1
|
Fang Z, Yu P, Zhu W. Development of mRNA rabies vaccines. Hum Vaccin Immunother 2024; 20:2382499. [PMID: 39069645 PMCID: PMC11290775 DOI: 10.1080/21645515.2024.2382499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Rabies, primarily transmitted to humans by dogs (accounting for 99% of cases). Once rabies occurs, its mortality rate is approximately 100%. Post-exposure prophylaxis (PEP) is critical for preventing the onset of rabies after exposure to rabid animals, and vaccination is a pivotal element of PEP. However, high costs and complex immunization protocols have led to poor adherence to rabies vaccinations. Consequently, there is an urgent need to develop new rabies vaccines that are safe, highly immunogenic, and cost-effective to improve compliance and effectively prevent rabies. In recent years, mRNA vaccines have made significant progress in the structural modification and optimization of delivery systems. Various mRNA vaccines are currently undergoing clinical trials, positioning them as viable alternatives to the traditional rabies vaccines. In this article, we discuss a novel mRNA rabies vaccine currently undergoing clinical and preclinical testing, and evaluate its potential to replace existing vaccines.
Collapse
Affiliation(s)
- Zixin Fang
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Biosafety, National Health Commission, Beijing, People’s Republic of China
| | - Pengcheng Yu
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Biosafety, National Health Commission, Beijing, People’s Republic of China
| | - Wuyang Zhu
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Biosafety, National Health Commission, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Wang B, Shen B, Xiang W, Shen H. Advances in the study of LNPs for mRNA delivery and clinical applications. Virus Genes 2024:10.1007/s11262-024-02102-6. [PMID: 39172354 DOI: 10.1007/s11262-024-02102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Messenger ribonucleic acid (mRNA) was discovered in 1961 as an intermediary for transferring genetic information from DNA to ribosomes for protein synthesis. The COVID-19 pandemic brought worldwide attention to mRNA vaccines. The emergency use authorization of two COVID-19 mRNA vaccines, BNT162b2 and mRNA-1273, were major achievements in the history of vaccine development. Lipid nanoparticles (LNPs), one of the most superior non-viral delivery vectors available, have made many exciting advances in clinical translation as part of the COVID-19 vaccine and therefore has the potential to accelerate the clinical translation of many gene drugs. In addition, due to these small size, biocompatibility and excellent biodegradability, LNPs can efficiently deliver nucleic acids into cells, which is particularly important for current mRNA therapeutic regimens. LNPs are composed cationic or pH-dependent ionizable lipid bilayer, polyethylene glycol (PEG), phospholipids, and cholesterol, represents an advanced system for the delivery of mRNA vaccines. Furthermore, optimization of these four components constituting the LNPs have demonstrated enhanced vaccine efficacy and diminished adverse effects. The incorporation of biodegradable lipids enhance the biocompatibility of LNPs, thereby improving its potential as an efficacious therapeutic approach for a wide range of challenging and intricate diseases, encompassing infectious diseases, liver disorders, cancer, cardiovascular diseases, cerebrovascular conditions, among others. Consequently, this review aims to furnish the scientific community with the most up-to-date information regarding mRNA vaccines and LNP delivery systems.
Collapse
Affiliation(s)
- Bili Wang
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Biao Shen
- Hangzhou Cybernax Biotechnology Co. Ltd, Hangzhou, 311202, China
| | - Wenqing Xiang
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Hongqiang Shen
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
3
|
Liu Y, Li Y, Hu Q. Advances in saRNA Vaccine Research against Emerging/Re-Emerging Viruses. Vaccines (Basel) 2023; 11:1142. [PMID: 37514957 PMCID: PMC10383046 DOI: 10.3390/vaccines11071142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Although conventional vaccine approaches have proven to be successful in preventing infectious diseases in past decades, for vaccine development against emerging/re-emerging viruses, one of the main challenges is rapid response in terms of design and manufacture. mRNA vaccines can be designed and produced within days, representing a powerful approach for developing vaccines. Furthermore, mRNA vaccines can be scaled up and may not have the risk of integration. mRNA vaccines are roughly divided into non-replicating mRNA vaccines and self-amplifying RNA (saRNA) vaccines. In this review, we provide an overview of saRNA vaccines, and discuss future directions and challenges in advancing this promising vaccine platform to combat emerging/re-emerging viruses.
