioaerosols, and Staphylococcus, Pseudomonas, and Corynebacterium were dominant bacterial genus in pig farmers. The bacterial patterns are also specific to the location of sample collected. The results suggest that bioaerosol microbiota interact with human nasal microbes in the vicinity of the pig farm enclosures, providing the basis for further analysis of microbial transmission across hosts in pig-present settings.
Collapse
Affiliation(s)
- Jian-Yong Wu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yan-Shan Zhu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, 10032, USA
| | - Yao Xia
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhong-Min Guo
- Laboratory Animal Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qian-Lin Li
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia-Hai Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
- Key Laboratory for Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
16
|
Sanhueza JM, Stevenson MA, Vilalta C, Kikuti M, Corzo CA. Spatial relative risk and factors associated with porcine reproductive and respiratory syndrome outbreaks in United States breeding herds. Prev Vet Med 2020; 183:105128. [PMID: 32937200 DOI: 10.1016/j.prevetmed.2020.105128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/15/2020] [Accepted: 08/22/2020] [Indexed: 11/18/2022]
Abstract
Details of incident cases of porcine reproductive and respiratory syndrome (PRRS) in United States breeding herds were obtained from the Morrison's Swine Health Monitoring Project. Herds were classified as cases if they reported an outbreak in a given season of the year and non-cases if they reported it in a season other than the case season or if they did not report a PRRS outbreak in any season. The geographic distribution of cases and non-cases was compared in each season of the year. The density of farms that had a PRRS outbreak during summer was higher in Southern Minnesota and Northwest-central Iowa compared to the density of the underlying population of non-case farms. This does not mean that PRRS outbreaks are more frequent during summer in absolute terms, but that there was a geographical clustering of herds breaking during summer in this area. Similar findings were observed in autumn. In addition, the density of farms reporting spring outbreaks was higher in the Southeast of the United States compared to that of the underlying population of non-case farms. A similar geographical clustering of PRRS outbreaks was observed during winter in the Southeast of the United States. Multivariable analyses, adjusting for the effect of known confounders, showed that the incidence rate of PRRS was significantly lower during winter and autumn during the porcine epidemic diarrhea (PED) epidemic years (2013-2014), compared to PRRS incidence rates observed during the winter and autumn of PED pre-epidemic years (2009-2012). After 2014, an increase in the incidence rate of PRRS was observed during winter and spring but not during autumn or summer. Pig dense areas were associated with a higher incidence rate throughout the year. However, this association tended to be stronger during the summer. Additionally, herds with ≥2500 sows had an increased incidence rate during all seasons except spring compared to those with <2500 sows. PRRS incidence was lower in year-round air-filtered herds compared to non-filtered herds throughout the year. We showed that not only the spatial risk of PRRS varies regionally according to the season of the year, but also that the effect of swine density, herd size and air filtering on PRRS incidence may also vary according to the season of the year. Further studies should investigate regional and seasonal drivers of disease. Breeding herds should maintain high biosecurity standards throughout the year.
Collapse
Affiliation(s)
- Juan M Sanhueza
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile.
| | - Mark A Stevenson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Victoria 3010, Australia
| | | | - Mariana Kikuti
- Department of Veterinary Population Medicine, University of Minnesota, Minnesota, USA
| | - Cesar A Corzo
- Department of Veterinary Population Medicine, University of Minnesota, Minnesota, USA
| |
Collapse
|
17
|
Jara M, Rasmussen DA, Corzo CA, Machado G. Porcine reproductive and respiratory syndrome virus dissemination across pig production systems in the United States. Transbound Emerg Dis 2020; 68:667-683. [PMID: 32657491 DOI: 10.1111/tbed.13728] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains widespread in the North American pig population. Despite improvements in virus characterization, it is unclear whether PRRSV infections are a product of viral circulation within production systems (local) or across production systems (external). Here, we examined the local and external dissemination dynamics of PRRSV and the processes facilitating its spread in three production systems. Overall, PRRSV genetic diversity has declined since 2018, while phylodynamic results support frequent external transmission. We found that PRRSV dissemination predominantly occurred mostly through transmission between farms of different production companies for several months, especially from November until May, a timeframe already established as PRRSV season. Although local PRRSV dissemination occurred mainly through regular pig flow (from sow to nursery and then to finisher farms), an important flux of PRRSV dissemination also occurred in the opposite direction, from finisher to sow and nursery farms, highlighting the importance of downstream farms as sources of the virus. Our results also showed that farms with pig densities of 500 to 1,000 pig/km2 and farms located at a range within 0.5 km and 0.7 km from major roads were more likely to be infected by PRRSV, whereas farms at an elevation of 41 to 61 meters and surrounded by denser vegetation were less likely to be infected, indicating their role as dissemination barriers. In conclusion, our results demonstrate that external dissemination was intense, and reinforce the importance of farm proximity on PRRSV spread. Thus, consideration of farm location, geographic characteristics and animal densities across production systems may help to forecast PRRSV collateral dissemination.
Collapse
Affiliation(s)
- Manuel Jara
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Cesar A Corzo
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
18
|
Xia T, Yang M, Marabella I, Lee EM, Olson B, Zarling D, Torremorell M, Clack HL. Inactivation of airborne porcine reproductive and respiratory syndrome virus (PRRSv) by a packed bed dielectric barrier discharge non-thermal plasma. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122266. [PMID: 32126420 DOI: 10.1016/j.jhazmat.2020.122266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 05/16/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSv) is one of the most significant airborne viruses impacting the pork industry in the US. Non-thermal plasmas (NTPs) are electrical discharges comprised of reactive radicals and excited species that inactivate viruses and bacteria. Our previous experiments using a packed bed NTP reactor demonstrated effective inactivation of bacteriophage MS2 as a function of applied voltage and power. The present study examined the effectiveness of the same reactor in inactivating aerosolized PRRSv. A PRRSv solution containing ∼105 TCID50/ml of PRRSv VR2332 strain was aerosolized at 3 ml/min by an air-jet nebulizer and introduced into 5 or 12 cfm air flow followed by NTP exposure in the reactor. Twin impingers upstream and downstream of the reactor collected samples of the virus-laden air flow for subsequent TCID50 assay and qPCR analyses. An optical particle sizer measured upstream and downstream aerosol size distributions, giving estimates of aerosol filtration by the reactor. The results showed that PRRSv was inactivated to a similar degree as MS2 at the same conditions, with the maximum 1.3-log inactivation of PRRSv achieved at 20 kV and 12 cfm air flow rate. The results demonstrate the potential of properly optimized NTPs in controlling PRRSv transmission.
