1
|
Shen Z, Liu B, Zhu Z, Du J, Zhou Z, Pan C, Chen Y, Yin C, Luo Y, Li H, Chen X. Construction of a Triple-Gene Deletion Mutant of Orf Virus and Evaluation of Its Safety, Immunogenicity and Protective Efficacy. Vaccines (Basel) 2023; 11:vaccines11050909. [PMID: 37243014 DOI: 10.3390/vaccines11050909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Contagious ecthyma is a zoonotic disease caused by the orf virus (ORFV). Since there is no specific therapeutic drug available, vaccine immunization is the main tool to prevent and control the disease. Previously, we have reported the construction of a double-gene deletion mutant of ORFV (rGS14ΔCBPΔGIF) and evaluated it as a vaccine candidate. Building on this previous work, the current study reports the construction of a new vaccine candidate, generated by deleting a third gene (gene 121) to generate ORFV rGS14ΔCBPΔGIFΔ121. The in vitro growth characteristics, as well as the in vivo safety, immunogenicity, and protective efficacy, were evaluated. RESULTS: There was a minor difference in viral replication and proliferation between ORFV rGS14ΔCBPΔGIFΔ121 and the other two strains. ORFV rGS14ΔCBPΔGIFΔ121 induced continuous differentiation of PBMC to CD4+T cells, CD8+T cells and CD80+CD86+ cells and caused mainly Th1-like cell-mediated immunity. By comparing the triple-gene deletion mutant with the parental strain and the double-gene deletion mutant, we found that the safety of both the triple-gene deletion mutant and the double-gene deletion mutant could reach 100% in goats, while the safety of parental virus was only 50% after continually observing immunized animals for 14 days. A virulent field strain of ORFV from an ORF scab was used in the challenge experiment by inoculating the virus to the hairless area of the inner thigh of immunized animals. The result showed that the immune protection rate of triple-gene deletion mutant, double-gene mutant, and the parental virus was 100%, 66.7%, and 28.6%, respectively. In conclusion, the safety, immunogenicity, and immune-protectivity of the triple-gene deletion mutant were greatly improved to 100%, making it an excellent vaccine candidate.
Collapse
Affiliation(s)
- Zhanning Shen
- Animal Science and Techology College, Beijing University of Agriculture, Beijing 102208, China
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Bo Liu
- China Institute of Veterinary Drug Control, Beijing 100081, China
- International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, A-1400 Vienna, Austria
| | - Zhen Zhu
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jige Du
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Zhiyu Zhou
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Chenfan Pan
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yong Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yufeng Luo
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Huanrong Li
- Animal Science and Techology College, Beijing University of Agriculture, Beijing 102208, China
| | - Xiaoyun Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| |
Collapse
|
2
|
Zhu Z, Qu G, Du J, Wang C, Chen Y, Shen Z, Zhou Z, Yin C, Chen X. Construction and characterization of a contagious ecthyma virus double-gene deletion strain and evaluation of its potential as a live-attenuated vaccine in goat. Front Immunol 2022; 13:961287. [PMID: 36119021 PMCID: PMC9478544 DOI: 10.3389/fimmu.2022.961287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Contagious ecthyma is a highly contagious viral disease with zoonotic significance caused by orf virus (ORFV) that affects domestic, ruminants and humans. Live attenuated virus and attenuated tissue culture vaccines are widely used in the fight against ORFV, however, the conventional attenuated vaccine strains have many drawbacks. The aim of this project was to construct a promising contagious ecthyma vaccine strain with safety, high protection efficacy and accessibility by genetic manipulation to against the disease. Using a natural ORFV-GS14 strain as the parental virus, recombinant virus, rGS14-ΔCBP-ΔGIF, with double deletions in the genes encoding the chemokine binding protein (CBP) and granulocyte/macrophage colony-stimulating factor inhibitory factor (GIF) was generated and characterized in vitro and in vivo. Results showed that the growth kinetics curve of rGS14-ΔCBP-ΔGIF and parental virus was consistent, both reaching plateau phase at 48 h post infection, which indicated that the double deletion of cbp and gif genes had little impact on the replication properties of the recombinant virus in primary goat testis (PGT) cell cultures compared with the parental virus. The safety of the double gene-deleted virus was evaluated in lambs. The lambs were monitored for 21 days post infection of the recombinant virus and no ORFV associated symptoms were observed in 21 days post-infection except for slight fever and anorexia in 5 days post-infection, and all lambs inoculated with either recombinant virus or PBS exhibited no clinical signs. To assess the protection efficacy of the rGS14-ΔCBP-ΔGIF, groups of four lambs each were inoculated with rGS14-ΔCBP-ΔGIF, rGS14-ΔCBP, rGS14-ΔGIF or PBS and challenged by a wild type virulent ORFV strain that was isolated from proliferative scabby lesions tissues of infected goat at 21-day post-inoculation. During 14 days post-challenging, lambs inoculated with rGS14-ΔCBP-ΔGIF all remained healthy with unimmunized group all infected, while the single gene-deleted viruses only protected 40% to 50% animals. These results indicated that the double gene-deleted recombinant virus could provide complete protection against virulent ORFV challenging. In conclusion, the double gene-deleted recombinant virus strain, rGS14-ΔCBP-ΔGIF, would be a promising candidate vaccine strains with safety, high protection efficacy and availability.
