1
|
Geiselhardt F, Peters M, Kleinschmidt S, Chludzinski E, Stoff M, Ludlow M, Beineke A. Neuropathologic and molecular aspects of a canine distemper epizootic in red foxes in Germany. Sci Rep 2022; 12:14691. [PMID: 36038706 PMCID: PMC9424316 DOI: 10.1038/s41598-022-19023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
In the last fifteen years, an epidemic of canine distemper virus (CDV) with marked neurotropism has occurred in Europe after a longer period of endemic transmission. Many wildlife species have been infected, with red foxes (Vulpes vulpes) being particularly affected. Given that this species is assumed to mediate cross-species CDV infections to domestic and wild animals, tissue samples from foxes with confirmed CDV infection in North-Western Germany were investigated to better understand the neurotropic aspects of the disease. This analysis included histopathology, virus distribution and cell tropism, phenotyping of inflammatory responses and determination of the genotype of the viruses based on the phylogeny of the hemagglutinin (H) gene. The predominant lesion type is gliosis in both gray and white matter areas associated with an accumulation of Iba1+ macrophages/microglia and upregulation of major histocompatibility complex class II molecules in the brain, while sequestration of CD3+ T and Pax5+ B cell in CDV-infected foxes is limited. Demyelination is found in few foxes, characterized by reduced myelin staining with loss of CNPase+ oligodendrocytes in the cerebellar white matter and brainstem. In addition, axonal damage, characterized by β-amyloid precursor protein expression, is found mainly in these brain regions. In situ hybridization reveals a primary infection of the cerebral and cerebellar gray matter and brain stem. Iba1+ cells and NeuN+ neurons represent the main CDV targets. Sequencing of the CDV H open reading frame from fox tissues reveals that the virus strains belongs to three different sub-lineages of the Europe-1/South America-1 genotype, suggesting independent transmission lines.
Collapse
Affiliation(s)
- Franziska Geiselhardt
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Martin Peters
- Chemisches und Veterinäruntersuchungsamt (CVUA) Westfalen, Arnsberg, Germany
| | - Sven Kleinschmidt
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food- and Veterinary Institute Braunschweig/Hannover, Brunswick, Germany
| | - Elisa Chludzinski
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.
| |
Collapse
|
2
|
van den Brand JMA, Wohlsein P, Herfst S, Bodewes R, Pfankuche VM, van de Bildt MWG, Seehusen F, Puff C, Richard M, Siebert U, Lehnert K, Bestebroer T, Lexmond P, Fouchier RAM, Prenger-Berninghoff E, Herbst W, Koopmans M, Osterhaus ADME, Kuiken T, Baumgärtner W. Influenza A (H10N7) Virus Causes Respiratory Tract Disease in Harbor Seals and Ferrets. PLoS One 2016; 11:e0159625. [PMID: 27448168 PMCID: PMC4957826 DOI: 10.1371/journal.pone.0159625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/06/2016] [Indexed: 01/22/2023] Open
Abstract
Avian influenza viruses sporadically cross the species barrier to mammals, including humans, in which they may cause epidemic disease. Recently such an epidemic occurred due to the emergence of avian influenza virus of the subtype H10N7 (Seal/H10N7) in harbor seals (Phoca vitulina). This epidemic caused high mortality in seals along the north-west coast of Europe and represented a potential risk for human health. To characterize the spectrum of lesions and to identify the target cells and viral distribution, findings in 16 harbor seals spontaneously infected with Seal/H10N7 are described. The seals had respiratory tract inflammation extending from the nasal cavity to bronchi associated with intralesional virus antigen in respiratory epithelial cells. Virus infection was restricted to the respiratory tract. The fatal outcome of the viral infection in seals was most likely caused by secondary bacterial infections. To investigate the pathogenic potential of H10N7 infection for humans, we inoculated the seal virus intratracheally into six ferrets and performed pathological and virological analyses at 3 and 7 days post inoculation. These experimentally inoculated ferrets displayed mild clinical signs, virus excretion from the pharynx and respiratory tract inflammation extending from bronchi to alveoli that was associated with virus antigen expression exclusively in the respiratory epithelium. Virus was isolated only from the respiratory tract. In conclusion, Seal/H10N7 infection in naturally infected harbor seals and experimentally infected ferrets shows that respiratory epithelial cells are the permissive cells for viral replication. Fatal outcome in seals was caused by secondary bacterial pneumonia similar to that in fatal human cases during influenza pandemics. Productive infection of ferrets indicates that seal/H10N7 may possess a zoonotic potential. This outbreak of LPAI from wild birds to seals demonstrates the risk of such occasions for mammals and thus humans.
