1
|
He Y, Zhang M, Dai C, Yu L. Comparison of the Gut Microbial Communities of Domestic and Wild Mallards ( Anas platyrhynchos) Based on High-Throughput Sequencing Technology. Animals (Basel) 2023; 13:2956. [PMID: 37760356 PMCID: PMC10525502 DOI: 10.3390/ani13182956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Mallards (Anas platyrhynchos) are currently one of the most popular species in rare bird breeding in several southern provinces of China, but there have been no studies comparing the gut microbial communities of domestic and wild mallards. In this study, 16S rRNA gene high-throughput sequencing technology was used to compare the composition and diversity of gut microbial communities in domestic and wild mallards. Alpha diversity analysis showed significant differences in gut microbial communities between the two groups of mallards, and the diversity and richness of gut microbial communities were significantly higher in wild mallards than in domestic mallards. Beta diversity analysis showed that the two groups of stool samples were mostly separated on the principal coordinate analysis (PCoA) plot. In domestic mallards, Firmicutes (68.0% ± 26.5%) was the most abundant bacterial phylum, followed by Proteobacteria (24.5% ± 22.9%), Bacteroidetes (3.1% ± 3.2%), Fusobacteria (2.2% ± 5.9%), and Actinobacteria (1.1% ± 1.8%). The dominant bacterial phyla in wild mallards were Firmicutes (79.0% ± 10.2%), Proteobacteria (12.9% ± 9.5%), Fusobacteria (3.4% ± 2.5%), and Bacteroidetes (2.8% ± 2.4%). At the genus level, a total of 10 dominant genera (Streptococcus, Enterococcus, Clostridium, Lactobacillus, Soilbacillus, Bacillus, Acinetobacter, Comamonas, Shigella, and Cetobacterium) with an average relative abundance greater than 1% were detected in the fecal samples of both groups. The average relative abundance of five potential pathogenic genera (Streptococcus, Enterococcus, Acinetobacter, Comamonas, and Shigella) was higher in domestic mallards than in wild mallards. The enrichment of pathogenic bacteria in the intestinal tract of domestic mallards should be of sufficient concern.
Collapse
Affiliation(s)
- Yaoyin He
- Animal Science and Technology College, Guangxi University, Nanning 530004, China; (Y.H.); (M.Z.)
| | - Minghui Zhang
- Animal Science and Technology College, Guangxi University, Nanning 530004, China; (Y.H.); (M.Z.)
| | - Chuanyin Dai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, China;
| | - Lijiang Yu
- Animal Science and Technology College, Guangxi University, Nanning 530004, China; (Y.H.); (M.Z.)
| |
Collapse
|
2
|
Kim JE, Tun HM, Bennett DC, Leung FC, Cheng KM. Microbial diversity and metabolic function in duodenum, jejunum and ileum of emu (Dromaius novaehollandiae). Sci Rep 2023; 13:4488. [PMID: 36934111 PMCID: PMC10024708 DOI: 10.1038/s41598-023-31684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 03/20/2023] Open
Abstract
Emus (Dromaius novaehollandiae), a large flightless omnivorous ratite, are farmed for their fat and meat. Emu fat can be rendered into oil for therapeutic and cosmetic use. They are capable of gaining a significant portion of its daily energy requirement from the digestion of plant fibre. Despite of its large body size and low metabolic rate, emus have a relatively simple gastroinstetinal (GI) tract with a short mean digesta retention time. However, little is known about the GI microbial diversity of emus. The objective of this study was to characterize the intraluminal intestinal bacterial community in the different segments of small intestine (duodenum, jejunum, and ileum) using pyrotag sequencing and compare that with the ceca. Gut content samples were collected from each of four adult emus (2 males, 2 females; 5-6 years old) that were free ranged but supplemented with a barley-alfalfa-canola based diet. We amplified the V3-V5 region of 16S rRNA gene to identify the bacterial community using Roche 454 Junior system. After quality trimming, a total of 165,585 sequence reads were obtained from different segments of the small intestine (SI). A total of 701 operational taxonomic units (OTUs) were identified in the different segments of small intestine. Firmicutes (14-99%) and Proteobacteria (0.5-76%) were the most predominant bacterial phyla in the small intestine. Based on species richness estimation (Chao1 index), the average number of estimated OTUs in the small intestinal compartments were 148 in Duodenum, 167 in Jejunum, and 85 in Ileum, respectively. Low number of core OTUs identified in each compartment of small intestine across individual birds (Duodenum: 13 OTUs, Jejunum: 2 OTUs, Ileum: 14 OTUs) indicated unique bacterial community in each bird. Moreover, only 2 OTUs (Escherichia and Sinobacteraceae) were identified as core bacteria along the whole small intestine. PICRUSt analysis has indicated that the detoxification of plant material and environmental chemicals seem to be performed by SI microbiota, especially those in the jejunum. The emu cecal microbiome has more genes than SI segments involving in protective or immune response to enteric pathogens. Microbial digestion and fermentation is mostly in the jejunum and ceca. This is the first study to characterize the microbiota of different compartments of the emu intestines via gut samples and not fecal samples. Results from this study allow us to further investigate the influence of the seasonal and physiological changes of intestinal microbiota on the nutrition of emus and indirectly influence the fatty acid composition of emu fat.
Collapse
Affiliation(s)
- Ji Eun Kim
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Hein M Tun
- School of Public Health, Li Ka Shing, Faculty of Medicine, HKU-Pasteur Research Pole, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- JC School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Darin C Bennett
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Animal Science Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Frederick C Leung
- School of Biological Sciences, Faculty of Science, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Kimberly M Cheng
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
3
|
Wang J, Hong M, Long J, Yin Y, Xie J. Differences in intestinal microflora of birds among different ecological types. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.920869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The intestinal microflora of animals plays a key role in metabolism, immunity, and development. Birds distributed across multiple ecological habitats. However, little is known about the differences in the intestinal microflora of birds among different ecological types. In this study, bird feces from different ecological types and orders were collected in Chongqing Zoo, China. In this study, high throughput sequencing of the 16S ribosomal RNA (rRNA) gene (amplicon sequencing) and metagenomics were used to analyze the composition and function differences of gut microbiota communities among different ecological types/orders. Firmicutes and Proteobacteria were the dominant bacteria phyla for all samples but there were significant differences in the α-diversity, community structure and microbial interactions between birds of different ecological types. The function differences involve most aspects of the body functions, especially for environmental information processing, organismal systems, human diseases, genetic information processing, and metabolism. These results suggest that diet and habitat are potential drivers of avian gut microbial aggregation. This preliminary study is of great significance for further research on the intestinal microflora of different ecological types of birds.