Collapse
Affiliation(s)
- T Xia
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States.
| | - M Yang
- Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - I Marabella
- Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - E M Lee
- Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, United States
| | - B Olson
- Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - D Zarling
- Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - M Torremorell
- Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - H L Clack
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Hou P, Xu Y, Wang H, He H. Detection of bovine viral diarrhea virus genotype 1 in aerosol by a real time RT-PCR assay. BMC Vet Res 2020; 16:114. [PMID: 32295612 PMCID: PMC7159024 DOI: 10.1186/s12917-020-02330-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/30/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND As a pestivirus of the Flaviviridae family, bovine viral diarrhea virus (BVDV), has imposed a large burden on animal husbandry worldwide, and such virus can be transmitted mainly through direct contact with other infected animals and probably via aerosols. In the present study, we aimed to develop a real-time RT-PCR method for detection of BVDV-1 in aerosol samples. METHODS A pair of primers specific for highly conserved regions of the BVDV-1 5'-UTR was designed. The standard curve and sensitivity of the developed assay were assessed based on 10-fold serial dilutions of RNA molecular standard. The specificity of the assay was evaluated with other pestiviruses and infectious bovine viruses. The clinical performance was examined by testing 169 aerosol samples. RESULTS The results showed that a good linear relationship existed between the standard curve and the concentration of template. The lowest detection limit was 5.2 RNA molecules per reaction. This assay was specific for detection of BVDV-1, and no amplification was found for other pestiviruses such as classical swine fever virus (CSFV), border disease virus (BDV), and common infectious bovine viruses, including BVDV-2, infectious bovine rhinotracheitis virus (IBRV), bovine parainfluenza virus type 3 (BPIV-3), bovine respiratory syncytial virus (BRSV), bovine ephemeral fever virus (BEFV) and bovine coronavirus (BcoV). The assay was highly reproducible with low variation coefficient values (CVs) for intra-assay and inter-assay. A total of 169 aerosol samples collected from six dairy herds were tested using this method. The results showed that the positive detection rate of BVDV-1 was 17.2% (29/169), which was significantly higher compared with the conventional RT-PCR. Additionally, the positive samples (n = 29) detected by real-time RT-PCR were verified by BVDV RPA-LFD, and a concordance rate of 100% was obtained between them. CONCLUSIONS Taken together, we developed a real-time RT-PCR assay for quantitative analysis of BVDV-1 in aerosol samples, and our finding provided valuable insights into the risk on aerosol transmission of BVDV-1.
Collapse
Affiliation(s)
- Peili Hou
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan City, Shandong Province China
| | - Yaru Xu
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan City, Shandong Province China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan City, Shandong Province China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan City, Shandong Province China
| |
Collapse
|
20
|
Li Z, Wang H, Zheng W, Li B, Wei Y, Zeng J, Lei C. A tracing method of airborne bacteria transmission across built environments. BUILDING AND ENVIRONMENT 2019; 164:106335. [PMID: 32287991 PMCID: PMC7116910 DOI: 10.1016/j.buildenv.2019.106335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/20/2019] [Accepted: 08/08/2019] [Indexed: 05/03/2023]
Abstract
Disease transmission across built environments has been found to be a serious health risk. Airborne transmission is a vital route of disease infection caused by bacteria and virus. However, tracing methods of airborne bacteria in both lab and field research failed to veritably express the transporting process of microorganism in the air. A new tracing method of airborne bacteria used for airborne transmission was put forward and demonstrated its feasibility by conducting a field evaluation on the basis of genetic modification and bioaerosol technology. A specific gene fragment (pFPV-mCherry fluorescent protein plasmid) was introduced into nonpathogenic E. coli DH5α as tracer bacteria by high-voltage electroporation. Gel electrophoresis and DNA sequencing proved the success of the synthesis. Genetic stability, effect of aerosolization on the survival rate of tracer bacteria, and the application of the tracer bacteria to the airborne bacteria transmission were examined in both lab and field. Both the introduced plasmid stability rates of tracer E. coli in pre-aerosolization and post-aerosolization were above 95% in five test days. Survival rate of tracer E. coli at 97.5% ± 1.2% through aerosolization was obtained by an air-atomizer operated at an air pressure of 30 Psi. In the field experiment, the airborne transmission of E. coli between poultry houses was proved and emitted E. coli was more easily transmitted into self-house than adjacent house due to the ventilation design and weather condition. Our results suggested that the tracing method of airborne bacteria was available for the investigation of airborne microbial transmission across built environments.
Collapse
Affiliation(s)
- Zonggang Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongning Wang
- College of Life Sciences, Sichuan University, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| | - Weichao Zheng
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China
- Corresponding author. College of Water Resources and Civil Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Baoming Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yongxiang Wei
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinxin Zeng
- College of Life Sciences, Sichuan University, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| | - Changwei Lei
- College of Life Sciences, Sichuan University, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| |
Collapse
|
21
|
Abstract
Protecting boar studs and their clients from emerging infectious disease first involves effective biosecurity measures to keep a disease out that was not present, and second, early identification and ceasing semen distribution prior to disseminating infectious disease. Experiences in the field can best guide us as to what has been effective. Circumstances in North America in the period of 1999-2004 resulted in numerous PRRS virus (Porcine Reproductive and Respiratory Syndrome) negative boar studs becoming infected and disseminating virus to sow farms. Earlier detection methods were needed, and withholding of semen pending negative test results became standard. To accomplish this, diagnostic labs complied with industry requests for same day testing. At the same time, research efforts helped clarify the major routes of PRRS virus introduction into the farms. The risk of fomites and aerosol spread became viewed as major risks. Addressing issues with people and supply entry alone did not eliminate new virus entry. The implementation of air filtration during 2005-2008 had a major impact on the rate of new virus introductions into boar studs after other measures alone were unsuccessful. Risks exposed with the introduction of PED virus (Porcine Epidemic Diarrhea) into North America further highlighted other risk factors such as feed ingredients, trailer sanitation, and the presence of clear physical barriers. The successful adaptation of testing procedures, combined with biosecurity procedures including air filtration, has made the incidence of infectious disease introduction extremely rare in North American boar studs over the last decade. While survivability of infectious disease agents can vary in different materials or in the air, successful protocols should be applied and adjusted as needed to accommodate new information or risks. Cleary defined physical barriers for people and animal entry and exit, sanitization and/or down time on incoming supplies, risk mitigation and testing of feed ingredients, and filtration have been keys to changing the incidence of emerging infectious disease introduction into boar studs.
Collapse
Affiliation(s)
- Darwin L Reicks
- Reicks Veterinary Research & Consulting, P.O. Box 314, St. Peter, Minnesota, 56082, USA.
| |
Collapse
|
22
|
Aerosol Detection and Transmission of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): What Is the Evidence, and What Are the Knowledge Gaps? Viruses 2019; 11:v11080712. [PMID: 31382628 PMCID: PMC6723176 DOI: 10.3390/v11080712] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
In human and veterinary medicine, there have been multiple reports of pathogens being airborne under experimental and field conditions, highlighting the importance of this transmission route. These studies shed light on different aspects related to airborne transmission such as the capability of pathogens becoming airborne, the ability of pathogens to remain infectious while airborne, the role played by environmental conditions in pathogen dissemination, and pathogen strain as an interfering factor in airborne transmission. Data showing that airborne pathogens originating from an infectious individual or population can infect susceptible hosts are scarce, especially under field conditions. Furthermore, even though disease outbreak investigations have generated important information identifying potential ports of entry of pathogens into populations, these investigations do not necessarily yield clear answers on mechanisms by which pathogens have been introduced into populations. In swine, the aerosol transmission route gained popularity during the late 1990’s as suspicions of airborne transmission of porcine reproductive and respiratory syndrome virus (PRRSV) were growing. Several studies were conducted within the last 15 years contributing to the understanding of this transmission route; however, questions still remain. This paper reviews the current knowledge and identifies knowledge gaps related to PRRSV airborne transmission.