Collapse
Affiliation(s)
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Rogier Bodewes
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Vanessa M. Pfankuche
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Marco W. G. van de Bildt
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Frauke Seehusen
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Werftstraβe 6, D-25761, Büsum, Germany
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Werftstraβe 6, D-25761, Büsum, Germany
| | - Theo Bestebroer
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Ellen Prenger-Berninghoff
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, Frankfurter Straβe 85-89, 35392, Giessen, Germany
| | - Werner Herbst
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, Frankfurter Straβe 85-89, 35392, Giessen, Germany
| | - Marion Koopmans
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Albert D. M. E. Osterhaus
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
- * E-mail: (TK); (WB)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
- * E-mail: (TK); (WB)
| |
Collapse
|
3
|
Beineke A, Baumgärtner W, Wohlsein P. Cross-species transmission of canine distemper virus-an update. One Health 2015; 1:49-59. [PMID: 28616465 PMCID: PMC5462633 DOI: 10.1016/j.onehlt.2015.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 01/13/2023] Open
Abstract
Canine distemper virus (CDV) is a pantropic morbillivirus with a worldwide distribution, which causes fatal disease in dogs. Affected animals develop dyspnea, diarrhea, neurological signs and profound immunosuppression. Systemic CDV infection, resembling distemper in domestic dogs, can be found also in wild canids (e.g. wolves, foxes), procyonids (e.g. raccoons, kinkajous), ailurids (e.g. red pandas), ursids (e.g. black bears, giant pandas), mustelids (e.g. ferrets, minks), viverrids (e.g. civets, genets), hyaenids (e.g. spotted hyenas), and large felids (e.g. lions, tigers). Furthermore, besides infection with the closely related phocine distemper virus, seals can become infected by CDV. In some CDV outbreaks including the mass mortalities among Baikal and Caspian seals and large felids in the Serengeti Park, terrestrial carnivores including dogs and wolves have been suspected as vectors for the infectious agent. In addition, lethal infections have been described in non-carnivore species such as peccaries and non-human primates demonstrating the remarkable ability of the pathogen to cross species barriers. Mutations affecting the CDV H protein required for virus attachment to host-cell receptors are associated with virulence and disease emergence in novel host species. The broad and expanding host range of CDV and its maintenance within wildlife reservoir hosts considerably hampers disease eradication.
Collapse
Affiliation(s)
- Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
| |
Collapse
|
4
|
Lane EP, de Wet M, Thompson P, Siebert U, Wohlsein P, Plön S. A systematic health assessment of indian ocean bottlenose (Tursiops aduncus) and indo-pacific humpback (Sousa plumbea) dolphins incidentally caught in shark nets off the KwaZulu-Natal Coast, South Africa. PLoS One 2014; 9:e107038. [PMID: 25203143 PMCID: PMC4159300 DOI: 10.1371/journal.pone.0107038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 08/13/2014] [Indexed: 11/21/2022] Open
Abstract
Coastal dolphins are regarded as indicators of changes in coastal marine ecosystem health that could impact humans utilizing the marine environment for food or recreation. Necropsy and histology examinations were performed on 35 Indian Ocean bottlenose dolphins (Tursiops aduncus) and five Indo-Pacific humpback dolphins (Sousa plumbea) incidentally caught in shark nets off the KwaZulu-Natal coast, South Africa, between 2010 and 2012. Parasitic lesions included pneumonia (85%), abdominal and thoracic serositis (75%), gastroenteritis (70%), hepatitis (62%), and endometritis (42%). Parasitic species identified were Halocercus sp. (lung), Crassicauda sp. (skeletal muscle) and Xenobalanus globicipitis (skin). Additional findings included bronchiolar epithelial mineralisation (83%), splenic filamentous tags (45%), non-suppurative meningoencephalitis (39%), and myocardial fibrosis (26%). No immunohistochemically positive reaction was present in lesions suggestive of dolphin morbillivirus, Toxoplasma gondii and Brucella spp. The first confirmed cases of lobomycosis and sarcocystosis in South African dolphins were documented. Most lesions were mild, and all animals were considered to be in good nutritional condition, based on blubber thickness and muscle mass. Apparent temporal changes in parasitic disease prevalence may indicate a change in the host/parasite interface. This study provided valuable baseline information on conditions affecting coastal dolphin populations in South Africa and, to our knowledge, constitutes the first reported systematic health assessment in incidentally caught dolphins in the Southern Hemisphere. Further research on temporal disease trends as well as disease pathophysiology and anthropogenic factors affecting these populations is needed.
Collapse
Affiliation(s)
- Emily P. Lane
- Department of Research and Scientific Services, National Zoological Gardens of South Africa, Pretoria, South Africa
| | - Morné de Wet
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Peter Thompson
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine, Hannover, Foundation, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine, Hannover, Foundation, Germany
| | - Stephanie Plön
- South African Institute for Aquatic Biodiversity, c/o Port Elizabeth Museum/Bayworld, Port Elizabeth, South Africa
| |
Collapse
|