Collapse
|
4
|
Wright K, Nip KM, Kim JE, Cheng KM, Birol I. Seasonal and sex-dependent gene expression in emu (Dromaius novaehollandiae) fat tissues. Sci Rep 2022; 12:9419. [PMID: 35676317 PMCID: PMC9177602 DOI: 10.1038/s41598-022-13681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/10/2022] [Indexed: 12/02/2022] Open
Abstract
Emu (Dromaius novaehollandiae) farming has been gaining wide interest for fat production. Oil rendered from this large flightless bird’s fat is valued for its anti-inflammatory and antioxidant properties for uses in therapeutics and cosmetics. We analyzed the seasonal and sex-dependent differentially expressed (DE) genes involved in fat metabolism in emus. Samples were taken from back and abdominal fat tissues of a single set of four male and four female emus in April, June, and November for RNA-sequencing. We found 100 DE genes (47 seasonally in males; 34 seasonally in females; 19 between sexes). Seasonally DE genes with significant difference between the sexes in gene ontology terms suggested integrin beta chain-2 (ITGB2) influences fat changes, in concordance with earlier studies. Six seasonally DE genes functioned in more than two enriched pathways (two female: angiopoietin-like 4 (ANGPTL4) and lipoprotein lipase (LPL); four male: lumican (LUM), osteoglycin (OGN), aldolase B (ALDOB), and solute carrier family 37 member 2 (SLC37A2)). Two sexually DE genes, follicle stimulating hormone receptor (FSHR) and perilipin 2 (PLIN2), had functional investigations supporting their influence on fat gain and loss. The results suggested these nine genes influence fat metabolism and deposition in emus.
Collapse
|
5
|
Dong S, Xu S, Zhang J, Hussain R, Lu H, Ye Y, Mehmood K, Zhang H, Shang P. First Report of Fecal Microflora of Wild Bar-Headed Goose in Tibet Plateau. Front Vet Sci 2022; 8:791461. [PMID: 35083306 PMCID: PMC8785396 DOI: 10.3389/fvets.2021.791461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/11/2021] [Indexed: 01/15/2023] Open
Abstract
The bar-headed goose (Anser indicus) has two black spots on its head. It is considered an important bird in China. It breeds in plateau lakes, especially saltwater lakes, and swamp areas. However, the intestinal flora of wild bar-headed geese in the Tibet Autonomous Region is currently not known. In this study, 16S rDNA sequencing was performed on the intestinal microbes of wild bar-headed geese. A total of 513,505 reads of raw data were obtained, and the results analyzed the average number of 128,376 ± 2,392 reads per sample. The microbiota of all samples consists of 10 main bacterial phyla, including Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, Patescibacteria, Deferribacteres, Planctomy-cetes, Fusobacteria, and Tenericutes. The results indicated that Firmicutes (67.34%) was the predominant phylum, followed by Proteobacteria (29.03%) and Cyanobacteria (1.97%). In our research, we identified the intestinal flora of the wild bar-headed goose, which provides valuable information for further research on the gene function of the bar-headed goose and the intestinal flora of wild animals. These findings are also useful and valuable for genetic and high-altitude research in the Tibet Autonomous Region.
Collapse
Affiliation(s)
- Shixiong Dong
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D, Tibet Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Shijun Xu
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D, Tibet Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Jian Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D, Tibet Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Riaz Hussain
- Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hong Lu
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D, Tibet Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D, Tibet Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D, Tibet Agricultural and Animal Husbandry Resources, Linzhi, China
- *Correspondence: Peng Shang
| |
Collapse
|
6
|
Skeen HR, Cooper NW, Hackett SJ, Bates JM, Marra PP. Repeated sampling of individuals reveals impact of tropical and temperate habitats on microbiota of a migratory bird. Mol Ecol 2021; 30:5900-5916. [PMID: 34580952 DOI: 10.1111/mec.16170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 01/04/2023]
Abstract
Migratory animals experiencing substantial change in diet and habitat across the annual cycle may have corresponding shifts in host-associated microbial diversity. Using automated telemetry and radio tags to recapture birds, we examined gut microbiota structure in the same population and often same individual of Kirtland's Warblers (Setophaga kirtlandii) initially sampled on their wintering grounds in The Bahamas and subsequently resampled within their breeding territories in Michigan, USA. Initial sampling occurred in March and April and resampling occurred in May, June and early July. The composition of the most abundant phyla and classes of the warblers' microbiota is similar to that of other migratory birds. However, we detected notable variation in abundance and diversity of numerous bacterial taxa, including a decrease in microbial richness and significant differences in microbial communities when comparing the microbiota of birds first captured in The Bahamas to that of birds recaptured in Michigan. This is observed at the individual and population level. Furthermore, we found that 22 bacterial genera exhibit heightened abundance within specific sampling periods and are probably associated with diet and environmental change. Finally, we described a small, species-specific shared microbial profile that spans multiple time periods and environments within the migratory cycle. Our research highlights that the avian gut microbiota is dynamic over time, most significantly impacted by changing environments associated with migration. These results support the need for full annual cycle monitoring of migratory bird microbiota to improve understanding of seasonal host movement ecologies and response to recurrent physiological stressors.
Collapse
Affiliation(s)
- Heather R Skeen
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, USA.,Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - Nathan W Cooper
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA.,Department of Biology and McCourt School of Public Policy, Georgetown University, Washington, District of Columbia, USA
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - John M Bates
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - Peter P Marra
- Department of Biology and McCourt School of Public Policy, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Wang W, Huang S, Yang L, Zhang G. Comparative Analysis of the Fecal Bacterial Microbiota of Wintering Whooper Swans ( Cygnus Cygnus). Front Vet Sci 2021; 8:670645. [PMID: 34322532 PMCID: PMC8310996 DOI: 10.3389/fvets.2021.670645] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/08/2021] [Indexed: 12/03/2022] Open
Abstract
There are many and diverse intestinal microbiota, and they are closely related to various physiological functions of the body. They directly participate in the host's food digestion, nutrient absorption, energy metabolism, immune response, and many other physiological activities and are also related to the occurrence of many diseases. The intestinal microbiota are extremely important for maintaining normal physical health. In order to explore the composition and differences of the intestinal microbiota of whooper swans in different wintering areas, we collected fecal samples of whooper swans in Sanmenxia, Henan, and Rongcheng, Shandong, and we used the Illumina HiSeq platform to perform high-throughput sequencing of bacterial 16S rRNA genes. Comparison between Sanmenxia and Rongcheng showed no significant differences in ACE, Chao 1, Simpson, and Shannon indices (p > 0.05). Beta diversity results showed significant differences in bacterial communities between two groups [analysis of similarity (ANOSIM): R = 0.80, p = 0.011]. Linear discriminant analysis effect size (LEfSe) analysis showed that at the phylum level, the relative abundance of Actinobacteria was significantly higher in Sanmenxia whooper swans than Rongcheng whooper swans. At the genus level, the amount of Psychrobacter and Carnobacterium in Sanmenxia was significantly higher in Rongcheng, while the relative abundance Catellicoccus and Lactobacillus was significantly higher in Rongcheng than in Sanmenxia. This study analyzed the composition, characteristics, and differences of the intestinal microbiota of the whooper swans in different wintering environments and provided theoretical support for further exploring the relationship between the intestinal microbiota of the whooper swans and the external environment. And it played an important role in the overwintering physiology and ecology, population management, and epidemic prevention and control of whooper swans.