Collapse
Affiliation(s)
- Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| |
Collapse
|
4
|
Yan J, Ou BS, Saouaf OM, Meany EL, Eckman N, Appel EA. A regimen compression strategy for commercial vaccines leveraging an injectable hydrogel depot technology for sustained vaccine exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.534005. [PMID: 36993717 PMCID: PMC10055424 DOI: 10.1101/2023.03.23.534005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Equitable global access to vaccines requires we overcome challenges associated with complex immunization schedules and their associated economic burdens that hinder delivery in under resourced environments. The rabies vaccine, for example, requires multiple immunizations for effective protection and each dose is cost prohibitive, and therefore inaccessibility disproportionately impacts low- and middle-income countries. In this work we developed an injectable hydrogel depot technology for sustained delivery of commercial inactivated rabies virus vaccines. In a mouse model, we showed that a single immunization of a hydrogel-based rabies vaccine elicited comparable antibody titers to a standard prime-boost bolus regimen of a commercial rabies vaccine, despite these hydrogel vaccines comprising only half of the total dose delivered in the bolus control. Moreover, these hydrogel-based vaccines elicited similar antigen-specific T-cell responses and neutralizing antibody responses compared to the bolus vaccine. Notably, we demonstrated that while addition of a potent clinical TLR4 agonist adjuvant to the gels slightly improved binding antibody responses, inclusion of this adjuvant to the inactivated virion vaccine was detrimental to neutralizing responses. Taken together, these results suggest that these hydrogels can enable an effective regimen compression and dosesparing strategy for improving global access to vaccines.
Collapse
|
5
|
Lundstrom K. Application of DNA Replicons in Gene Therapy and Vaccine Development. Pharmaceutics 2023; 15:pharmaceutics15030947. [PMID: 36986808 PMCID: PMC10054396 DOI: 10.3390/pharmaceutics15030947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
DNA-based gene therapy and vaccine development has received plenty of attention lately. DNA replicons based on self-replicating RNA viruses such as alphaviruses and flaviviruses have been of particular interest due to the amplification of RNA transcripts leading to enhanced transgene expression in transfected host cells. Moreover, significantly reduced doses of DNA replicons compared to conventional DNA plasmids can elicit equivalent immune responses. DNA replicons have been evaluated in preclinical animal models for cancer immunotherapy and for vaccines against infectious diseases and various cancers. Strong immune responses and tumor regression have been obtained in rodent tumor models. Immunization with DNA replicons has provided robust immune responses and protection against challenges with pathogens and tumor cells. DNA replicon-based COVID-19 vaccines have shown positive results in preclinical animal models.
Collapse
|
6
|
Yang L, Gong L, Wang P, Zhao X, Zhao F, Zhang Z, Li Y, Huang W. Recent Advances in Lipid Nanoparticles for Delivery of mRNA. Pharmaceutics 2022; 14:2682. [PMID: 36559175 PMCID: PMC9787894 DOI: 10.3390/pharmaceutics14122682] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Messenger RNA (mRNA), which is composed of ribonucleotides that carry genetic information and direct protein synthesis, is transcribed from a strand of DNA as a template. On this basis, mRNA technology can take advantage of the body's own translation system to express proteins with multiple functions for the treatment of various diseases. Due to the advancement of mRNA synthesis and purification, modification and sequence optimization technologies, and the emerging lipid nanomaterials and other delivery systems, mRNA therapeutic regimens are becoming clinically feasible and exhibit significant reliability in mRNA stability, translation efficiency, and controlled immunogenicity. Lipid nanoparticles (LNPs), currently the leading non-viral delivery vehicles, have made many exciting advances in clinical translation as part of the COVID-19 vaccines and therefore have the potential to accelerate the clinical translation of gene drugs. Additionally, due to their small size, biocompatibility, and biodegradability, LNPs can effectively deliver nucleic acids into cells, which is particularly important for the current mRNA regimens. Therefore, the cutting-edge LNP@mRNA regimens hold great promise for cancer vaccines, infectious disease prevention, protein replacement therapy, gene editing, and rare disease treatment. To shed more lights on LNP@mRNA, this paper mainly discusses the rational of choosing LNPs as the non-viral vectors to deliver mRNA, the general rules for mRNA optimization and LNP preparation, and the various parameters affecting the delivery efficiency of LNP@mRNA, and finally summarizes the current research status as well as the current challenges. The latest research progress of LNPs in the treatment of other diseases such as oncological, cardiovascular, and infectious diseases is also given. Finally, the future applications and perspectives for LNP@mRNA are generally introduced.