Collapse
Affiliation(s)
- Zhen Zhu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Guanggang Qu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Jige Du
- China Institute of Veterinary Drug Control, Beijing, China
| | - Changjiang Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Yong Chen
- China Institute of Veterinary Drug Control, Beijing, China
| | - Zhanning Shen
- China Institute of Veterinary Drug Control, Beijing, China
| | - Zhiyu Zhou
- China Institute of Veterinary Drug Control, Beijing, China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaoyun Chen
- China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
3
|
Zhou Y, Guan J, Lv L, Cui H, Xu M, Wang S, Yu Z, Zhen R, He S, Fang Z, Zhong J, Cui S, Yu S, Song D, He W, Gao F, Zhao K. Complete genomic sequences and comparative analysis of two Orf virus isolates from Guizhou Province and Jilin Province, China. Virus Genes 2022; 58:403-413. [PMID: 35780442 DOI: 10.1007/s11262-022-01918-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
Orf virus (ORFV, species Orf virus) belongs to the typical species of the Parapoxvirus genus of the family Poxviridae, which infects sheep, goats, and humans with worldwide distribution. Although outbreaks of Orf have been reported sequentially in several Chinese provinces, the epidemiology of Orf and genetic diversity of ORFV strains still needs to be further characterized. To further reveal the genomic organization of the ORFV-GZ18 and ORFV-CL18 isolates, the complete genome sequences of two recently obtained ORFV isolates were sequenced using the next-generation sequencing technology and analyzed, which had been deposited in the GenBank database under accession number MN648218 and MN648219, respectively. The complete genomic sequence of ORFV-CL18 was 138,495 bp in length, including 131 potential open reading frames (ORFs) flanked by inverted terminal repeats (ITRs) of 3481 bp at both ends, which has genomic structure typical Parapoxviruses. The overall genomic organization of the fully sequenced genome of ORFV-GZ18 was consistent with ORFV-CL18 genome, with a complete genome size of 138,446 nucleotides, containing 131 ORFs flanked by ITRs of 3469 bp. Additionally, the overall G + C contents of ORFV-GZ18 and ORFV-CL18 genome sequences were about 63.9% and 63.8%, respectively. The phylogenetic analysis showed that both ORFV-GZ18 and ORFV-CL18 were genetically closely related to ORFV-SY17 derived from sheep. In summary, the complete genomic sequences of ORFV-GZ18 and ORFV-CL18 are reported, with the hope it will be useful to investigate the host range, geographic distribution, and genetic evolution of the virus in Southern West and Northern East China.