Collapse
Affiliation(s)
- Wenxia Wang
- Research Institute of Forestry Policy and Information, Chinese Academy of Forestry, Beijing, China
| | - Songlin Huang
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Beijing, China
| | - Liangliang Yang
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Beijing, China
| | - Guogang Zhang
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Beijing, China
| |
Collapse
|
8
|
Li M, Wu Y, Wang Z, Fu W, Dang W, Chen Y, Ning Y, Wang S. Improvement in calcified anaerobic granular sludge performance by exogenous acyl-homoserine lactones. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111874. [PMID: 33421723 DOI: 10.1016/j.ecoenv.2020.111874] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Given the high content of Ca2+ in waste paper recycling wastewater, the anaerobic granular sludge (AnGS) undergoes calcification during wastewater treatment and affects the treatment efficiency. To restore the activity of calcified AnGS and improve the performance of AnGS, four types of N-acyl-homoserine lactones (AHLs) were added to the AnGS system while papermaking wastewater treatment. The addition of N-butyryl-DL-homoserine lactone(C4-HSL) and N-octanoyl-DL-homoserine lactone (C8-HSL) had an inhibitory affect the COD removal efficiency and SMA of sludge at the inception. The addition of N-hexanoyl-L-homoserine lactone (C6-HSL) has no obvious effect on the COD removal efficiency, but can improve the SMA of sludge more obviously. The addition of N-(β-ketocaproyl)-DL-homoserine lactone (3O-C6-HSL) can increased COD removal efficiency and promoted SMA together obviously. The addition of C6-HSL and 3O-C6-HSL can increase volatile suspended solid (VSS)/total suspended solid (TSS), and regulate extracellular polymeric substance (EPS) secretion in AnGS. Analysis of microbial sequencing revealed changes in the microbial community structure following AHL addition, which enhanced the methane metabolism pathway in sludge. The addition of C6-HSL, C8-HSL, and 3O-C6-HSL increased Methanosaeta population, thus increasing the aceticlastic pathway in sludge. Thus, exogenous AHLs can play an important role in regulating microbial community structure, and in improving the performance of AnGS.
Collapse
Affiliation(s)
- Meiling Li
- Guangxi Key Lab of Clean Pulp & Papermaking and Pollution Control, Light Industrial and Food Engineering College, Guangxi University, Nanning 530004, China
| | - Yueru Wu
- Guangxi Key Lab of Clean Pulp & Papermaking and Pollution Control, Light Industrial and Food Engineering College, Guangxi University, Nanning 530004, China
| | - Zhiwei Wang
- Guangxi Key Lab of Clean Pulp & Papermaking and Pollution Control, Light Industrial and Food Engineering College, Guangxi University, Nanning 530004, China; Guangxi Bossco Environment Protection Technology Co., Ltd, Nanning 530007, China.
| | - Wencai Fu
- Guangxi Key Lab of Clean Pulp & Papermaking and Pollution Control, Light Industrial and Food Engineering College, Guangxi University, Nanning 530004, China
| | - Wenhao Dang
- Guangxi Key Lab of Clean Pulp & Papermaking and Pollution Control, Light Industrial and Food Engineering College, Guangxi University, Nanning 530004, China
| | - Yongli Chen
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology, Jinan 250353, China
| | - Yi Ning
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology, Jinan 250353, China
| | - Shuangfei Wang
- Guangxi Key Lab of Clean Pulp & Papermaking and Pollution Control, Light Industrial and Food Engineering College, Guangxi University, Nanning 530004, China.
| |
Collapse
|
9
|
Bodawatta KH, Freiberga I, Puzejova K, Sam K, Poulsen M, Jønsson KA. Flexibility and resilience of great tit (Parus major) gut microbiomes to changing diets. Anim Microbiome 2021; 3:20. [PMID: 33602335 PMCID: PMC7893775 DOI: 10.1186/s42523-021-00076-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background Gut microbial communities play important roles in nutrient management and can change in response to host diets. The extent of this flexibility and the concomitant resilience is largely unknown in wild animals. To untangle the dynamics of avian-gut microbiome symbiosis associated with diet changes, we exposed Parus major (Great tits) fed with a standard diet (seeds and mealworms) to either a mixed (seeds, mealworms and fruits), a seed, or a mealworm diet for 4 weeks, and examined the flexibility of gut microbiomes to these compositionally different diets. To assess microbiome resilience (recovery potential), all individuals were subsequently reversed to a standard diet for another 4 weeks. Cloacal microbiomes were collected weekly and characterised through sequencing the v4 region of the 16S rRNA gene using Illumina MiSeq. Results Initial microbiomes changed significantly with the diet manipulation, but the communities did not differ significantly between the three diet groups (mixed, seed and mealworm), despite multiple diet-specific changes in certain bacterial genera. Reverting birds to the standard diet led only to a partial recovery in gut community compositions. The majority of the bacterial taxa that increased significantly during diet manipulation decreased in relative abundance after reversion to the standard diet; however, bacterial taxa that decreased during the manipulation rarely increased after diet reversal Conclusions The gut microbial response and partial resilience to dietary changes support that gut bacterial communities of P. major play a role in accommodating dietary changes experienced by wild avian hosts. This may be a contributing factor to the relaxed association between microbiome composition and the bird phylogeny. Our findings further imply that interpretations of wild bird gut microbiome analyses from single-time point sampling, especially for omnivorous species or species with seasonally changing diets, should be done with caution. The partial community recovery implies that ecologically relevant diet changes (e.g., seasonality and migration) open up gut niches that may be filled by previously abundant microbes or replaced by different symbiont lineages, which has important implications for the integrity and specificity of long-term avian-symbiont associations. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00076-6.