Collapse
Affiliation(s)
- Lei Yang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinghui Zhao
- Beijing Bio-Bank Co., Ltd., Beijing 100107, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
7
|
Yang L, Tang L, Zhang M, Liu C. Recent Advances in the Molecular Design and Delivery Technology of mRNA for Vaccination Against Infectious Diseases. Front Immunol 2022; 13:896958. [PMID: 35928814 PMCID: PMC9345514 DOI: 10.3389/fimmu.2022.896958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vaccines can prevent many millions of illnesses against infectious diseases and save numerous lives every year. However, traditional vaccines such as inactivated viral and live attenuated vaccines cannot adapt to emerging pandemics due to their time-consuming development. With the global outbreak of the COVID-19 epidemic, the virus continues to evolve and mutate, producing mutants with enhanced transmissibility and virulence; the rapid development of vaccines against such emerging global pandemics becomes more and more critical. In recent years, mRNA vaccines have been of significant interest in combating emerging infectious diseases due to their rapid development and large-scale production advantages. However, their development still suffers from many hurdles such as their safety, cellular delivery, uptake, and response to their manufacturing, logistics, and storage. More efforts are still required to optimize the molecular designs of mRNA molecules with increased protein expression and enhanced structural stability. In addition, a variety of delivery systems are also needed to achieve effective delivery of vaccines. In this review, we highlight the advances in mRNA vaccines against various infectious diseases and discuss the molecular design principles and delivery systems of associated mRNA vaccines. The current state of the clinical application of mRNA vaccine pipelines against various infectious diseases and the challenge, safety, and protective effect of associated vaccines are also discussed.
Collapse
Affiliation(s)
- Lu Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| |
Collapse
|
8
|
Zhang Z, Shen Q, Chang H. Vaccines for COVID-19: A Systematic Review of Immunogenicity, Current Development, and Future Prospects. Front Immunol 2022; 13:843928. [PMID: 35572592 PMCID: PMC9092649 DOI: 10.3389/fimmu.2022.843928] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/21/2022] [Indexed: 01/09/2023] Open
Abstract
The persistent coronavirus disease 2019 (COVID-19), characterized by severe respiratory syndrome, is caused by coronavirus 2 (SARS-CoV-2), and it poses a major threat to public health all over the world. Currently, optimal COVID-19 management involves effective vaccination. Vaccination is known to greatly enhance immune response against viral infections and reduce public transmission of COVID-19. However, although current vaccines offer some benefits, viral variations and other factors demand the continuous development of vaccines to eliminate this virus from host. Hence, vaccine research and development is crucial and urgent to the elimination of this pandemic. Herein, we summarized the structural and replicatory features of SARS-CoV-2, and focused on vaccine-mediated disease prevention strategies like vaccine antigen selection, vaccine research, and vaccine application. We also evaluated the latest literature on COVID-19 and extensively reviewed action mechanisms, clinical trial (CT) progresses, advantages, as well as disadvantages of various vaccine candidates against SARS-CoV-2. Lastly, we discussed the current viral treatment, prevention trends, and future prospects.
Collapse
Affiliation(s)
- Zhan Zhang
- Ministry of Education (MOE) Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Qi Shen
- Ministry of Education (MOE) Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Haocai Chang
- Ministry of Education (MOE) Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
9
|
Abstract
Ensuring the maximum standards of quality and welfare in animal production requires developing effective tools to halt and prevent the spread of the high number of infectious diseases affecting animal husbandry. Many of these diseases are caused by pathogens of viral etiology. To date, one of the best strategies is to implement preventive vaccination policies whenever possible. However, many of the currently manufactured animal vaccines still rely in classical vaccine technologies (killed or attenuated vaccines). Under some circumstances, these vaccines may not be optimal in terms of safety and immunogenicity, nor adequate for widespread application in disease-free countries at risk of disease introduction. One step ahead is needed to improve and adapt vaccine manufacturing to the use of new generation vaccine technologies already tested in experimental settings. In the context of viral diseases of veterinary interest, we overview current vaccine technologies that can be approached, with a brief insight in the type of immunity elicited.