Collapse
Affiliation(s)
- Yanlong Zhou
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Lijun Lv
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Huan Cui
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Mengshi Xu
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Shuai Wang
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Zhaohui Yu
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Ruixue Zhen
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Shishi He
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Ziyu Fang
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Jiawei Zhong
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Shanshan Cui
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Shiying Yu
- Liupanshui Agriculture Bureau, Liupanshui, Guizhou, China
| | - Deguang Song
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China.,Key Laboratory of Zoonosis, Institute of Zoonosis, Jilin University, Ministry of Education, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China.
| |
Collapse
|
4
|
Martins M, Rodrigues FS, Joshi LR, Jardim JC, Flores MM, Weiblen R, Flores EF, Diel DG. Orf virus ORFV112, ORFV117 and ORFV127 contribute to ORFV IA82 virulence in sheep. Vet Microbiol 2021; 257:109066. [PMID: 33866062 DOI: 10.1016/j.vetmic.2021.109066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022]
Abstract
The parapoxvirus orf virus (ORFV) encodes several immunomodulatory proteins (IMPs) that modulate host innate and pro-inflammatory responses to infection. Using the ORFV IA82 strain as the parental virus, recombinant viruses with individual deletions in the genes encoding the IMPs chemokine binding protein (CBP; ORFV112), inhibitor of granulocyte-monocyte colony-stimulating factor and IL-2 (GIF, ORFV117) and interleukin 10 homologue (vIL-10; ORFV127) were generated and characterized in vitro and in vivo. The replication properties of the individual gene deletion viruses in cell culture was not affected comparing with the parental virus. To investigate the effect of the individual gene deletions in ORFV infection and pathogenesis, groups of four lambs were inoculated with each virus and were monitored thereafter. Lambs inoculated with either recombinant or with the parental ORFV developed characteristic lesions of contagious ecthyma. The onset, nature and severity of the lesions in the oral commissure were similar in all inoculated groups from the onset (3 days post-inoculation [pi]) to the peak of clinical lesions (days 11-13 pi). Nonetheless, from days 11-13 pi onwards, the oral lesions in lambs inoculated with the recombinant viruses regressed faster than the lesions produced by the parental virus. Similarly, the amount of virus shed in the lesions were equivalent among lambs of all groups up to day 15 pi, yet they were significantly higher in the parental virus group from day 16-21 pi. In conclusion, individual deletion of these IMP genes from the ORFV genome resulted in slight reduction in virulence in vivo, as evidenced by a reduction in the duration of the clinical disease and virus shedding.
Collapse
Affiliation(s)
- Mathias Martins
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States; Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima 1000, prédio 63A, Santa Maria, Rio Grande do Sul, 97105-900, Brazil; Laboratório de Virologia, Medicina Veterinária, Programa de Pós-Graduação em Sanidade e Produção Animal, Universidade do Oeste de Santa Catarina, Campus II, Rodovia Rovilho Bortoluzzi, SC 480, Km 3.5, Xanxere, Santa Catarina, 89820-000, Brazil; Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY, 14853, United States; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Fernando S Rodrigues
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Lok R Joshi
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States; Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY, 14853, United States; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - José C Jardim
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Mariana M Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima 1000, prédio 63A, Santa Maria, Rio Grande do Sul, 97105-900, Brazil; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Rudi Weiblen
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima 1000, prédio 63A, Santa Maria, Rio Grande do Sul, 97105-900, Brazil; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Eduardo F Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima 1000, prédio 63A, Santa Maria, Rio Grande do Sul, 97105-900, Brazil; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
| | - Diego G Diel
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States; Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY, 14853, United States; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
| |
Collapse
|
5
|
Ebling R, Martins B, Jardim JC, Flores MM, Diel DG, Weiblen R, Flores EF. Late development of pustular, erosive lesions in the muzzle of calves inoculated with Pseudocowpox virus. Microb Pathog 2020; 143:104122. [PMID: 32169495 DOI: 10.1016/j.micpath.2020.104122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
Abstract
We studied the pathogenesis of Pseudocowpox virus (PCPV), a zoonotic parapoxvirus associated with mucocutaneous lesions in cattle. Inoculation of calves with PCPV isolate SD 76-65 intranasally (n = 6) or transdermally in the muzzle (n = 2) resulted in virus replication and shedding up to day 13 post-infection (pi). No local or systemic signs were observed in inoculated calves up to day 20pi, when the clinical monitoring was discontinued. However, from days 28-34 pi, seven (7/8) inoculated calves underwent an asynchronous clinical course characterized by development of a few (one or two) to countless papulo-pustular, erosive-fibrinous and scabby lesions in the muzzle, in some cases extending to the lips and gingiva. In some animals, the lesions coalesced, forming extensive fibrinotic/necrotic and scabby plaques covering almost entirely the muzzle. The clinical course lasted 8-15 days and spontaneously subsided after day 42pi. Infectious virus and/or viral DNA were detected in swabs collected from lesions of 5/8 animals between days 34 and 42pi. Histological examination of fragments collected from the muzzle lesions of two affected calves (day 36pi) revealed marked epidermal hyperplasia and severe orthokeratotic and parakeratotic hyperkeratosis, covered by thick scabs. The epidermis showed multifocal areas of keratinocyte coalescing necrosis and mild multifocal vacuolar degeneration. Sera of inoculated calves at 50pi showed partial virus neutralization at low dilutions, demonstrating seroconversion. The delayed and severe clinical course associated with virus persistence in lesions are novel findings and contribute for the understanding of PCPV pathogenesis.