Collapse
Affiliation(s)
- Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| | - Inga Freiberga
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Katerina Puzejova
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Katerina Sam
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Knud A Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Vahedian V, Asadi A, Esmaeili P, Zamani S, Zamani R, Hajazimian S, Isazadeh A, Shanehbandi D, Maroufi NF. Anti-inflammatory activity of emu oil-based nanofibrous scaffold through downregulation of IL-1, IL-6, and TNF-α pro-inflammatory cytokines. Horm Mol Biol Clin Investig 2020; 41:hmbci-2019-0052. [PMID: 31967960 DOI: 10.1515/hmbci-2019-0052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Background Inflammation is one of the most important responses of the body against infection or disease, and it protects tissues from injury; however, it causes redness, swelling, pain, fever and loss of function. The aim of this present study was to evaluate the anti-inflammatory activity of emu oil (Eu) formulated nanofibrous scaffold in HFFF2 fibroblast cells. Materials and methods Eu was formulated successfully in nanofibers through the electrospinning method. Besides, the morphological and structural properties of Eu nanofibres were evaluated using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) was performed to evaluate the HFFF2 fibroblast cells' viability. Also, real-time polymerase chain reaction (PCR) was used to evaluate the anti-inflammatory signaling pathway in treated HFFF2 cells with Eu nanofiber. Results Our study showed that the Eu nanofiber increased the viability of fibroblast HFFF2 cells (p < 0.05). Also, the expression of interleukin1 (IL1), IL6 and tumor necrosis factor- alpha (TNF-α) pro-inflammatory cytokines genes were significantly decreased in treated HFFF2 cells with Eu nanofiber (p < 0.05). Conclusions In conclusion, Eu nanofiber scaffold potentially can reduce the inflammation process through downregulation of IL-1, IL-6 and TNF-α cytokines.
Collapse
Affiliation(s)
- Vahid Vahedian
- Clinical Laboratory Medicine Department, Rofeydeh Hospital, University of Social Welfare and Rehabilition Sciences (USWR), Tehran, Iran.,Department of Medical Laboratory Sciences, Faculty of Medicine, Islamic Azad University (IUA), Sari, Iran
| | - Amirhooman Asadi
- Veterinary Medicine, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Parisa Esmaeili
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Immunology and Hematology, Faculty of Medicine, Kurdistan, Iran
| | - Shahbaz Zamani
- School of Medical Sciences, Faculty of Medicine, Newcastle University, Newcastle, Australia
| | - Reza Zamani
- School of Medical Sciences, Faculty of Medicine, Newcastle University, Newcastle, Australia
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, Tel.: +98-41-3288386, Fax: +98-41-3288386
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Characterization of the microbiome along the gastrointestinal tracts of semi-artificially reared bar-headed geese (Anser indicus). Folia Microbiol (Praha) 2019; 65:533-543. [PMID: 31768913 DOI: 10.1007/s12223-019-00758-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
As one of the dominant waterfowl species of wetland areas in the Qinghai-Tibet Plateau, since 2003, artificial rearing of bar-headed geese (Anser indicus) has increased in several provinces of China for the purpose of conservation and economic development. In this study, we systematically characterized the microbial community diversity, compositions and predicted functions of semi-artificially reared bar-headed geese by sampling five different gut locations (the oropharynxs, crops, gizzards, ceca, and cloacae) along the gastrointestinal tracts of three individuals. Alpha diversity analyses showed that the gizzards had the richest species diversity and that the ceca had the least. Beta diversity analyses showed that the cecal samples formed their own cluster, while samples from the oropharynxs, crops, gizzards, and cloacae overlapped with each other. At the phylum level, Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria constituted the top five dominant phyla among all five gastrointestinal sections. At the genus level, a total of 10 genera with proportions above 2.5% were found to be significantly different among the gastrointestinal sections. Furthermore, 53 genera were detected in all gastrointestinal sections of bar-headed geese. PICRUSt data also predicted a group of microbial functions overrepresented in the different segments of the gastrointestinal tracts. Understanding the microbiota along the bar-headed geese gastrointestinal tracts is essential for future microbiological study of this bird and may contribute to the development of geese husbandry.
Collapse
|
12
|
Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol 2019; 17:83. [PMID: 31660948 PMCID: PMC6819567 DOI: 10.1186/s12915-019-0699-4] [Citation(s) in RCA: 391] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
The Christensenellaceae, a recently described family in the phylum Firmicutes, is emerging as an important player in human health. The relative abundance of Christensenellaceae in the human gut is inversely related to host body mass index (BMI) in different populations and multiple studies, making its relationship with BMI the most robust and reproducible link between the microbial ecology of the human gut and metabolic disease reported to date. The family is also related to a healthy status in a number of other different disease contexts, including obesity and inflammatory bowel disease. In addition, Christensenellaceae is highly heritable across multiple populations, although specific human genes underlying its heritability have so far been elusive. Further research into the microbial ecology and metabolism of these bacteria should reveal mechanistic underpinnings of their host-health associations and enable their development as therapeutics.
Collapse
Affiliation(s)
- Jillian L Waters
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tuebingen, Germany
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tuebingen, Germany.
| |
Collapse
|
13
|
Grond K, Santo Domingo JW, Lanctot RB, Jumpponen A, Bentzen RL, Boldenow ML, Brown SC, Casler B, Cunningham JA, Doll AC, Freeman S, Hill BL, Kendall SJ, Kwon E, Liebezeit JR, Pirie-Dominix L, Rausch J, Sandercock BK. Composition and Drivers of Gut Microbial Communities in Arctic-Breeding Shorebirds. Front Microbiol 2019; 10:2258. [PMID: 31649627 PMCID: PMC6795060 DOI: 10.3389/fmicb.2019.02258] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023] Open
Abstract
Gut microbiota can have important effects on host health, but explanatory factors and pathways that determine gut microbial composition can differ among host lineages. In mammals, host phylogeny is one of the main drivers of gut microbiota, a result of vertical transfer of microbiota during birth. In birds, it is less clear what the drivers might be, but both phylogeny and environmental factors may play a role. We investigated host and environmental factors that underlie variation in gut microbiota composition in eight species of migratory shorebirds. We characterized bacterial communities from 375 fecal samples collected from adults of eight shorebird species captured at a network of nine breeding sites in the Arctic and sub-Arctic ecoregions of North America, by sequencing the V4 region of the bacterial 16S ribosomal RNA gene. Firmicutes (55.4%), Proteobacteria (13.8%), Fusobacteria (10.2%), and Bacteroidetes (8.1%) dominated the gut microbiota of adult shorebirds. Breeding location was the main driver of variation in gut microbiota of breeding shorebirds (R2 = 11.6%), followed by shorebird host species (R2 = 1.8%), and sampling year (R2 = 0.9%), but most variation remained unexplained. Site variation resulted from differences in the core bacterial taxa, whereas rare, low-abundance bacteria drove host species variation. Our study is the first to highlight a greater importance of local environment than phylogeny as a driver of gut microbiota composition in wild, migratory birds under natural conditions.