Collapse
|
23
|
Xia T, Kleinheksel A, Lee EM, Qiao Z, Wigginton KR, Clack HL. Inactivation of airborne viruses using a packed bed non-thermal plasma reactor. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2019; 52:255201. [PMID: 32287389 PMCID: PMC7106774 DOI: 10.1088/1361-6463/ab1466] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 05/17/2023]
Abstract
Outbreaks of airborne infectious diseases such as measles or severe acute respiratory syndrome can cause significant public alarm. Where ventilation systems facilitate disease transmission to humans or animals, there exists a need for control measures that provide effective protection while imposing minimal pressure differential. In the present study, viral aerosols in an airstream were subjected to non-thermal plasma (NTP) exposure within a packed-bed dielectric barrier discharge reactor. Comparisons of plaque assays before and after NTP treatment found exponentially increasing inactivation of aerosolized MS2 phage with increasing applied voltage. At 30 kV and an air flow rate of 170 standard liters per minute, a greater than 2.3 log reduction of infective virus was achieved across the reactor. This reduction represented ~2 log of the MS2 inactivated and ~0.35 log physically removed in the packed bed. Increasing the air flow rate from 170 to 330 liters per minute did not significantly impact virus inactivation effectiveness. Activated carbon-based ozone filters greatly reduced residual ozone, in some cases down to background levels, while adding less than 20 Pa pressure differential to the 45 Pa differential pressure across the packed bed at the flow rate of 170 standard liters per minute.
Collapse
Affiliation(s)
- T Xia
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States of
| | - A Kleinheksel
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States of
| | - E M Lee
- Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Z Qiao
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States of
| | - K R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States of
| | - H L Clack
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States of
| |
Collapse
|
24
|
Lambert MÈ, Audet P, Delisle B, Arsenault J, D'Allaire S. Porcine reproductive and respiratory syndrome virus: web-based interactive tools to support surveillance and control initiatives. Porcine Health Manag 2019; 5:10. [PMID: 30976454 PMCID: PMC6437942 DOI: 10.1186/s40813-019-0117-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/06/2019] [Indexed: 11/10/2022] Open
Abstract
Background Control of porcine reproductive and respiratory syndrome (PRRS) represents a tremendous challenge. The trend is now toward managing the disease collectively. In Quebec, area and regional control and elimination (ARC&E) initiatives started in 2011; diagnostic testing, including ORF5 sequencing, and sharing of information among stakeholders are largely promoted. At the provincial level, a data-sharing agreement was signed by Quebec swine practitioners allowing PRRS virus (PRRSV) sequences to be transferred to a database maintained by the Laboratoire d'épidémiologie et de médecine porcine (LEMP-DB). Several interactive tools were developed and are available to veterinarians to allow comparison of PRRSV ORF5 sequences within ARC&E projects or provincially while managing confidentiality issues. Results Between January 1st 2010 and December 31st 2018, 4346 PRRSV ORF5 sequences were gathered into the LEMP-DB, involving 1254 sites and 43 practicing veterinarians. Approximately 34% of the submissions were from ARC&E projects. Using a novel web-based sequence comparison tool, each veterinarian has access to information on his/her client sequences and can compare each sequence with 1) commercial vaccine strains, 2) historical samples from the same site, and 3) all sequences submitted to the database over the last 4 years. Newly introduced PRRSV into breeding herds can be monitored using a new sequence comparison tool based on comparison of sequences at the provincial level. Each month, graphs providing the number of introductions per month and the yearly cumulative are updated. Between August 1st 2014 and December 31st 2018, 233 introductions were detected on 180 different breeding sites. Following a data-sharing agreement, veterinarians involved in ARC&E projects have access to an interactive mapping tool to locate pig sites, compare sequence similarity between participating sites and visualize the results on the map. Conclusions The structure developed in Quebec to collect, analyse and share sequencing data was efficient to provide useful information to the swine industry at both provincial and regional levels while dealing with confidentiality issues.
Collapse
Affiliation(s)
- Marie-Ève Lambert
- Laboratoire d'épidémiologie et de médecine porcine (LEMP), Faculty of Veterinary Medicine, Université de Montréal, St. Hyacinthe, Quebec Canada
| | - Pascal Audet
- Laboratoire d'épidémiologie et de médecine porcine (LEMP), Faculty of Veterinary Medicine, Université de Montréal, St. Hyacinthe, Quebec Canada
| | - Benjamin Delisle
- Laboratoire d'épidémiologie et de médecine porcine (LEMP), Faculty of Veterinary Medicine, Université de Montréal, St. Hyacinthe, Quebec Canada
| | - Julie Arsenault
- Laboratoire d'épidémiologie et de médecine porcine (LEMP), Faculty of Veterinary Medicine, Université de Montréal, St. Hyacinthe, Quebec Canada
| | - Sylvie D'Allaire
- Laboratoire d'épidémiologie et de médecine porcine (LEMP), Faculty of Veterinary Medicine, Université de Montréal, St. Hyacinthe, Quebec Canada
| |
Collapse
|
25
|
|
26
|
Wenke C, Pospiech J, Reutter T, Altmann B, Truyen U, Speck S. Impact of different supply air and recirculating air filtration systems on stable climate, animal health, and performance of fattening pigs in a commercial pig farm. PLoS One 2018; 13:e0194641. [PMID: 29558482 PMCID: PMC5860761 DOI: 10.1371/journal.pone.0194641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/07/2018] [Indexed: 01/06/2023] Open
Abstract
Biosecurity is defined as the implementation of measures that reduce the risk of disease agents being introduced and/or spread. For pig production, several of these measures are routinely implemented (e.g. cleaning, disinfection, segregation). However, air as a potential vector of pathogens has long been disregarded. Filters for incoming and recirculating air were installed into an already existing ventilation plant at a fattening piggery (3,840 pigs at maximum) in Saxony, Germany. Over a period of three consecutive fattening periods, we evaluated various parameters including air quality indices, environmental and operating parameters, and pig performance. Animal data regarding respiratory diseases, presence of antibodies against influenza A viruses, PRRSV, and Actinobacillus pleuropneumoniae and lung health score at slaughter were recorded, additionally. There were no significant differences (p = 0.824) in total bacterial counts between barns with and without air filtration. Recirculating air filtration resulted in the lowest total dust concentration (0.12 mg/m3) and lung health was best in animals from the barn equipped with recirculating air filtration modules. However, there was no difference in animal performance. Antibodies against all above mentioned pathogens were detected but mostly animals were already antibody-positive at re-stocking. We demonstrated that supply air filtration as well as recirculating air filtration technique can easily be implemented in an already existing ventilation system and that recirculating air filtration resulted in enhanced lung health compared to supply air-filtered and non-filtered barns. A more prominent effect might have been obtained in a breeding facility because of the longer life span of sows and a higher biosecurity level with air filtration as an add-on measure.
