1
|
Hu Z, Tian X, Lai R, Ji C, Li X. Airborne transmission of common swine viruses. Porcine Health Manag 2023; 9:50. [PMID: 37908005 PMCID: PMC10619269 DOI: 10.1186/s40813-023-00346-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
The transmission of viral aerosols poses a vulnerable aspect in the biosecurity measures aimed at preventing and controlling swine virus in pig production. Consequently, comprehending and mitigating the spread of aerosols holds paramount significance for the overall well-being of pig populations. This paper offers a comprehensive review of transmission characteristics, influential factors and preventive strategies of common swine viral aerosols. Firstly, certain viruses such as foot-and-mouth disease virus (FMDV), porcine reproductive and respiratory syndrome virus (PRRSV), influenza A viruses (IAV), porcine epidemic diarrhea virus (PEDV) and pseudorabies virus (PRV) have the potential to be transmitted over long distances (exceeding 150 m) through aerosols, thereby posing a substantial risk primarily to inter-farm transmission. Additionally, other viruses like classical swine fever virus (CSFV) and African swine fever virus (ASFV) can be transmitted over short distances (ranging from 0 to 150 m) through aerosols, posing a threat primarily to intra-farm transmission. Secondly, various significant factors, including aerosol particle sizes, viral strains, the host sensitivity to viruses, weather conditions, geographical conditions, as well as environmental conditions, exert a considerable influence on the transmission of viral aerosols. Researches on these factors serve as a foundation for the development of strategies to combat viral aerosol transmission in pig farms. Finally, we propose several preventive and control strategies that can be implemented in pig farms, primarily encompassing the implementation of early warning models, viral aerosol detection, and air pretreatment. This comprehensive review aims to provide a valuable reference for the formulation of efficient measures targeted at mitigating the transmission of viral aerosols among swine populations.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China
- China Agriculture Research System-Yangling Comprehensive Test Station, Intersection of Changqing Road and Park Road 1, Yangling District, Xianyang, People's Republic of China
| | - Xiaogang Tian
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China
| | - Ranran Lai
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China
| | - Chongxing Ji
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, New Hope Liuhe Co., Ltd, 316 Jinshi Road, Chengdu, 610100, Sichuan, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
| | - Xiaowen Li
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China.
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, New Hope Liuhe Co., Ltd, 316 Jinshi Road, Chengdu, 610100, Sichuan, People's Republic of China.
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China.
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China.
- China Agriculture Research System-Yangling Comprehensive Test Station, Intersection of Changqing Road and Park Road 1, Yangling District, Xianyang, People's Republic of China.
| |
Collapse
|
2
|
Andraud M, Hervé S, Gorin S, Barbier N, Quéguiner S, Paboeuf F, Simon G, Rose N. Evaluation of early single dose vaccination on swine influenza A virus transmission in piglets: From experimental data to mechanistic modelling. Vaccine 2023; 41:3119-3127. [PMID: 37061373 DOI: 10.1016/j.vaccine.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
Swine influenza A virus (swIAV) is a major pathogen affecting pigs with a huge economic impact and potentially zoonotic. Epidemiological studies in endemically infected farms permitted to identify critical factors favoring on-farm persistence, among which maternally-derived antibodies (MDAs). Vaccination is commonly practiced in breeding herds and might be used for immunization of growing pigs at weaning. Althoughinterference between MDAs and vaccination was reported in young piglets, its impact on swIAV transmission was not yet quantified. To this aim, this study reports on a transmission experiment in piglets with or without MDAs, vaccinated with a single dose injection at four weeks of age, and challenged 17 days post-vaccination. To transpose small-scale experiments to real-life situation, estimated parameters were used in a simulation tool to assess their influence at the herd level. Based on a thorough follow-up of the infection chain during the experiment, the transmission of the swIAV challenge strain was highly dependent on the MDA status of the pigs when vaccinated. MDA-positive vaccinated animals showed a direct transmission rate 3.6-fold higher than the one obtained in vaccinated animals without MDAs, estimated to 1.2. Vaccination nevertheless reduced significantly the contribution of airborne transmission when compared with previous estimates obtained in unvaccinated animals. The integration of parameter estimates in a large-scale simulation model, representing a typical farrow-to-finish pig herd, evidenced an extended persistence of viral spread when vaccination of sows and single dose vaccination of piglets was hypothesized. When extinction was quasi-systematic at year 5 post-introduction in the absence of sow vaccination but with single dose early vaccination of piglets, the extinction probability fell down to 33% when batch-to-batch vaccination was implemented both in breeding herd and weaned piglets. These results shed light on a potential adverse effect of single dose vaccination in MDA-positive piglets, which might lead to longer persistence of the SwIAV at the herd level.