Collapse
Affiliation(s)
- Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Madrid, Spain.
| |
Collapse
|
10
|
Virus-like vesicles based on SFV-containing rabies virus glycoprotein make a safe and efficacious rabies vaccine candidate in a mouse model. J Virol 2021; 95:e0079021. [PMID: 34346765 DOI: 10.1128/jvi.00790-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rabies is a fatal zoonosis causing encephalitis in mammals, and vaccination is the most effective method to control and eliminate rabies. Virus-like vesicles (VLVs), which are characterized as infectious, self-propagating membrane-enveloped particles composed of only Semliki Forest virus (SFV) replicase and vesicular stomatitis virus glycoprotein (VSV-G), have been proven safe and efficient as vaccine candidates. However, previous studies showed that VLVs containing rabies virus glycoprotein (RABV-G) grew at relatively low titers in cells, impeding their potential use as a rabies vaccine. In this study, we constructed novel VLVs by transfection of a mutant SFV RNA replicon encoding RABV-G. We found these VLVs could self-propagate efficiently in cell culture and could evolve to high titers (approximately 108 FFU/ml) by extensive passaging 25 times in BHK-21 cells. Furthermore, we found that the evolved amino acid change in SFV nsP1 at positions 470 and 482 was critical for this high-titer phenotype. Remarkably, VLVs could induce robust type I IFN expression in BV2 cells and were highly sensitive to IFN-α. We found that direct inoculation of VLVs into the mouse brain caused lesser body weight loss, mortality and neuroinflammation compared with RABV vaccine strain. Finally, it could induce increased generation of germinal centre (GC) B cells, plasma cells (PCs) and virus-neutralizing antibodies (VNAs), as well as provide protection against virulent RABV challenge in immunized mice. This study demonstrated that VLVs containing RABV-G could proliferate in cells and were highly evolvable, revealing the feasibility of developing an economic, safe and efficacious rabies vaccine. IMPORTANCE VLVs have been shown to represent a more versatile and superior vaccine platform. In previous studies, VLVs containing the Semliki Forest Virus replicase (SFV nsP1-4) and rabies virus glycoprotein (RABV-G) grew to relatively low titers in cells. In our study, we not only succeeded in generating VLVs that proliferate in cells and stably express RABV-G, the VLVs that evolved grew to higher titers reaching 108 FFU/ml. We also found that nucleic acid changes at positions 470 and 482 in nsP1 were vital for this high-titer phenotype. Moreover, the VLVs that evolved in our studies were highly attenuated in mice, induced potent immunity and protected mice from lethal RABV infection. Collectively, our study showed that high titers of VLVs containing RABV-G were achieved demonstrating that these VLVs could be an economical, safe, and efficacious rabies vaccine candidate.
Collapse
|
11
|
Ballesteros-Briones MC, Silva-Pilipich N, Herrador-Cañete G, Vanrell L, Smerdou C. A new generation of vaccines based on alphavirus self-amplifying RNA. Curr Opin Virol 2020; 44:145-153. [PMID: 32898764 PMCID: PMC7474593 DOI: 10.1016/j.coviro.2020.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 12/29/2022]
Abstract
Alphavirus self-amplifiying RNA (saRNA) induces more potent immune responses than conventional mRNA. saRNA delivery can be enhanced by electroporation or conjugation with cationic lipid or polymers. saRNA vaccines induce protective responses against human pathogens in preclinical models. saRNA replication mediates innate immune signals that contribute to the strength of immune responses. saRNA vaccines could be generated in a quick way to face emergent pathogens like SARS-CoV-2.
DNA or mRNA vaccines have potential advantages over conventional vaccines since they are easier to manufacture and have higher safety profiles. In particular, self-amplifying RNA (saRNA) derived from alphavirus expression vectors has shown to be very efficient to induce humoral and cellular responses against many antigens in preclinical models, being superior to non-replicating mRNA and DNA. This is mainly due to the fact that saRNA can provide very high expression levels and simultaneously induces strong innate responses, potentiating immunity. saRNA can be administered as viral particles or DNA, but direct delivery as RNA represents a safer and more simple approach. Although saRNA can be delivered as naked RNA, in vivo transfection can be enhanced by electroporation or by complexing it with cationic lipids or polymers. Alphavirus saRNA could have broad application to vaccinate against human pathogens, including emerging ones like SARS-CoV-2, for which clinical trials have been recently initiated.