Collapse
Affiliation(s)
- Cindy Wenke
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Janina Pospiech
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | | | - Bettina Altmann
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Stephanie Speck
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
27
|
Wenke C, Pospiech J, Reutter T, Truyen U, Speck S. Efficiency of different air filter types for pig facilities at laboratory scale. PLoS One 2017; 12:e0186558. [PMID: 29028843 PMCID: PMC5640248 DOI: 10.1371/journal.pone.0186558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/03/2017] [Indexed: 11/18/2022] Open
Abstract
Air filtration has been shown to be efficient in reducing pathogen burden in circulating air. We determined at laboratory scale the retention efficiency of different air filter types either composed of a prefilter (EU class G4) and a secondary fiberglass filter (EU class F9) or consisting of a filter mat (EU class M6 and F8-9). Four filter prototypes were tested for their capability to remove aerosol containing equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), bovine enterovirus 1 (BEV), Actinobacillus pleuropneumoniae (APP), and Staphylococcus (S.) aureus from air. Depending on the filter prototype and utilisation, the airflow was set at 1,800 m3/h (combination of upstream prefilter and fiberglass filter) or 80 m3/h (filter mat). The pathogens were aerosolized and their concentration was determined in front of and behind the filter by culture or quantitative real-time RT-PCR. Furthermore, survival of the pathogens over time in the filter material was determined. Bacteria were most efficiently filtered with a reduction rate of up to 99.9% depending on the filter used. An approximately 98% reduction was achieved for the viruses tested. Viability or infectivity of APP or PRRSV in the filter material decreased below the detection limit after 4 h and 24 h, respectively, whereas S. aureus was still culturable after 4 weeks. Our results demonstrate that pathogens can efficiently be reduced by air filtration. Consequently, air filtration combined with other strict biosecurity measures markedly reduces the risk of introducing airborne transmitted pathogens to animal facilities. In addition, air filtration might be useful in reducing bioaerosols within a pig barn, hence improving respiratory health of pigs.
Collapse
Affiliation(s)
- Cindy Wenke
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig, Germany
| | - Janina Pospiech
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig, Germany
| | | | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig, Germany
| | - Stephanie Speck
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig, Germany
- * E-mail:
| |
Collapse
|
28
|
Anderson BD, Lednicky JA, Torremorell M, Gray GC. The Use of Bioaerosol Sampling for Airborne Virus Surveillance in Swine Production Facilities: A Mini Review. Front Vet Sci 2017; 4:121. [PMID: 28798919 PMCID: PMC5529434 DOI: 10.3389/fvets.2017.00121] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022] Open
Abstract
Modern swine production facilities typically house dense populations of pigs and may harbor a variety of potentially zoonotic viruses that can pass from one pig generation to another and periodically infect human caretakers. Bioaerosol sampling is a common technique that has been used to conduct microbial risk assessments in swine production, and other similar settings, for a number of years. However, much of this work seems to have been focused on the detection of non-viral microbial agents (i.e., bacteria, fungi, endotoxins, etc.), and efforts to detect viral aerosols in pig farms seem sparse. Data generated by such studies would be particularly useful for assessments of virus transmission and ecology. Here, we summarize the results of a literature review conducted to identify published articles related to bioaerosol generation and detection within swine production facilities, with a focus on airborne viruses. We identified 73 scientific reports, published between 1991 and 2017, which were included in this review. Of these, 19 (26.7%) used sampling methodology for the detection of viruses. Our findings show that bioaerosol sampling methodologies in swine production settings have predominately focused on the detection of bacteria and fungi, with no apparent standardization between different approaches. Information, specifically regarding virus aerosol burden in swine production settings, appears to be limited. However, the number of viral aerosol studies has markedly increased in the past 5 years. With the advent of new sampling technologies and improved diagnostics, viral bioaerosol sampling could be a promising way to conduct non-invasive viral surveillance among swine farms.
Collapse
Affiliation(s)
- Benjamin D Anderson
- Division of Infectious Diseases, School of Medicine, Global Health Institute, Duke University, Durham, NC, United States.,Department of Environmental and Global Health, College of Public Health & Health Professions, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health & Health Professions, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota-Twin Cities, Saint Paul, MN, United States
| | - Gregory C Gray
- Division of Infectious Diseases, School of Medicine, Global Health Institute, Duke University, Durham, NC, United States
| |
Collapse
|
29
|
Niederwerder MC, Rowland RRR. Is There a Risk for Introducing Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Through the Legal Importation of Pork? FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:1-13. [PMID: 27590771 DOI: 10.1007/s12560-016-9259-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
Since the appearance of porcine reproductive and respiratory syndrome virus (PRRSV) in the late 1980s, the virus has become endemic throughout the world, with only the countries of Sweden, Switzerland, Finland, Norway, Australia, and New Zealand historically free of PRRS virus. Biosecurity is maintained largely through restrictions on the importation of pigs and semen. The risk for a PRRSV outbreak via the legal importation of fresh/chilled/frozen pork from PRRSV-positive countries remains controversial. However, examination of the historical record shows that countries retained a PRRSV-negative status during the importation of more than 500,000 tons of fresh/chilled/frozen pork from PRRSV-positive trading partners. This review describes some of the unique properties of PRRSV, including the poor stability of the virus in the environment, the low probability for airborne transmission, and the inability to sustain infections in feral swine, which make PRRSV a poor candidate for disease introduction through the legal importation of pork.
Collapse
Affiliation(s)
- Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS, 66506, USA.
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS, 66506, USA.
| | - Raymond R R Rowland
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS, 66506, USA
| |
Collapse
|
30
|
Lee K, Polson D, Lowe E, Main R, Holtkamp D, Martínez-López B. Unraveling the contact patterns and network structure of pig shipments in the United States and its association with porcine reproductive and respiratory syndrome virus (PRRSV) outbreaks. Prev Vet Med 2017; 138:113-123. [PMID: 28237226 DOI: 10.1016/j.prevetmed.2017.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
Abstract
The analysis of the pork value chain is becoming key to understanding the risk of infectious disease dissemination in the swine industry. In this study, we used social network analysis to characterize the swine shipment network structure and properties in a typical multisite swine production system in the US. We also aimed to evaluate the association between network properties and porcine respiratory and reproductive syndrome virus (PRRSV) transmission between production sites. We analyzed the 109,868 swine shipments transporting over 93 million swine between more than 500 production sites from 2012 to 2014. A total of 248 PRRSV positive occurrences were reported from 79 production sites during those 3 years. The temporal dynamics of swine shipments was evaluated by computing network properties in one-month and three-month networks. The association of PRRS occurrence in sow farms with centrality properties from one-month and three-month networks was assessed by using the multilevel logistic regression. All monthly networks showed a scale-free network topology with positive degree assortativity. The regression model revealed that out-degree centrality had a negative association with PRRS occurrence in sow farms in both one-month and three-month networks [OR=0.79 (95% CI, 0.63-0.99) in one-month network and 0.56 (95% CI, 0.36, 0.88) in three-month network] and in-closeness centrality model was positively associated with PRRS occurrence in sow farms in the three-month network [OR=2.45 (95% CI, 1.14-5.26)]. We also describe how the occurrence of porcine epidemic diarrheac (PED) outbreaks severely affected the network structure as well as the PRRS occurrence reports and its association with centrality measures in sow farms. The structure of the swine shipment network and the connectivity between production sites influenced on the PRRSV transmission. The use of network topology and characteristics combining with spatial analysis based on fine scale geographical location of production sites will be useful to inform the design of more cost-efficient, risk-based surveillance and control measures for PRRSV as well as other diseases in the US swine industry.