Collapse
Affiliation(s)
- Kirsten Grond
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | | | - Richard B Lanctot
- Migratory Bird Management, U.S. Fish & Wildlife Service, Anchorage, AK, United States
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | | | - Megan L Boldenow
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
| | | | - Bruce Casler
- Independent Researcher, Nehalem, OR, United States
| | - Jenny A Cunningham
- Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, MO, United States
| | - Andrew C Doll
- Denver Museum of Nature & Science, Denver, CO, United States
| | - Scott Freeman
- Arctic National Wildlife Refuge, U.S. Fish & Wildlife Service, Fairbanks, AK, United States
| | - Brooke L Hill
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Steven J Kendall
- Arctic National Wildlife Refuge, U.S. Fish & Wildlife Service, Fairbanks, AK, United States
| | - Eunbi Kwon
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States
| | | | | | - Jennie Rausch
- Environment and Climate Change Canada, Yellowknife, NT, Canada
| | - Brett K Sandercock
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim, Norway
| |
Collapse
|
14
|
Microbial and Functional Profile of the Ceca from Laying Hens Affected by Feeding Prebiotics, Probiotics, and Synbiotics. Microorganisms 2019; 7:microorganisms7050123. [PMID: 31064055 PMCID: PMC6560406 DOI: 10.3390/microorganisms7050123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/01/2023] Open
Abstract
Diet has an essential influence in the establishment of the cecum microbial communities in poultry, so its supplementation with safe additives, such as probiotics, prebiotics, and synbiotics might improve animal health and performance. This study showed the ceca microbiome modulations of laying hens, after feeding with dry whey powder as prebiotics, Pediococcus acidilactici as probiotics, and the combination of both as synbiotics. A clear grouping of the samples induced per diet was observed (p < 0.05). Operational taxonomic units (OTUs) identified as Olsenella spp., and Lactobacilluscrispatus increased their abundance in prebiotic and synbiotic treatments. A core of the main functions was shared between all metagenomes (45.5%), although the genes encoding for the metabolism of butanoate, propanoate, inositol phosphate, and galactose were more abundant in the prebiotic diet. The results indicated that dietary induced-changes in microbial composition did not imply a disturbance in the principal biological roles, while the specific functions were affected.
Collapse
|
15
|
Reese AT, Dunn RR. Drivers of Microbiome Biodiversity: A Review of General Rules, Feces, and Ignorance. mBio 2018; 9:e01294-18. [PMID: 30065092 PMCID: PMC6069118 DOI: 10.1128/mbio.01294-18] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 01/16/2023] Open
Abstract
The alpha diversity of ecologic communities is affected by many biotic and abiotic drivers and, in turn, affects ecosystem functioning. Yet, patterns of alpha diversity in host-associated microbial communities (microbiomes) are poorly studied and the appropriateness of general theory is untested. Expanding diversity theory to include microbiomes is essential as diversity is a frequently cited metric of their status. Here, we review and newly analyze reports of alpha diversity for animal gut microbiomes. We demonstrate that both diet and body size affect diversity in the gut but that gut physiology (fermenter versus simple) is the most important driver. We also assess the advantages of various diversity metrics. The importance of diversity in microbiomes is often assumed but has not been tested outright. Therefore, we close by discussing how to integrate microbiomes into the field of biodiversity-ecosystem functioning to more clearly understand when and why a host supports diverse microbial communities.
Collapse
Affiliation(s)
- Aspen T Reese
- Society of Fellows, Harvard University, Cambridge, Massachusetts
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
16
|
Wang W, Liu Y, Yang Y, Wang A, Sharshov K, Li Y, Cao M, Mao P, Li L. Comparative analyses of the gut microbiota among three different wild geese species in the genus Anser. J Basic Microbiol 2018; 58:543-553. [PMID: 29668076 DOI: 10.1002/jobm.201800060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 12/31/2022]
Abstract
In this study, we characterized for the first time the gut microbiota of Greylag geese (Anser anser) using high-throughput 16S rRNA gene sequencing technology. The results showed that the phyla Firmicutes (78.55%), Fusobacteria (9.38%), Proteobacteria (7.55%), Bacteroidetes (1.82%), Cyanobacteria (1.44%), and Actinobacteria (0.61%) dominated the gut microbial communities in the Greylag geese. Then, the variations of gut microbial community structures and functions among the three geese species, Greylag geese, Bar-headed geese (Anser indicus), and Swan geese (Anser cygnoides), were explored. The greatest gut microbial diversity was found in Bar-headed geese group, while other two groups had the least. The dominant bacterial phyla across all samples were Firmicutes and Proteobacteria, but several characteristic bacterial phyla and genera associated with each group were also detected. At all taxonomic levels, the microbial community structure of Swan geese was different from those of Greylag geese and Bar-headed geese, whereas the latter two groups were less different. Functional KEGG categories and pathways associated with carbohydrate metabolism, energy metabolism, and amino acid metabolism were differentially expressed among different geese species. Taken together, this study could provide valuable information to the vast, and yet little explored, research field of wild birds gut microbiome.