Collapse
Affiliation(s)
- María Cristina Ballesteros-Briones
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Noelia Silva-Pilipich
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Guillermo Herrador-Cañete
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Lucia Vanrell
- Facultad de ingeniería, Universidad ORT Uruguay, Montevideo, Uruguay.
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.
| |
Collapse
|
12
|
Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: The current state of play. Paediatr Respir Rev 2020; 35:43-49. [PMID: 32653463 PMCID: PMC7301825 DOI: 10.1016/j.prrv.2020.06.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 01/08/2023]
Abstract
There is a strong consensus globally that a COVID-19 vaccine is likely the most effective approach to sustainably controlling the COVID-19 pandemic. An unprecedented research effort and global coordination has resulted in a rapid development of vaccine candidates and initiation of trials. Here, we review vaccine types, and progress with 10 vaccine candidates against SARS-CoV-2 - the virus that causes COVID-19 - currently undergoing early phase human trials. We also consider the many challenges of developing and deploying a new vaccine on a global scale, and recommend caution with respect to our expectations of the timeline that may be ahead.
Collapse
Affiliation(s)
- Archana Koirala
- National Centre for Immunisation Research and Surveillance, Westmead, NSW, Australia; Department of Infectious Diseases, Nepean Hospital, Penrith, NSW, Australia.
| | - Ye Jin Joo
- National Centre for Immunisation Research and Surveillance, Westmead, NSW, Australia.
| | - Ameneh Khatami
- Sydney Medical School, The University of Sydney, NSW, Australia; Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, NSW, Australia.
| | - Clayton Chiu
- National Centre for Immunisation Research and Surveillance, Westmead, NSW, Australia; Sydney Medical School, The University of Sydney, NSW, Australia.
| | - Philip N Britton
- Sydney Medical School, The University of Sydney, NSW, Australia; Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, NSW, Australia.
| |
Collapse
|
13
|
Hromic-Jahjefendic A, Lundstrom K. Viral Vector-Based Melanoma Gene Therapy. Biomedicines 2020; 8:E60. [PMID: 32187995 PMCID: PMC7148454 DOI: 10.3390/biomedicines8030060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Gene therapy applications of oncolytic viruses represent an attractive alternative for cancer treatment. A broad range of oncolytic viruses, including adenoviruses, adeno-associated viruses, alphaviruses, herpes simplex viruses, retroviruses, lentiviruses, rhabdoviruses, reoviruses, measles virus, Newcastle disease virus, picornaviruses and poxviruses, have been used in diverse preclinical and clinical studies for the treatment of various diseases, including colon, head-and-neck, prostate and breast cancer as well as squamous cell carcinoma and glioma. The majority of studies have focused on immunotherapy and several drugs based on viral vectors have been approved. However, gene therapy for malignant melanoma based on viral vectors has not been utilized to its full potential yet. This review represents a summary of the achievements of preclinical and clinical studies using viral vectors, with the focus on malignant melanoma.
Collapse
Affiliation(s)
- Altijana Hromic-Jahjefendic
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | | |
Collapse
|
14
|
Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA Vaccines for Infectious Diseases. Front Immunol 2019; 10:594. [PMID: 30972078 PMCID: PMC6446947 DOI: 10.3389/fimmu.2019.00594] [Citation(s) in RCA: 404] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
During the last two decades, there has been broad interest in RNA-based technologies for the development of prophylactic and therapeutic vaccines. Preclinical and clinical trials have shown that mRNA vaccines provide a safe and long-lasting immune response in animal models and humans. In this review, we summarize current research progress on mRNA vaccines, which have the potential to be quick-manufactured and to become powerful tools against infectious disease and we highlight the bright future of their design and applications.