Collapse
Affiliation(s)
- R Ebling
- Virology Section, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, RS, Brazil; Programa de Pós-graduação Em Medicina Veterinária, UFSM, Brazil
| | - B Martins
- Virology Section, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, RS, Brazil; Programa de Pós-graduação Em Medicina Veterinária, UFSM, Brazil
| | - J C Jardim
- Virology Section, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, RS, Brazil
| | - M M Flores
- Veterinary Pathology Laboratory, Federal University of Santa Maria, Brazil
| | - D G Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - R Weiblen
- Virology Section, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, RS, Brazil
| | - E F Flores
- Virology Section, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Karki M, Kumar A, Arya S, Venkatesan G. Circulation of orf viruses containing the NZ7-like vascular endothelial growth factor (VEGF-E) gene type in India. Virus Res 2020; 281:197908. [PMID: 32126295 DOI: 10.1016/j.virusres.2020.197908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Orf, a poxviral skin infection of small ruminants is caused by orf virus (ORFV) of the genus Parapoxvirus of the Poxviridae family. Vascular endothelial growth factor (VEGF) is an important virulence factor that is responsible for proliferative lesions in parapoxviral infections. VEGF gene shows high intra- and inter-species variability. Two variants of VEGF have been described globally in ORFV, viz. NZ2- and NZ7-like. In the present study, ORFV isolates of different geographic regions of India were analysed on the basis of the VEGF gene. Indian ORFV isolates showed 95.7-100 % nucleotide (nt) and 78.4-99.3 % amino acid (aa) identity with each other, except ORFV-Assam/LK/14 and ORFV-Meghalaya/03 which shared 85.1-88.35 % and 79.1-81.8 % identity, at nt and aa levels, respectively with other Indian ORFV isolates. All Indian ORFVs under the study demonstrated 83.5-99.1 % nt and 80.5-97.9 % aa identity with NZ7-like VEGF as compared to 41.2-44.8 % nt and 30.7-38.4 % aa identity with NZ2-like VEGF on comparison with global ORFV strains. Phylogenetic analysis based on the VEGF gene showed two clusters of ORFV in which the Indian ORFVs clustered with NZ7-like VEGF from global ORFV strains, mostly from China. Despite the considerable variation, VEGF protein from Indian ORFV strains showed conserved VEGF homology domain with eight cysteine residues. Homology modeling of Indian ORFV strains predicted the presence of extended Loop 3 similar to NZ7-like VEGF. Therefore, the present study showed the circulation of ORFV strains with comparatively less variable NZ7-like VEGF in India which implicates its importance in the epidemiology of ORFV infections in the country.