Collapse
Affiliation(s)
- Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei Province, China
| | - Yongsheng Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, Qinghai Province, China
| | - Aizhen Wang
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, Qinghai Province, China
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - Yao Li
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, Qinghai Province, China
| | - Mengyao Cao
- KunLun College of Qinghai University, Xi'ning, Qinghai Province, China
| | - Puzhen Mao
- KunLun College of Qinghai University, Xi'ning, Qinghai Province, China
| | - Laixing Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, Qinghai Province, China
| |
Collapse
|
17
|
Spergser J, Loncaric I, Tichy A, Fritz J, Scope A. The cultivable autochthonous microbiota of the critically endangered Northern bald ibis (Geronticus eremita). PLoS One 2018; 13:e0195255. [PMID: 29617453 PMCID: PMC5884550 DOI: 10.1371/journal.pone.0195255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
The critically endangered Northern bald ibis (Geronticus eremita) is a migratory bird that became extinct in Europe centuries ago. Since 2014, the Northern bald ibis is subject to an intensive rehabilitation and conservation regime aiming to reintroduce the bird in its original distribution range in Central Europe and concurrently to maintain bird health and increase population size. Hitherto, virtually nothing is known about the microbial communities associated with the ibis species; an information pivotal for the veterinary management of these birds. Hence, the present study was conducted to provide a baseline description of the cultivable microbiota residing in the Northern bald ibis. Samples derived from the choana, trachea, crop and cloaca were examined employing a culturomic approach in order to identify microbes at each sampling site and to compare their frequency among age classes, seasonal appearances and rearing types. In total, 94 microbial species including 14 potentially new bacterial taxa were cultivated from the Northern bald ibis with 36, 58 and 59 bacterial species isolated from the choana, crop and cloaca, respectively. The microbiota of the Northern bald ibis was dominated by members of the phylum Firmicutes, followed by Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria, altogether phylotypes commonly observed within avian gut environments. Differences in relative abundances of various microbial taxa were evident among sample types indicating mucosa-specific colonisation properties and tissue tropism. Besides, results of the present study indicate that the composition of microbiota was also affected by age, season (environment) and rearing type. While the prevalence of traditional pathogenic microbial species was extremely low, several opportunists including Clostridium perfringens toxotype A were frequently present in samples indicating that the Northern bald ibis may represent an important animal reservoir for these pathogens. In summary, the presented study provides a first inventory of the cultivable microbiota residing in the critically endangered Northern bald ibis and represents a first step in a wider investigation of the ibis microbiome with the ultimate goal to contribute to the management and survival of this critically endangered bird.
Collapse
Affiliation(s)
- Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
- * E-mail:
| | - Igor Loncaric
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Alexander Tichy
- Bioinformatics and Biostatistics Platform, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Alexandra Scope
- Clinical Unit of Internal Medicine Small Animals, Department/Clinic for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
18
|
Liu S, Tun HM, Leung FC, Bennett DC, Zhang H, Cheng KM. Interaction of genotype and diet on small intestine microbiota of Japanese quail fed a cholesterol enriched diet. Sci Rep 2018; 8:2381. [PMID: 29402949 PMCID: PMC5799165 DOI: 10.1038/s41598-018-20508-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/18/2018] [Indexed: 02/06/2023] Open
Abstract
Our previous study has shown that genetic selection for susceptibility/resistance to diet-induced atherosclerosis has affected the Japanese quail's cecal environment to accommodate distinctly different cecal microbiota. In this study, we fed the Atherosclerosis-resistant (RES) and -susceptable (SUS) quail a regular and a cholesterol enriched diet to examine the interaction of host genotype and diet on the diversity, composition, and metabolic functions of the duodenal and ileal microbiota with relations to atherosclerosis development. In the duodenal content, 9 OTUs (operational taxonomic units) were identified whose abundance had significant positive correlations with plasma total cholesterol, LDL level and/or LDL/HDL ratio. In the ileal content, 7 OTUs have significant correlation with plasma HDL. Cholesterol fed RES hosted significantly less Escherichia and unclassified Enterobacteriaceae (possibly pathogenic) in their duodenum than SUS fed the same diet. Dietary cholesterol significantly decreased the duodenal microbiome of SUS's biosynthesis of Ubiquinone and other terpenoid-quinone. Cholesterol fed RES had significantly more microbiome genes for Vitamin B6, selenocompound, taurine and hypotaurine, and Linoleic acid metabolism; Bisphenol degradation; primary bile acid, and butirosin and neomycin biosynthesis than SUS on the same diet. Microbiome in the ileum and ceca of RES contributed significantly towards the resistance to diet induced atherosclerosis.
Collapse
Affiliation(s)
- Shasha Liu
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hein Min Tun
- School of Biological Sciences, Faculty of Science, University of Hong Kong, Hong Kong SAR, China
- Department of Pediatrics, University of Alberta, Alberta, Canada
| | - Frederick C Leung
- School of Biological Sciences, Faculty of Science, University of Hong Kong, Hong Kong SAR, China
| | - Darin C Bennett
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
- Animal Science Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Hongfu Zhang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Kimberly M Cheng
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
19
|
Perry EK, Digby A, Taylor MW. The Low-Diversity Fecal Microbiota of the Critically Endangered Kākāpō Is Robust to Anthropogenic Dietary and Geographic Influences. Front Microbiol 2017; 8:2033. [PMID: 29104565 PMCID: PMC5655120 DOI: 10.3389/fmicb.2017.02033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/05/2017] [Indexed: 02/01/2023] Open
Abstract
The critically endangered kākāpō, an herbivorous parrot endemic to New Zealand, is subject to intensive management to increase its population size. Key aspects of the management program include supplementary feeding and translocation of kākāpō between different predator-free islands to optimize the genetic composition of the breeding populations. While these practices have helped boost the kākāpō population, their impact on the kākāpō fecal microbiota is uncertain. Previous studies have found that the kākāpō possesses a low-diversity fecal microbiota, typically dominated by Escherichia/Shigella spp. However, the question of whether the low diversity of the kākāpō fecal microbiota is an inadvertent consequence of human interventions has yet to be investigated. To that end, we used high-throughput Illumina sequencing of 16S rRNA gene amplicons obtained from fecal material of 63 kākāpō representing different diets, islands, and ages. Remarkably, neither supplementary feeding nor geographic location were associated with significant differences in the overall fecal microbial community structures of adult kākāpō, suggesting that the kākāpō's low-diversity fecal microbiota is both inherent to this species and robust to these external influences.