Collapse
Affiliation(s)
- Kyuyoung Lee
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Dale Polson
- Boehringer - Ingelheim Vetmedica, Inc., St. Joseph, MO, USA
| | - Erin Lowe
- Boehringer - Ingelheim Vetmedica, Inc., St. Joseph, MO, USA
| | - Rodger Main
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Derald Holtkamp
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
31
|
Diseases Primarily Affecting the Reproductive System. Vet Med (Auckl) 2017. [PMCID: PMC7150237 DOI: 10.1016/b978-0-7020-5246-0.00018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Perez AM, Davies PR, Goodell CK, Holtkamp DJ, Mondaca-Fernández E, Poljak Z, Tousignant SJ, Valdes-Donoso P, Zimmerman JJ, Morrison RB. Lessons learned and knowledge gaps about the epidemiology and control of porcine reproductive and respiratory syndrome virus in North America. J Am Vet Med Assoc 2016; 246:1304-17. [PMID: 26043128 DOI: 10.2460/javma.246.12.1304] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Ayudhya SNN, Assavacheep P, Thanawongnuwech R. One world--one health: the threat of emerging swine diseases. An Asian perspective. Transbound Emerg Dis 2015; 59 Suppl 1:9-17. [PMID: 25471241 PMCID: PMC7169793 DOI: 10.1111/j.1865-1682.2011.01309.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Owing to the expanding globalization, the trans‐boundary spread of an epizootic can easily result from uncontrolled animal movements and human traffic. Foot and mouth disease (FMD) is a major trans‐boundary disease in most Asian countries. Its sporadic re‐emergence suggests that collaborative FMD control strategies should be uniformly implemented in endemic countries to ensure the overall national herd vaccination coverage, biocontainment when outbreaks occur, and strict biosecurity control of animal movement between countries. Sustained commitments from governments, cooperative diplomatic relationships, and public awareness campaigns are critical to FMD control, to ensure collaboration among veterinarians, traders and farmers throughout Southeast Asia (SEA). Recently, highly pathogenic porcine reproductive and respiratory syndrome (HP‐PRRS) and porcine epidemic diarrhoea (PED) spread from China to Southeast Asian countries, causing major economic losses. Foot and mouth disease, HP‐PRRS, and PED currently remain endemic and may continue to sporadically re‐emerge, owing to inadequate public health management and/or biosecurity failures. Therefore, the risk factors must be identified to better understand the epidemiology of these diseases in an effort to develop effective control measures. International coordination through the establishment of a collaborative network supported by the World Organization for Animal Health (OIE) and the Food and Agriculture Organization (FAO) should be implemented to prevent trans‐boundary transmission among countries. This review discusses trans‐boundary swine diseases of particular importance to SEA, including FMD, HP‐PRRS and PED, with a primary focus on major factors contributing to the spread of these diseases and important control measures, reflecting the impact of globalization on disease control and surveillance.
Collapse
Affiliation(s)
- S Nuntawan Na Ayudhya
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | | | | |
Collapse
|
34
|
Brookes VJ, Hernández-Jover M, Holyoake P, Ward MP. Industry opinion on the likely routes of introduction of highly pathogenic porcine reproductive and respiratory syndrome into Australia from south-east Asia. Aust Vet J 2015; 93:13-9. [DOI: 10.1111/avj.12284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2014] [Indexed: 11/30/2022]
Affiliation(s)
- VJ Brookes
- Faculty of Veterinary Science; University of Sydney; Camden New South Wales Australia
| | - M Hernández-Jover
- School of Animal and Veterinary Sciences; Charles Sturt University; Wagga Wagga New South Wales Australia
| | - P Holyoake
- Department of Environment and Primary Industries; Bendigo Victoria Australia
| | - MP Ward
- Faculty of Veterinary Science; University of Sydney; Camden New South Wales Australia
| |
Collapse
|
35
|
Thakur KK, Revie CW, Hurnik D, Poljak Z, Sanchez J. Simulation of between-farm transmission of porcine reproductive and respiratory syndrome virus in Ontario, Canada using the North American Animal Disease Spread Model. Prev Vet Med 2015; 118:413-26. [PMID: 25636969 DOI: 10.1016/j.prevetmed.2015.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 12/22/2014] [Accepted: 01/08/2015] [Indexed: 11/19/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), a viral disease of swine, has major economic impacts on the swine industry. The North American Animal Disease Spread Model (NAADSM) is a spatial, stochastic, farm level state-transition modeling framework originally developed to simulate highly contagious and foreign livestock diseases. The objectives of this study were to develop a model to simulate between-farm spread of a homologous strain of PRRS virus in Ontario swine farms via direct (animal movement) and indirect (sharing of trucks between farms) contacts using the NAADSM and to compare the patterns and extent of outbreak under different simulated conditions. A total of 2552 swine farms in Ontario province were allocated to each census division of Ontario and geo-locations of the farms were randomly generated within the agriculture land of each Census Division. Contact rates among different production types were obtained using pig movement information from four regions in Canada. A total of 24 scenarios were developed involving various direct (movement of infected animals) and indirect (pig transportation trucks) contact parameters in combination with alternating the production type of the farm in which the infection was seeded. Outbreaks were simulated for one year with 1000 replications. The median number of farms infected, proportion of farms with multiple outbreaks and time to reach the peak epidemic were used to compare the size, progression and extent of outbreaks. Scenarios involving spread only by direct contact between farms resulted in outbreaks where the median percentage of infected farms ranged from 31.5 to 37% of all farms. In scenarios with both direct and indirect contact, the median percentage of infected farms increased to a range from 41.6 to 48.6%. Furthermore, scenarios with both direct and indirect contact resulted in a 44% increase in median epidemic size when compared to the direct contact scenarios. Incorporation of both animal movements and the sharing of trucks within the model indicated that the effect of direct and indirect contact may be nonlinear on outbreak progression. The increase of 44% in epidemic size when indirect contact, via sharing of trucks, was incorporated into the model highlights the importance of proper biosecurity measures in preventing transmission of the PRRS virus. Simulation of between-farm spread of the PRRS virus in swine farms has highlighted the relative importance of direct and indirect contact and provides important insights regarding the possible patterns and extent of spread of the PRRS virus in a completely susceptible population with herd demographics similar to those found in Ontario, Canada.
Collapse
Affiliation(s)
- Krishna K Thakur
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada.
| | - Crawford W Revie
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Daniel Hurnik
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Javier Sanchez
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| |
Collapse
|
36
|
Tousignant SJP, Perez AM, Lowe JF, Yeske PE, Morrison RB. Temporal and spatial dynamics of porcine reproductive and respiratory syndrome virus infection in the United States. Am J Vet Res 2015; 76:70-6. [DOI: 10.2460/ajvr.76.1.70] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Genetic diversity of PRRS virus collected from air samples in four different regions of concentrated swine production during a high incidence season. Viruses 2014; 6:4424-36. [PMID: 25405592 PMCID: PMC4246231 DOI: 10.3390/v6114424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/15/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the most relevant swine diseases in the US, costing the industry millions of dollars per year. Unfortunately, disease control is difficult because of the virus dynamics, as PRRS virus (PRRSV) can be transmitted by air between farms, especially, in regions with high density of swine operations. While long distance airborne transport of PRRSV has been reported, there is little information regarding the dynamics of PRRSV airborne challenge in concentrated regions. The objective of this study was to describe the frequency of detection, dose and diversity of PRRSV in air samples collected across four concentrated production regions during the PRRS-high risk season in the Midwestern US (October–December) in 2012. Between 29% and 42% of the air samples were positive in all four sampling sites. Sequencing of the recovered virus showed a wide diversity of field and vaccine variants. Higher frequency, dose, and diversity of PRRSV were observed in air at locations with higher pig density. These findings suggest that regional spread of PRRSV due to aerosol transmission of PRRSV represents a significant risk to susceptible herds in concentrated regions of domestic pig production where PRRSV is endemic.