Collapse
Affiliation(s)
- Monu Karki
- Division of Virology, ICAR- Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Amit Kumar
- Division of Virology, ICAR- Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Sargam Arya
- Division of Virology, ICAR- Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Gnanavel Venkatesan
- Division of Virology, ICAR- Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India.
| |
Collapse
|
7
|
Bala JA, Balakrishnan KN, Jesse FFA, Abdullah AA, Noorzahari MSB, Ghazali MT, Mohamed RB, Haron AW, Noordin MM, Mohd-Azmi ML. Identification of strain diversity and phylogenetic analysis based on two major essential proteins of Orf viruses isolated from several clinical cases reported in Malaysia. INFECTION GENETICS AND EVOLUTION 2019; 77:104076. [PMID: 31678648 DOI: 10.1016/j.meegid.2019.104076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/30/2019] [Accepted: 10/16/2019] [Indexed: 01/22/2023]
Abstract
There is a little information on the characterization of Orf virus strains that are endemic in Malaysia. The relationship between the severity of disease and the molecular genetic profile of Orf virus strains has not been fully elucidated. This study documented the first confirmed report of contagious ecthyma causing by Orf virus in goats from a selected state of eastern peninsular Malaysia. The disease causes significant debilitation due to the inability of affected animals to suckle which brings a great economic loss to the farmers. A total of 504 animals were examined individually to recognize the affected animals with Orf lesion. Skin scrapping was used to collect the scab material from the infected animals. The presence of Orf virus was confirmed by combination of methods including virus isolation on vero cells, identification by Transmission Electron Microscopy (TEM) and molecular technique using PCR and Sanger sequencing. The results showed the successful isolation of four Orf virus strains with a typical cytopathic effects on the cultured vero cells line. The morphology was confirmed to be Orf virus with a distinctive ovoid and criss cross structure. The phylogenetic analysis revealed that these isolated strains were closely related to each other and to other previously isolated Malaysian orf viruses. In addition these Orf virus strains were closely related to Orf viruses from China and India. This study provides more valuable insight in terms of genotype of Orf virus circulating in Malaysia.
Collapse
Affiliation(s)
- Jamilu Abubakar Bala
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Microbiology Unit, Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, P.M.B. 3011 Kano, Nigeria.
| | - Krishnan Nair Balakrishnan
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ashwaq Ahmed Abdullah
- Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Muhammad Syaafii Bin Noorzahari
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Termizi Ghazali
- Jabatan Perkhidmatan Veterinar Negeri Terengganu, Peti Surat 203, 20720 Kuala Terengganu, Malaysia
| | - Ramlan Bin Mohamed
- Institut Penyelidikan Haiwan (IPH), Veterinary Research Institute, Ipoh, 59, Jalan Sultan Azlan Shah, 31400 Ipoh, Perak, Malaysia
| | - Abd Wahid Haron
- Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Mustapha Mohamed Noordin
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Lila Mohd-Azmi
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
8
|
Karki M, Kumar A, Arya S, Ramakrishnan MA, Venkatesan G. Poxviral E3L ortholog (Viral Interferon resistance gene) of orf viruses of sheep and goats indicates species-specific clustering with heterogeneity among parapoxviruses. Cytokine 2019; 120:15-21. [PMID: 30991229 DOI: 10.1016/j.cyto.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/19/2019] [Accepted: 04/04/2019] [Indexed: 11/15/2022]
Abstract
Orf is a contagious disease posing a serious threat to animal and human health. E3L is one of the evolutionarily acquired immunomodulatory proteins present in orf virus (ORFV) and is responsible for conferring resistance to interferons among poxviruses. Genetic analysis of ORFV isolates of different geographical regions including Indian subcontinent targeting viral interferon resistance (VIR) gene (a homolog of vaccinia virus E3L gene) revealed a high percentage of identity among themselves and other ORFV isolates at both nt and aa levels as compared to low identity among parapoxviruses (PPVs). Phylogenetic analysis showed species-specific clustering among PPVs along with sub-clusters based on host species of origin among ORFVs infecting sheep and goats. Conserved amino acids in N-terminal Z-DNA binding domain and C-terminal ds RNA binding domain of VIR proteins of PPVs corresponding to ORFV VIR positions namely N37, Y41, P57, and W59 (necessary for Z-DNA binding) and E116, F127, F141, and K160 (necessary for dsRNA binding) were found. Further, the predicted protein characteristics and homology model of VIR protein of ORFV showed high structural conservation among poxviruses. This study on E3L genetic analysis of ORFV isolates may provide a better understanding of the molecular epidemiology of circulating strains in India and neighboring countries. Also, E3L deleted or mutated ORFV may be an as vaccine candidate and/or compounds blocking E3L may prove as an effective method for treating broad spectrum poxviral infections, suggesting a wider application in control of poxvirus infections.