Collapse
Affiliation(s)
- Elena K Perry
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew Digby
- Kākāpō Recovery Programme, Department of Conservation, Invercargill, New Zealand
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Alcaraz LD, Hernández AM, Peimbert M. Exploring the cockatiel ( Nymphicus hollandicus) fecal microbiome, bacterial inhabitants of a worldwide pet. PeerJ 2016; 4:e2837. [PMID: 28028487 PMCID: PMC5183021 DOI: 10.7717/peerj.2837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/28/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cockatiels (Nymphicus hollandicus) were originally endemic to Australia; now they are popular pets with a global distribution. It is now possible to conduct detailed molecular studies on cultivable and uncultivable bacteria that are part of the intestinal microbiome of healthy animals. These studies show that bacteria are an essential part of the metabolic capacity of animals. There are few studies on bird microbiomes and, to the best of our knowledge, this is the first report on the cockatiel microbiome. METHODS In this paper, we analyzed the gut microbiome from fecal samples of three healthy adult cockatiels by massive sequencing of the 16S rRNA gene. Additionally, we compared the cockatiel fecal microbiomes with those of other bird species, including poultry and wild birds. RESULTS The vast majority of the bacteria found in cockatiels were Firmicutes, while Proteobacteria and Bacteroidetes were poorly represented. A total of 19,280 different OTUs were detected, of which 8,072 belonged to the Erysipelotrichaceae family. DISCUSSION It is relevant to study cockatiel the microbiomes of cockatiels owing to their wide geographic distribution and close human contact. This study serves as a reference for cockatiel bacterial diversity. Despite the large OTU numbers, the diversity is not even and is dominated by Firmicutes of the Erysipelotrichaceae family. Cockatiels and other wild birds are almost depleted of Bacteroidetes, which happen to be abundant in poultry-related birds, and this is probably associated with the intensive human manipulation of poultry bird diets. Some probable pathogenic bacteria, such as Clostridium and Serratia, appeared to be frequent inhabitants of the fecal microbiome of cockatiels, whereas other potential pathogens were not detected.
Collapse
Affiliation(s)
- Luis David Alcaraz
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autonóma de México, Mexico City, Mexico
| | - Apolinar M. Hernández
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Mariana Peimbert
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Mexico City, Mexico
| |
Collapse
|
21
|
Bili M, Cortesero AM, Mougel C, Gauthier JP, Ermel G, Simon JC, Outreman Y, Terrat S, Mahéo F, Poinsot D. Bacterial Community Diversity Harboured by Interacting Species. PLoS One 2016; 11:e0155392. [PMID: 27258532 PMCID: PMC4892616 DOI: 10.1371/journal.pone.0155392] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023] Open
Abstract
All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts.
Collapse
Affiliation(s)
- Mikaël Bili
- Université Rennes 1, UMR1349 IGEPP, F-35000, Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | - Anne Marie Cortesero
- Université Rennes 1, UMR1349 IGEPP, F-35000, Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | | | | | - Gwennola Ermel
- UMR CNRS 6026 Interactions Cellulaires et Moléculaires, Université de Rennes, Rennes, France
| | | | | | | | | | - Denis Poinsot
- Université Rennes 1, UMR1349 IGEPP, F-35000, Rennes, France
- Université Européenne de Bretagne, Rennes, France
- * E-mail:
| |
Collapse
|
22
|
Wang W, Cao J, Li JR, Yang F, Li Z, Li LX. Comparative analysis of the gastrointestinal microbial communities of bar-headed goose (Anser indicus) in different breeding patterns by high-throughput sequencing. Microbiol Res 2015; 182:59-67. [PMID: 26686614 DOI: 10.1016/j.micres.2015.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/28/2015] [Accepted: 10/10/2015] [Indexed: 02/06/2023]
Abstract
The bar-headed goose is currently one of the most popular species for rare birds breeding in China. However, bar-headed geese in captivity display a reduced reproductive rate. The gut microbiome has been shown to influence host factors such as nutrient and energy metabolism, immune homeostasis and reproduction. It is therefore of great scientific and agriculture value to analyze the microbial communities associated with bar-headed geese in order to improve their reproductive rate. Here we describe the first comparative study of the gut microbial communities of bar-headed geese in three different breeding pattern groups by 16SrRNA sequences using the Illumina MiSeq platform. The results showed that Firmicutes predominated (58.33%) among wild bar-headed geese followed by Proteobacteria (30.67%), Actinobacteria (7.33%) and Bacteroidetes (3.33%). In semi-artificial breeding group, Firmicutes was also the most abundant bacteria (62.00%), followed by Bacteroidetes (28.67%), Proteobacteria (4.20%), Actinobacteria (3.27%) and Fusobacteria (1.51%). The microbial communities of artificial breeding group were dominated by Firmicutes (60.67%), Fusobacteria (29.67%) and Proteobacteria (9.33%). Wild bar-headed geese had a significant higher relative abundance of Proteobacteria and Actinobacteria, while semi-artificial breeding bar-headed geese had significantly more Bacteroidetes. The semi-artificial breeding group had the highest microbial community diversity and richness, followed by wild group, and then the artificial breeding group. The marked differences of genus level group-specific microbes create a baseline for future bar-headed goose microbiology research.
Collapse
Affiliation(s)
- Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China; Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Jian Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Ji-Rong Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China
| | - Zhuo Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China
| | - Lai-Xing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China.
| |
Collapse
|
23
|
Ushida K, Segawa T, Tsuchida S, Murata K. Cecal bacterial communities in wild Japanese rock ptarmigans and captive Svalbard rock ptarmigans. J Vet Med Sci 2015; 78:251-7. [PMID: 26468217 PMCID: PMC4785114 DOI: 10.1292/jvms.15-0313] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preservation of indigenous gastrointestinal microbiota is deemed to be critical for successful captive breeding of endangered wild animals, yet its biology is poorly understood. Here, we investigated cecal bacterial communities in wild Japanese rock ptarmigans (Lagopus muta japonica) and compared them with those in Svalbard rock ptarmigans (L. m. hyperborea) in captivity. Ultra-deep sequencing of 16S rRNA gene indicated that the community structure of cecal microbiota in wild rock ptarmigans was remarkably different from that in captive Svalbard rock ptarmigans. Fundamental differences between bacterial communities in the two groups of birds were detected at the phylum level. Firmicutes, Actinobacteria, Bacteroidetes and Synergistetes were the major phyla detected in wild Japanese rock ptarmigans, whereas Firmicutes alone occupied more than 80% of abundance in captive Svalbard rock ptarmigans. Furthermore, unclassified genera of Coriobacteriaceae, Synergistaceae, Bacteroidaceae, Actinomycetaceae, Veillonellaceae and Clostridiales were the major taxa detected in wild individuals, whereas in zoo-reared birds, major genera were Ruminococcus, Blautia, Faecalibacterium and Akkermansia. Zoo-reared birds seemed to lack almost all rock ptarmigan-specific bacteria in their intestine, which may explain the relatively high rate of pathogenic infections affecting them. We show evidence that preservation and reconstitution of indigenous cecal microflora are critical for successful ex situ conservation and future re-introduction plan for the Japanese rock ptarmigan.