Collapse
|
38
|
Dee S, Clement T, Schelkopf A, Nerem J, Knudsen D, Christopher-Hennings J, Nelson E. An evaluation of contaminated complete feed as a vehicle for porcine epidemic diarrhea virus infection of naïve pigs following consumption via natural feeding behavior: proof of concept. BMC Vet Res 2014; 10:176. [PMID: 25091641 PMCID: PMC4363994 DOI: 10.1186/s12917-014-0176-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/28/2014] [Indexed: 12/03/2022] Open
Abstract
Background Since its initial detection in May 2013, porcine epidemic diarrhea virus (PEDV) has spread rapidly throughout the US swine industry. Initially, contaminated feed was proposed as a risk factor for PEDV; however, data were not available to support this theory. Here we provide proof of concept of this risk by describing a novel means for recovering PEDV-contaminated complete feed material from commercial swine sites and conducting an in vivo experiment to prove its infectivity. Results For on-farm detection of PEDV RNA in feed, paint rollers were used to collect material from at-risk feed bins from 3 clinically affected breeding herds. This material was tested by PCR and determined to be positive for PEDV-RNA (Ct = 19.50-22.20 range). To test infectivity, this material was pooled (Ct = 20.65) and a Treatment group of 3-week old PEDV-naïve piglets were allowed to consume it via natural feeding behavior. For the purpose of a Positive control, piglets were allowed to ingest feed spiked with stock PEDV (Ct = 18.23) while the negative control group received PEDV-free feed. Clinical signs of PEDV infection (vomiting and diarrhea) and viral shedding were observed in both the Positive control and Treatment group’ post-consumption with virus and microscopic lesions detected in intestinal samples No evidence of infection was observed in the Negative controls. Conclusions These data provide proof of concept that contaminated complete feed can serve as a vehicle for PEDV infection of naïve pigs using natural feeding behavior.
Collapse
Affiliation(s)
- Scott Dee
- Pipestone Applied Research, Pipestone Veterinary Services, Pipestone, MN, USA.
| | - Travis Clement
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, USA.
| | - Adam Schelkopf
- Pipestone Applied Research, Pipestone Veterinary Services, Pipestone, MN, USA.
| | - Joel Nerem
- Pipestone Applied Research, Pipestone Veterinary Services, Pipestone, MN, USA.
| | - David Knudsen
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, USA.
| | - Jane Christopher-Hennings
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, USA.
| | - Eric Nelson
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
39
|
Schelkopf A, Nerem J, Cowles B, Amodie D, Swalla R, Dee S. Reproductive, productivity, and mortality outcomes in late-gestation gilts and their litters following simulation of inadvertent exposure to a modified-live vaccine strain of porcine reproductive and respiratory syndrome (PRRS) virus. Vaccine 2014; 32:4639-43. [DOI: 10.1016/j.vaccine.2014.06.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/06/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
40
|
Badaoui B, Rutigliano T, Anselmo A, Vanhee M, Nauwynck H, Giuffra E, Botti S. RNA-sequence analysis of primary alveolar macrophages after in vitro infection with porcine reproductive and respiratory syndrome virus strains of differing virulence. PLoS One 2014; 9:e91918. [PMID: 24643046 PMCID: PMC3958415 DOI: 10.1371/journal.pone.0091918] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 02/18/2014] [Indexed: 12/03/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) mainly infects porcine alveolar macrophages (PAMs), resulting in porcine reproductive and respiratory syndrome (PRRS) in pigs. Most of the transcriptomic studies on PAMs infected with PRRSV conducted thus far have made use of microarray technology. Here, we investigated the transcriptome of PAMs in vitro at 12 h post-infection with two European PRRSV strains characterized by low (Lelystad, LV) and high (Lena) virulence through RNA-Seq. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation upon infection with the two strains. Gene ontology analysis confirmed that infection of PAMs with both the Lena and LV strains affected signaling pathways directly linked to the innate immune response, including interferon regulatory factors (IRF), RIG1-like receptors, TLRs and PKR pathways. The results confirmed that interferon signaling is crucial for transcriptional regulation during PAM infection. IFN-β1 and IFN-αω, but not IFN-α, were up-regulated following infection with either the LV or Lena strain. The down-regulation of canonical pathways, such as the interplay between the innate and adaptive immune responses, cell death and TLR3/TLR7 signaling, was observed for both strains, but Lena triggered a stronger down-regulation than LV. This analysis contributes to a better understanding of the interactions between PRRSV and PAMs and outlines the differences in the responses of PAMs to strains with different levels of virulence, which may lead to the development of new PRRSV control strategies.
Collapse
Affiliation(s)
- Bouabid Badaoui
- Parco Tecnologico Padano, Via Einstein, Lodi, Italy
- * E-mail:
| | | | - Anna Anselmo
- Parco Tecnologico Padano, Via Einstein, Lodi, Italy
| | - Merijn Vanhee
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Sara Botti
- Parco Tecnologico Padano, Via Einstein, Lodi, Italy
| |
Collapse
|
41
|
Fahrion AS, Beilage EG, Nathues H, Dürr S, Doherr MG. Evaluating perspectives for PRRS virus elimination from pig dense areas with a risk factor based herd index. Prev Vet Med 2014; 114:247-58. [PMID: 24674019 DOI: 10.1016/j.prevetmed.2014.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 02/03/2014] [Accepted: 03/01/2014] [Indexed: 11/30/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is wide-spread in pig populations globally. In many regions of Europe with intensive pig production and high herd densities, the virus is endemic and can cause disease and production losses. This fuels discussion about the feasibility and sustainability of virus elimination from larger geographic regions. The implementation of a program aiming at virus elimination for areas with high pig density is unprecedented and its potential success is unknown. The objective of this work was to approach pig population data with a simple method that could support assessing the feasibility of a sustainable regional PRRSV elimination. Based on known risk factors such as pig herd structure and neighborhood conditions, an index characterizing individual herds' potential for endemic virus circulation and reinfection was designed. This index was subsequently used to compare data of all pig herds in two regions with different pig- and herd-densities in Lower Saxony (North-West Germany) where PRRSV is endemic. Distribution of the indexed herds was displayed using GIS. Clusters of high herd index densities forming potential risk hot spots were identified which could represent key target areas for surveillance and biosecurity measures under a control program aimed at virus elimination. In an additional step, for the study region with the higher pig density (2463 pigs/km(2) farmland), the potential distribution of PRRSV-free and non-free herds during the implementation of a national control program aiming at national virus elimination was modeled. Complex herd and trade network structures suggest that PRRSV elimination in regions with intensive pig farming like that of middle Europe would have to involve legal regulation and be accompanied by important trade and animal movement restrictions. The proposed methodology of risk index mapping could be adapted to areas varying in size, herd structure and density. Interpreted in the regional context, this could help to classify the density of risk and to accordingly target resources and measures for elimination.