Collapse
Affiliation(s)
- Cuiling Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | | | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Junwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
15
|
Lundstrom K. Plasmid DNA-based Alphavirus Vaccines. Vaccines (Basel) 2019; 7:vaccines7010029. [PMID: 30857255 PMCID: PMC6466081 DOI: 10.3390/vaccines7010029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
Alphaviruses have been engineered as vectors for high-level transgene expression. Originally, alphavirus-based vectors were applied as recombinant replication-deficient particles, subjected to expression studies in mammalian and non-mammalian cell lines, primary cell cultures, and in vivo. However, vector engineering has expanded the application range to plasmid DNA-based delivery and expression. Immunization studies with DNA-based alphavirus vectors have demonstrated tumor regression and protection against challenges with infectious agents and tumor cells in animal tumor models. The presence of the RNA replicon genes responsible for extensive RNA replication in the RNA/DNA layered alphavirus vectors provides superior transgene expression in comparison to conventional plasmid DNA-based expression. Immunization with alphavirus DNA vectors revealed that 1000-fold less DNA was required to elicit similar immune responses compared to conventional plasmid DNA. In addition to DNA-based delivery, immunization with recombinant alphavirus particles and RNA replicons has demonstrated efficacy in providing protection against lethal challenges by infectious agents and tumor cells.
Collapse
|
16
|
Stitz L, Vogel A, Schnee M, Voss D, Rauch S, Mutzke T, Ketterer T, Kramps T, Petsch B. A thermostable messenger RNA based vaccine against rabies. PLoS Negl Trop Dis 2017; 11:e0006108. [PMID: 29216187 PMCID: PMC5737050 DOI: 10.1371/journal.pntd.0006108] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/19/2017] [Accepted: 11/12/2017] [Indexed: 11/19/2022] Open
Abstract
Although effective rabies virus vaccines have been existing for decades, each year, rabies virus infections still cause around 50.000 fatalities worldwide. Most of these cases occur in developing countries, where these vaccines are not available. The reasons for this are the prohibitive high costs of cell culture or egg grown rabies virus vaccines and the lack of a functional cold chain in many regions in which rabies virus is endemic. Here, we describe the excellent temperature resistance of a non-replicating mRNA based rabies virus vaccine encoding the rabies virus glycoprotein (RABV-G). Prolonged storage of the vaccine from -80°C to up to +70°C for several months did not impact the protective capacity of the mRNA vaccine. Efficacy after storage was demonstrated by the induction of rabies specific virus neutralizing antibodies and protection in mice against lethal rabies infection. Moreover, storing the vaccine at oscillating temperatures between +4° and +56°C for 20 cycles in order to simulate interruptions of the cold chain during vaccine transport, did not affect the vaccine’s immunogenicity and protective characteristics, indicating that maintenance of a cold chain is not essential for this vaccine. Conventional prophylactic vaccines require transport and storage under controlled temperatures in an unbroken cold chain. Therefore, distribution of many vaccines is restricted to areas where the cold chain can be maintained which excludes especially rural areas in many countries from continues vaccine supply. Unfortunately, some diseases that can be prevented by vaccination, like the rabies virus infection, are still endemic in such areas. Therefore, logistic reasons often prevent delivery of life saving vaccines to areas in which they are most needed. Here, we describe an mRNA vaccine encoding the rabies virus glycoprotein (RABV-G) that remains protective in a mouse challenge model upon storage at highly variable temperatures. These results suggest that such a vaccine allows storage outside the cold chain and can therefore reach all areas of the world where rabies virus is endemic. Since mRNA vaccines consist of the same biochemical components, irrespective of the encoded protein, it is reasonable to assume that the thermostability observed for the rabies vaccine is a general characteristic of mRNA based vaccines.
Collapse
Affiliation(s)
- Lothar Stitz
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Annette Vogel
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Rabies is an acute, rapidly progressive encephalitis that is almost always fatal. Prophylaxis is highly effective but economics limits disease control. The mechanism of death from rabies is unclear. It is poorly cytopathic and poorly inflammatory. Rabies behaves like an acquired metabolic disorder. There may be a continuum of disease severity. History of animal bite is rare. The diagnosis is often missed. Intermittent encephalopathy, dysphagia, hydrophobia and aerophobia, and focal paresthesias or myoclonic jerks suggest rabies. Laboratory diagnosis is cumbersome but sensitive. Treatment is controversial but survivors are increasingly reported, with good outcomes in 4 of 8 survivors.