Collapse
Affiliation(s)
- Monu Karki
- Division of Virology, ICAR-IVRI, Mukteswar 263 138, Nainital, Uttarakhand, India
| | - Amit Kumar
- Division of Virology, ICAR-IVRI, Mukteswar 263 138, Nainital, Uttarakhand, India
| | - Sargam Arya
- Division of Virology, ICAR-IVRI, Mukteswar 263 138, Nainital, Uttarakhand, India
| | - M A Ramakrishnan
- Division of Virology, ICAR-IVRI, Mukteswar 263 138, Nainital, Uttarakhand, India
| | - G Venkatesan
- Division of Virology, ICAR-IVRI, Mukteswar 263 138, Nainital, Uttarakhand, India.
| |
Collapse
|
9
|
Identification of host cellular proteins LAGE3 and IGFBP6 that interact with orf virus protein ORFV024. Gene 2018; 661:60-67. [DOI: 10.1016/j.gene.2018.03.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/07/2018] [Accepted: 03/28/2018] [Indexed: 11/19/2022]
|
10
|
Tedla M, Berhan N, Molla W, Temesgen W, Alemu S. Molecular identification and investigations of contagious ecthyma (Orf virus) in small ruminants, North west Ethiopia. BMC Vet Res 2018; 14:13. [PMID: 29334948 PMCID: PMC5769459 DOI: 10.1186/s12917-018-1339-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 01/07/2018] [Indexed: 12/03/2022] Open
Abstract
Background Orf virus, the prototype of parapoxvirus, is the main causative agent of contagious ecthyma. Little is known about the status of the disease in Ethiopia and this study was aimed at determining its status using PCR as a confirmatory tool. Methods a total of 400 randomly selected sheep and goat was screened for the identification of the virus using amplification of B2L gene and transfection of mammalian cells (VERO cells). Results Out of 400 animals screened for infection of the virus, 48 animals were found positive to PCR and revealed an overall incidence of 12%. Different epidemiological parameters were considered to look at the association with incidence of the disease and of which, only species of the animal(sheep), non-vaccinated and non-treated animals, nursing animals, poor body condition animals, extensively managed animals, animals having mouth lesion, and study areas having outbreak history showed higher prevalence. A univariate logistic regression analysis showed statistically significant difference in all variables (P < 0.05). Whereas, age and sex of animals showed no significant difference (P < 0.05). Conclusion The result of the present finding showed high incidence of Orf virus in the region as confirmed through PCR.
Collapse
Affiliation(s)
- Mebrahtu Tedla
- Department of Biomedical Sciences, University of Gondar, College of Veterinary Medicine and Animal Sciences, P.O. Box: 196, Gondar, Ethiopia.
| | - Nega Berhan
- Department of Biotechnology, University of Gondar, College of Natural and Computational Sciences, P.O. Box: 196, Gondar, Ethiopia
| | - Wassie Molla
- Department of Clinical Studies, University of Gondar, College of Veterinary Medicine and Animal Sciences, P.O. Box: 196, Gondar, Ethiopia
| | - Wudu Temesgen
- Department of Veterinary Epidemiology and Public Health, University of Gondar, College of Veterinary Medicine and Animal Sciences, P.O. Box: 196, Gondar, Ethiopia
| | - Sefinew Alemu
- Department of Clinical Studies, University of Gondar, College of Veterinary Medicine and Animal Sciences, P.O. Box: 196, Gondar, Ethiopia
| |
Collapse
|
11
|
Fleming SB, Wise LM, Mercer AA. Molecular genetic analysis of orf virus: a poxvirus that has adapted to skin. Viruses 2015; 7:1505-39. [PMID: 25807056 PMCID: PMC4379583 DOI: 10.3390/v7031505] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022] Open
Abstract
Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been "captured" from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF)-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis.
Collapse
Affiliation(s)
- Stephen B Fleming
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| | - Lyn M Wise
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| | - Andrew A Mercer
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|