Collapse
Affiliation(s)
- A S Fahrion
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Switzerland.
| | - E grosse Beilage
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Büscheler Strasse 9, 49456 Bakum, Germany.
| | - H Nathues
- Clinic for Swine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| | - S Dürr
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Switzerland.
| | - M G Doherr
- Institute for Veterinary Epidemiology and Biostatistics, Department of Veterinary Medicine at the Freie Universität, Berlin, Germany.
| |
Collapse
|
42
|
Yun SI, Lee YM. Overview: Replication of porcine reproductive and respiratory syndrome virus. J Microbiol 2013; 51:711-23. [PMID: 24385346 PMCID: PMC7091224 DOI: 10.1007/s12275-013-3431-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/07/2013] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus that causes significant losses in the pig industry, is one of the most important animal pathogens of global significance. Since the discovery of the virus, significant progress has been made in understanding its epidemiology and transmission, but no adequate control measures are yet available to eliminate infection with this pathogen. The genome replication of PRRSV is required to reproduce, within a few hours of infection, the millions of progeny virions that establish, disseminate, and maintain infection. Replication of the viral RNA genome is a multistep process involving a replication complex that is formed not only from components of viral and cellular origin but also from the viral genomic RNA template; this replication complex is embedded within particular virus-induced membrane vesicles. PRRSV RNA replication is directed by at least 14 replicase proteins that have both common enzymatic activities, including viral RNA polymerase, and also unusual and poorly understood RNA-processing functions. In this review, we summarize our current understanding of PRRSV replication, which is important for developing a successful strategy for the prevention and control of this pathogen.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322-4815 USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322-4815 USA
| |
Collapse
|
43
|
Alonso C, Davies PR, Polson DD, Dee SA, Lazarus WF. Financial implications of installing air filtration systems to prevent PRRSV infection in large sow herds. Prev Vet Med 2013; 111:268-77. [DOI: 10.1016/j.prevetmed.2013.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 12/01/2022]
|
44
|
Epidemiological study of air filtration systems for preventing PRRSV infection in large sow herds. Prev Vet Med 2013; 112:109-17. [PMID: 23870693 DOI: 10.1016/j.prevetmed.2013.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 04/29/2013] [Accepted: 06/02/2013] [Indexed: 01/21/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the most economically significant pathogen in the US swine industry. Aerosol transmission among herds is a major concern in pig dense regions and filtration of incoming air, in combination with standard biosecurity procedures, has been demonstrated to prevent transmission of PRRSV into susceptible herds. To quantify the impact of air filtration on reducing risk of PRRSV outbreaks, we compared the incidence rate of new PRRSV introductions in 20 filtered and 17 non-filtered control sow herds in a swine dense region of North America during a 7 year study period. Events of novel virus introduction were ascertained by phylogenetic analysis of PRRSV ORF5 gene sequences. Putative new viruses were defined as exogenous (introduced) based on ORF5 nucleotide sequence differences compared to previous farm isolates. The influence of sequence difference cut-off values ranging from 2 to 10% on case definition and relative risk were evaluated. Non-filtered farms incurred about 0.5 outbreaks per year, with a seasonal increase in risk in cooler periods. Baseline risk, prior to filtration, in treatment farms was approximately 0.75 per year, approximately 50% higher than in control farms. Air filtration significantly reduced risk of PRRSV introduction events to 0.06-0.22 outbreaks per year, depending on the cut-off values used to classify a virus isolate as new to the herd. Overall, air filtration led to an approximately 80% reduction in risk of introduction of novel PRRSV, indicating that on large sow farms with good biosecurity in swine-dense regions, approximately four-fifths of PRRSV outbreaks may be attributable to aerosol transmission.
Collapse
|
45
|
Corzo CA, Romagosa A, Dee S, Gramer M, Morrison RB, Torremorell M. Relationship between airborne detection of influenza A virus and the number of infected pigs. Vet J 2013; 196:171-5. [PMID: 23164957 PMCID: PMC3582798 DOI: 10.1016/j.tvjl.2012.09.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 09/06/2012] [Accepted: 09/25/2012] [Indexed: 11/29/2022]
Abstract
Influenza A virus infects a wide range of species including both birds and mammals (including humans). One of the key routes by which the virus can infect populations of animals is by aerosol transmission. This study explored the relationship between number of infected pigs and the probability of detecting influenza virus RNA in bioaerosols through the course of an acute infection. Bioaerosols were collected using a cyclonic collector in two groups of 7 week-old pigs that were experimentally infected by exposure with a contact infected pig (seeder pig). After contact exposure, individual pig nasal swab samples were collected daily and air samples were collected three times per day for 8 days. All samples were tested for influenza by real-time reverse transcriptase (RRT)-PCR targeting the influenza virus matrix gene. All pigs' nasal swabs became influenza virus RRT-PCR positive upon exposure to the infected seeder pig. Airborne influenza was detected in 28/43 (65%) air samples. The temporal dynamics of influenza virus detection in air samples was in close agreement with the nasal shedding pattern in the infected pigs. First detection of positive bioaerosols happened at 1 day post contact (DPC). Positive bioaerosols were consistently detected between 3 and 6 DPC, a time when most pigs were also shedding virus in nasal secretions. Overall, the odds of detecting a positive air sample increased 2.2 times for every additional nasal swab positive pig in the group. In summary, there was a strong relationship between the number of pigs shedding influenza virus in nasal secretions and the generation of bioaerosols during the course of an acute infection.
Collapse
Affiliation(s)
- Cesar A. Corzo
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Anna Romagosa
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Scott Dee
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Marie Gramer
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Robert B Morrison
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
46
|
Badaoui B, Tuggle CK, Hu Z, Reecy JM, Ait-Ali T, Anselmo A, Botti S. Pig immune response to general stimulus and to porcine reproductive and respiratory syndrome virus infection: a meta-analysis approach. BMC Genomics 2013; 14:220. [PMID: 23552196 PMCID: PMC3623894 DOI: 10.1186/1471-2164-14-220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 03/22/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The availability of gene expression data that corresponds to pig immune response challenges provides compelling material for the understanding of the host immune system. Meta-analysis offers the opportunity to confirm and expand our knowledge by combining and studying at one time a vast set of independent studies creating large datasets with increased statistical power. In this study, we performed two meta-analyses of porcine transcriptomic data: i) scrutinized the global immune response to different challenges, and ii) determined the specific response to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection. To gain an in-depth knowledge of the pig response to PRRSV infection, we used an original approach comparing and eliminating the common genes from both meta-analyses in order to identify genes and pathways specifically involved in the PRRSV immune response. The software Pointillist was used to cope with the highly disparate data, circumventing the biases generated by the specific responses linked to single studies. Next, we used the Ingenuity Pathways Analysis (IPA) software to survey the canonical pathways, biological functions and transcription factors found to be significantly involved in the pig immune response. We used 779 chips corresponding to 29 datasets for the pig global immune response and 279 chips obtained from 6 datasets for the pig response to PRRSV infection, respectively. RESULTS The pig global immune response analysis showed interconnected canonical pathways involved in the regulation of translation and mitochondrial energy metabolism. Biological functions revealed in this meta-analysis were centred around translation regulation, which included protein synthesis, RNA-post transcriptional gene expression and cellular growth and proliferation. Furthermore, the oxidative phosphorylation and mitochondria dysfunctions, associated with stress signalling, were highly regulated. Transcription factors such as MYCN, MYC and NFE2L2 were found in this analysis to be potentially involved in the regulation of the immune response. The host specific response to PRRSV infection engendered the activation of well-defined canonical pathways in response to pathogen challenge such as TREM1, toll-like receptor and hyper-cytokinemia/ hyper-chemokinemia signalling. Furthermore, this analysis brought forth the central role of the crosstalk between innate and adaptive immune response and the regulation of anti-inflammatory response. The most significant transcription factor potentially involved in this analysis was HMGB1, which is required for the innate recognition of viral nucleic acids. Other transcription factors like interferon regulatory factors IRF1, IRF3, IRF5 and IRF8 were also involved in the pig specific response to PRRSV infection. CONCLUSIONS This work reveals key genes, canonical pathways and biological functions involved in the pig global immune response to diverse challenges, including PRRSV infection. The powerful statistical approach led us to consolidate previous findings as well as to gain new insights into the pig immune response either to common stimuli or specifically to PRRSV infection.