Collapse
Affiliation(s)
- Rodney E Willoughby
- Pediatric Infectious Diseases, Children's Hospital of Wisconsin, C450, PO Box 1997, Milwaukee, WI 53201-1997, USA.
| |
Collapse
|
18
|
Marć MA, Domínguez-Álvarez E, Gamazo C. Nucleic acid vaccination strategies against infectious diseases. Expert Opin Drug Deliv 2015; 12:1851-65. [PMID: 26365499 DOI: 10.1517/17425247.2015.1077559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Gene vaccines are an interesting and emerging alternative for the prevention of infectious diseases, as well as in the treatment of other pathologies including cancer, allergies, autoimmune diseases, or even drug dependencies. When applied to the target organism, these vaccines induce the expression of encoded antigens and elicit the corresponding immune response, with the potential ability of being able to induce antibody-, helper T cell-, and cytotoxic T cell-mediated immune responses. AREAS COVERED Special attention is paid to the variety of adjuvants that may be co-administered to enhance and/or to modulate immune responses, and to the methods of delivery. Finally, this article reviews the efficacy data of gene vaccines against infectious diseases released from current clinical trials. EXPERT OPINION Taken together, this approach will have a major impact on future strategies for the prevention of infectious diseases. Better-designed nucleic acid constructs, novel delivery technologies, as well as the clarification of the mechanisms for antigen presentation will improve the potential applications of this vaccination strategy against microbial pathogens.
Collapse
Affiliation(s)
- Małgorzata Anna Marć
- a 1 Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry , Medyczna 9, PL 30-688 Cracow, Poland
| | - Enrique Domínguez-Álvarez
- b 2 Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs , Medyczna 9, PL 30-688 Cracow, Poland
| | - Carlos Gamazo
- c 3 University of Navarra, Institute of Tropical Health (ISTUN), Department of Microbiology and Parasitology , Irunlarrea 1, 31008 Pamplona, Spain
| |
Collapse
|
19
|
Fontana D, Kratje R, Etcheverrigaray M, Prieto C. Immunogenic virus-like particles continuously expressed in mammalian cells as a veterinary rabies vaccine candidate. Vaccine 2015; 33:4238-46. [PMID: 25869890 DOI: 10.1016/j.vaccine.2015.03.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 03/13/2015] [Accepted: 03/26/2015] [Indexed: 12/25/2022]
Abstract
Rabies is one of the most lethal infectious diseases in the world, with a mortality approaching 100%. There are between 60,000 and 70,000 reported annual deaths, but this is probably an underestimation. Despite the fact that there are vaccines available for rabies, there is a real need of developing more efficacious and cheaper vaccines. This is particularly true for veterinary vaccines because dogs are still the main vector for rabies transmission to human beings. In a previous work, we described the development and characterization of rabies virus-like particles (RV-VLPs) expressed in HEK293 cells. We showed that RV-VLPs are able to induce a specific antibodies response. In this work, we show that VLPs are able to protect mice against virus challenge. Furthermore, we developed a VLPs expressing HEK-293 clone (sP2E5) that grows in serum free medium (SFM) reaching high cell densities. sP2E5 was cultured in perfusion mode in a 5 L bioreactor for 20 days, and the RV-VLPs produced were capable of triggering a protective immune response without the need of concentration or adjuvant addition. Further, these VLPs are able to induce the production of rabies virus neutralizing antibodies. These results demonstrate that RV-VLPs are a promising rabies vaccine candidate.
Collapse
Affiliation(s)
- Diego Fontana
- Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje "El Pozo"-C.C. 242, S3000ZAA Santa Fe, Argentina
| | - Ricardo Kratje
- Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje "El Pozo"-C.C. 242, S3000ZAA Santa Fe, Argentina
| | - Marina Etcheverrigaray
- Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje "El Pozo"-C.C. 242, S3000ZAA Santa Fe, Argentina
| | - Claudio Prieto
- Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje "El Pozo"-C.C. 242, S3000ZAA Santa Fe, Argentina.