Collapse
Affiliation(s)
- Kazunari Ushida
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Sakyo-ku, Kyoto 606-8522, Japan
| | | | | | | |
Collapse
|
24
|
Liu S, Bennett DC, Tun HM, Kim JE, Cheng KM, Zhang H, Leung FC. The effect of diet and host genotype on ceca microbiota of Japanese quail fed a cholesterol enriched diet. Front Microbiol 2015; 6:1092. [PMID: 26500632 PMCID: PMC4595795 DOI: 10.3389/fmicb.2015.01092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/22/2015] [Indexed: 11/23/2022] Open
Abstract
Two Japanese quail strains, respectively atherosclerosis-susceptible (SUS) and –resistant (RES), have been shown to be good models to study cholesterol metabolism and transportation associated with atherosclerosis. Our objective was to examine possible difference in cecal microbiota between these strains when fed a control diet and a cholesterol enriched diet, to determine how host genotype and diet could affect the cecal microbiome that may play a part in cholesterol metabolism. A factorial study with both strains and two diets (control, cholesterol) was carried out. Cecal content was collected from 12 week old quail that have been on their respective diets for 6 weeks. DNA was extracted from the samples and the variable region 3–5 of the bacterial 16S rRNA gene was amplified. The amplicon libraries were subjected to pyrosequencing. Principal Component Analysis (PCA) of β-diversity showed four distinct microbiota communities that can be assigned to the 4 treatment groups (RES/control, RES/cholesterol, SUS/control, SUS/cholesterol). At the Phylum level, the 4 treatment groups has distinct Firmicutes community characteristics but no significant difference in Bacteroidetes. Eubacterium dolichum was rare in RES/control but became overabundant in RES/cholesterol. An unclassified species of Lactobacillaceae was found in abundance in SUS/control but the same species was rare in RES/cholesterol. On the other hand, two Lactobacillus species were only found in RES/control and an unclassified Lachnospiraceae species was abundant in RES/cholesterol but rare in SUS/control. The abundance of four species of Lachnospiraceae, three species of Ruminococcaceae and one species of Coprobacillaceae was positively correlated with plasma Total Cholesterol, plasma LDL, and LDL/HDL ratio. Our study of cecal microbiota in these quail has demonstrated that selection for susceptibility/resistance to diet induced atherosclerosis has also affected the quail's cecal environment to host distinctly different cecal microbiome.
Collapse
Affiliation(s)
- Shasha Liu
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences Beijing, China ; Faculty of Land and Food Systems, Avian Research Centre, The University of British Columbia Vancouver, BC, Canada
| | - Darin C Bennett
- Faculty of Land and Food Systems, Avian Research Centre, The University of British Columbia Vancouver, BC, Canada
| | - Hein M Tun
- School of Biological Sciences, The University of Hong Kong Hong Kong, Hong Kong
| | - Ji-Eun Kim
- Faculty of Land and Food Systems, Avian Research Centre, The University of British Columbia Vancouver, BC, Canada
| | - Kimberly M Cheng
- Faculty of Land and Food Systems, Avian Research Centre, The University of British Columbia Vancouver, BC, Canada
| | - Hongfu Zhang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences Beijing, China
| | - Frederick C Leung
- School of Biological Sciences, The University of Hong Kong Hong Kong, Hong Kong
| |
Collapse
|
25
|
Influence of hand rearing and bird age on the fecal microbiota of the critically endangered kakapo. Appl Environ Microbiol 2015; 80:4650-8. [PMID: 24837385 DOI: 10.1128/aem.00975-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The critically endangered New Zealand parrot, the kakapo, is subject to an intensive management regime aiming to maintain bird health and boost population size. Newly hatched kakapo chicks are subjected to human intervention and are frequently placed in captivity throughout their formative months. Hand rearing greatly reduces mortality among juveniles, but the potential long-term impact on the kakapo gut microbiota is uncertain. To track development of the kakapo gut microbiota, fecal samples from healthy, prefledged juvenile kakapos, as well as from unrelated adults, were analyzed by using 16S rRNA gene amplicon pyrosequencing. Following the original sampling, juvenile kakapos underwent a period of captivity, so further sampling during and after captivity aimed to elucidate the impact of captivity on the juvenile gut microbiota. Variation in the fecal microbiota over a year was also investigated, with resampling of the original juvenile population. Amplicon pyrosequencing revealed a juvenile fecal microbiota enriched with particular lactic acid bacteria compared to the microbiota of adults, although the overall community structure did not differ significantly among kakapos of different ages. The abundance of key operational taxonomic units (OTUs) was correlated with antibiotic treatment and captivity, although the importance of these factors could not be proven unequivocally within the bounds of this study. Finally, the microbial community structure of juvenile and adult kakapos changed over time, reinforcing the need for continual monitoring of the microbiota as part of regular health screening.
Collapse
|
26
|
Waite DW, Taylor MW. Exploring the avian gut microbiota: current trends and future directions. Front Microbiol 2015; 6:673. [PMID: 26191057 PMCID: PMC4490257 DOI: 10.3389/fmicb.2015.00673] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/19/2015] [Indexed: 01/16/2023] Open
Abstract
Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill crucial roles in providing the host with nutrition and protection from pathogens. Across the field of avian microbiology knowledge is extremely uneven, with several species accounting for an overwhelming majority of all microbiological investigations. These include agriculturally important birds, such as chickens and turkeys, as well as birds of evolutionary or conservation interest. In our previous study we attempted the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available data sets. We have now extended our analysis to explore the microbiology of several key species in detail, to consider the avian microbiota within the context of what is known about other vertebrates, and to identify key areas of interest in avian microbiology for future study.
Collapse
Affiliation(s)
| | - Michael W. Taylor
- Centre for Microbial Innovation, School of Biological Sciences, University of AucklandAuckland, New Zealand
| |
Collapse
|
27
|
Waite DW, Taylor MW. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front Microbiol 2014; 5:223. [PMID: 24904538 PMCID: PMC4032936 DOI: 10.3389/fmicb.2014.00223] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/28/2014] [Indexed: 12/18/2022] Open
Abstract
Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.
Collapse
Affiliation(s)
- David W Waite
- Centre for Microbial Innovation, School of Biological Sciences, Faculty of Science, The University of Auckland Auckland, New Zealand
| | - Michael W Taylor
- Centre for Microbial Innovation, School of Biological Sciences, Faculty of Science, The University of Auckland Auckland, New Zealand
| |
Collapse
|