Collapse
Affiliation(s)
- Bouabid Badaoui
- Parco Tecnologico Padano - CERSA, Via Einstein, Lodi, 26900, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Alonso C, Otake S, Davies P, Dee S. An evaluation of interventions for reducing the risk of PRRSV introduction to filtered farms via retrograde air movement through idle fans. Vet Microbiol 2012; 157:304-10. [DOI: 10.1016/j.vetmic.2012.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/22/2011] [Accepted: 01/10/2012] [Indexed: 11/30/2022]
|
48
|
Evaluation of the long-term effect of air filtration on the occurrence of new PRRSV infections in large breeding herds in swine-dense regions. Viruses 2012; 4:654-62. [PMID: 22754642 PMCID: PMC3386623 DOI: 10.3390/v4050654] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/21/2012] [Accepted: 04/24/2012] [Indexed: 11/17/2022] Open
Abstract
Airborne transmission of porcine reproductive and respiratory syndrome virus (PRRSV) is a risk factor for the infection of susceptible populations. Therefore, a long‑term sustainability study of air filtration as a means to reduce this risk was conducted. Participating herds (n = 38) were organized into 4 independent cohorts and the effect of air filtration on the occurrence of new PRRSV infections was analyzed at 3 different levels from September 2008 to January 2012 including the likelihood of infection in contemporary filtered and non-filtered herds, the likelihood of infection before and after implementation of filtration and the time to failure in filtered and non-filtered herds. Results indicated that new PRRSV infections in filtered breeding herds were significantly lower than in contemporary non-filtered control herds (P < 0.01), the odds for a new PRRSV infection in breeding herds before filtration was 7.97 times higher than the odds after filtration was initiated (P < 0.01) and the median time to new PRRSV infections in filtered breeding herds of 30 months was significantly longer than the 11 months observed in non-filtered herds (P < 0.01). In conclusion, across all 3 levels of analysis, the long-term effect of air filtration on reducing the occurrence of new PRRSV infections in the study population was demonstrated.
Collapse
|
49
|
Linhares DCL, Cano JP, Wetzell T, Nerem J, Torremorell M, Dee SA. Effect of modified-live porcine reproductive and respiratory syndrome virus (PRRSv) vaccine on the shedding of wild-type virus from an infected population of growing pigs. Vaccine 2011; 30:407-13. [PMID: 22063389 DOI: 10.1016/j.vaccine.2011.10.075] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/07/2011] [Accepted: 10/27/2011] [Indexed: 11/15/2022]
Abstract
There are ongoing efforts to eliminate porcine reproductive and respiratory syndrome virus (PRRSv) from regions in the United States swine industry. However, an important challenge for the accomplishment of those efforts is the re-infection of pig units due to the area spread of PRRSv. The objective of this study was to evaluate the effect of PRRS modified-live virus vaccine (MLV) on viral shedding and on dynamics of PRRSv infection in pig populations raised under commercial conditions. The study composed of two rooms of 1000 pigs each. Ten percent of pigs of each room were inoculated with a field isolate of PRRSv. Rooms had separate air spaces and strict scientifically validated biosecurity protocols were adopted to avoid movement of pathogens between rooms. At 8 and 36 dpi (days post inoculation), all pigs of the challenge-vaccine group were inoculated with a MLV vaccine. Pigs of the challenge-control group were placebo-inoculated. Blood and oral fluid samples were collected from each room at 0, 8, 36, 70, 96 and 118 dpi for PRRSv RNA detection using PCR. PRRSv-antibodies were also screened from blood serum samples with a commercially available ELISA test. Additionally, tonsil scraping samples were collected from both groups at 70, 96 and 118 dpi. Moreover, air samples were collected 6 times per week from 0 to 118 dpi and were tested for PRRSv RNA using qPCR assay. There was no difference in the PRRSv infection dynamics measured as duration and magnitude of viremia and seroconversion. Also, there was no difference in the frequency of tonsil scraping samples PRRSv-positive by PCR. However, the challenge-vaccine group had significantly less PRRSv shed compared to the challenge-control group. The challenge-vaccine group had significant less PRRSv-positive oral fluids at 36 dpi. Moreover, the challenge-vaccine group had significant reduction in the cumulative PRRSv shed in the air.
Collapse
Affiliation(s)
- Daniel C L Linhares
- Swine Disease Eradication Center, University of Minnesota, College of Veterinary Medicine, 385C Animal Science Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
50
|
Rochon K, Baker RB, Almond GW, Watson DW. Assessment of Stomoxys calcitrans (Diptera: Muscidae) as a vector of porcine reproductive and respiratory syndrome virus. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:876-883. [PMID: 21845948 DOI: 10.1603/me10014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Porcine Reproductive and respiratory syndrome (PRRS) is a globally significant swine disease caused by an arterivirus. The virus replicates in alveolar macrophages of infected pigs, resulting in pneumonia in growing pigs and late-term abortions in sows. Outbreaks occur on disparate farms within an area despite biosecurity measures, suggesting mechanical transport by arthropods. We investigated the vector potential of stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae), in the transmission of porcine reproductive and respiratory syndrome virus (family Arteriviridae, genus Arterivirus, PRRSV) under laboratory conditions. Stable flies were collected around PRRS-negative boar stud barns in North Carolina and tested for presence of the virus. Stable flies were collected on alsynite traps placed near the exhaust fan of the close-sided tunnel-ventilated buildings, suggesting blood seeking flies are attracted by olfactory cues. No flies were positive for PRRSV. We assessed transmission of the virus through an infective bite by feeding laboratory reared stable flies on blood containing virus and transferring them to naive pigs for subsequent bloodmeals. Transmission of the virus to naive pigs by infective bites failed in all attempts. The volume of blood contained within the closed mouthparts of the stable fly seems to be insufficient to deliver an infective dose of the virus. Stable flies are unlikely to transmit PRRSV from one pig to another while blood feeding. The fate of the virus after a bloodmeal remains to be determined.
Collapse
Affiliation(s)
- K Rochon
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, P.O. Box 3000, Lethbridge, AB T1J 4B1, Canada
| | | | | | | |
Collapse
|