| |
Collapse
|
20
|
Self-Amplifying mRNA Vaccines. NONVIRAL VECTORS FOR GENE THERAPY - PHYSICAL METHODS AND MEDICAL TRANSLATION 2015; 89:179-233. [DOI: 10.1016/bs.adgen.2014.10.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Wu Q, Yu F, Xu J, Li Y, Chen H, Xiao S, Fu ZF, Fang L. Rabies-virus-glycoprotein-pseudotyped recombinant baculovirus vaccine confers complete protection against lethal rabies virus challenge in a mouse model. Vet Microbiol 2014; 171:93-101. [DOI: 10.1016/j.vetmic.2014.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 11/28/2022]
|
22
|
Geall AJ, Mandl CW, Ulmer JB. RNA: the new revolution in nucleic acid vaccines. Semin Immunol 2013; 25:152-9. [PMID: 23735226 DOI: 10.1016/j.smim.2013.05.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/29/2013] [Accepted: 05/03/2013] [Indexed: 01/02/2023]
Abstract
Nucleic acid vaccines have the potential to address issues of safety and effectiveness sometimes associated with vaccines based on live attenuated viruses and recombinant viral vectors. In addition, methods to manufacture nucleic acid vaccines are suitable as generic platforms and for rapid response, both of which will be very important for addressing newly emerging pathogens in a timely fashion. Plasmid DNA is the more widely studied form of nucleic acid vaccine and proof of principle in humans has been demonstrated, although no licensed human products have yet emerged. The RNA vaccine approach, based on mRNA and engineered RNA replicons derived from certain RNA viruses, is gaining increased attention and several vaccines are under investigation for infectious diseases, cancer and allergy. Human clinical trials are underway and the prospects for success are bright.
Collapse
Affiliation(s)
- Andrew J Geall
- Novartis Vaccines & Diagnostics, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
23
|
Semliki Forest virus biodistribution in tumor-free and 4T1 mammary tumor-bearing mice: a comparison of transgene delivery by recombinant virus particles and naked RNA replicon. Cancer Gene Ther 2012; 19:579-87. [PMID: 22722377 DOI: 10.1038/cgt.2012.37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Semliki Forest virus (SFV) vectors are promising tools for cancer gene therapy because they ensure a high level of transgene expression and a rapid and strong cytopathic effect. However, broad tissue tropism and transient expression make it more difficult to develop an optimal cancer treatment strategy. In this study, we have compared the distribution of recombinant SFV particles (recSFV) and naked viral RNA replicon (recRNA) in tumor-free and 4T1 mammary tumor-bearing mice as a consequence of different vector administration strategies. The high potential of SFV recRNA as a biosafe approach for the development of therapeutic treatment was demonstrated. Intravenous (i.v.) inoculation of recRNA provided primary brain targeting in both tumor-free and 4T1 tumor mouse models, but local intratumoral inoculation revealed a high expression level in tumors. Moreover, we observed the predominant tumor targeting of recSFV at a reduced viral dose on i.v. and intraperitoneal (i.p.) virus inoculation, whereas the dose increase led to a broad virus distribution in mice. To prolong transgene expression, we have tested several i.v. and i.p. reinoculation strategies. A detailed evaluation of vector distribution and readministration properties could have an impact on cancer gene therapy clinical trial safety and efficacy.
Collapse
|
24
|
Abstract
Rabies, the most fatal of all infectious diseases, remains a major public health problem in developing countries, claiming the lives of an estimated 55,000 people each year. Most fatal rabies cases, with more than half of them in children, result from dog bites and occur among low-income families in Southeast Asia and Africa. Safe and efficacious vaccines are available to prevent rabies. However, they have to be given repeatedly, three times for pre-exposure vaccination and four to five times for post-exposure prophylaxis (PEP). In cases of severe exposure, a regimen of vaccine combined with a rabies immunoglobulin (RIG) preparation is required. The high incidence of fatal rabies is linked to a lack of knowledge on the appropriate treatment of bite wounds, lack of access to costly PEP, and failure to follow up with repeat immunizations. New, more immunogenic but less costly rabies virus vaccines are needed to reduce the toll of rabies on human lives. A preventative vaccine used for the immunization of children, especially those in high incidence countries, would be expected to lower fatality rates. Such a vaccine would have to be inexpensive, safe, and provide sustained protection, preferably after a single dose. Novel regimens are also needed for PEP to reduce the need for the already scarce and costly RIG and to reduce the number of vaccine doses to one or two. In this review, the pipeline of new rabies vaccines that are in pre-clinical testing is provided and an opinion on those that might be best suited as potential replacements for the currently used vaccines is offered.
Collapse
Affiliation(s)
- Hildegund C. J. Ertl
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|