Collapse
Affiliation(s)
- M Andraud
- Anses, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare Unit, France.
| | - S Hervé
- Anses, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, France
| | - S Gorin
- Anses, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, France
| | - N Barbier
- Anses, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, France
| | - S Quéguiner
- Anses, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, France
| | - F Paboeuf
- Anses, Ploufragan-Plouzané-Niort Laboratory, SPF Pig Production and Experimentation, France
| | - G Simon
- Anses, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, France
| | - N Rose
- Anses, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare Unit, France
| |
Collapse
|
3
|
Lu X, Ward MP. Spatiotemporal analysis of reported classical swine fever outbreaks in China (2005-2018) and the influence of weather. Transbound Emerg Dis 2022; 69:e3183-e3195. [PMID: 35007396 PMCID: PMC9787383 DOI: 10.1111/tbed.14452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/30/2022]
Abstract
Classical swine fever (CSF) is a viral disease that causes enormous economic losses in the swine industry in endemic countries including China. The aims of the current study were to describe the spatial distribution of annual CSF reports in China from 2005 to 2018, identify spatiotemporal clusters of annual CSF reports during this time period and to investigate the correlations between climate factors (rainfall, wind speed, temperature, vapour pressure and relative humidity) and the occurrence of CSF outbreaks. The strongest (Moran's index > 0.19), significant (p < .05) spatial clustering of reported outbreaks was observed during the first 4 years of the study period. This clustering was apparent in the four southern provinces of Guizhou, Guangxi, Guangdong and Yunnan. Five of the six significant (p ≤ .0001) spatiotemporal clusters occurred during the period 2005-2012. These were widely dispersed, with four clusters persisting for only 1 or 2 years, whereas two clusters (Jiangxi and Yunnan) persisted for 8 and 7 years, respectively. As a result of implementation of a national animal disease control plan and increasing coverage of vaccination, CSF outbreaks in China have generally been controlled and reduced, becoming sporadic in most provinces by 2018. We also confirmed that low relative humidity and high wind speed were significant weather variables associated with the occurrence of CSF. Furthermore, our study has confirmed that CSF is still endemic in some Chinese provinces, and we recommend that the national CSF control protocol be updated and standardized.
Collapse
Affiliation(s)
- Xiao Lu
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | - Michael P. Ward
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| |
Collapse
|
4
|
Jelsma T, Wijnker JJ, Smid B, Verheij E, van der Poel WHM, Wisselink HJ. Determination of Intestinal Viral Loads and Distribution of Bovine Viral Diarrhea Virus, Classical Swine Fever Virus, and Peste Des Petits Ruminants Virus: A Pilot Study. Pathogens 2021; 10:1188. [PMID: 34578220 PMCID: PMC8466767 DOI: 10.3390/pathogens10091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of this pilot study was to determine viral loads and distribution over the total length, at short distances, and in the separate layers of the intestine of virus-infected animals for future inactivation studies. Two calves, two pigs, and two goats were infected with bovine viral diarrhoea virus (BVDV), classical swine fever virus (CSFV), and peste des petits ruminants virus (PPRV), respectively. Homogenously distributed maximum BVDV viral loads were detected in the ileum of both calves, with a mean titer of 6.0 log10 TCID50-eq/g. The viral loads in colon and caecum were not distributed homogenously. In one pig, evenly distributed CSFV mean viral loads of 4.5 and 4.2 log10 TCID50-eq/g were found in the small and large intestines, respectively. Mucosa, submucosa, and muscular layer/serosa showed mean viral loads of 5.3, 3.4, and 4.0 log10 TCID50-eq/g, respectively. Homogenous distribution of PPRV was shown in the ileum of both goats, with a mean viral load of 4.6 log10 TCID50-eq/g. Mean mucosa, submucosa, and muscular layer/serosa viral loads were 3.5, 2.8, and 1.7 log10 TCID50-eq/g, respectively. This pilot study provides essential data for setting up inactivation experiments with intestines derived from experimentally infected animals, in which the level and the homogeneous distribution of intestinal viral loads are required.
Collapse
Affiliation(s)
- Tinka Jelsma
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.S.); (E.V.); (W.H.M.v.d.P.)
| | - Joris J. Wijnker
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.175, 3508 TD Utrecht, The Netherlands;
| | - Bregtje Smid
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.S.); (E.V.); (W.H.M.v.d.P.)
| | - Eline Verheij
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.S.); (E.V.); (W.H.M.v.d.P.)
| | - Wim H. M. van der Poel
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.S.); (E.V.); (W.H.M.v.d.P.)
| | - Henk J. Wisselink
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands;
| |
Collapse
|
5
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Sihvonen LH, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Gubbins S, Stegeman JA, Antoniou S, Aznar I, Broglia A, Lima E, Van der Stede Y, Zancanaro G, Roberts HC. Assessment of the control measures of the category A diseases of Animal Health Law: Classical Swine Fever. EFSA J 2021; 19:e06707. [PMID: 34306220 PMCID: PMC8294054 DOI: 10.2903/j.efsa.2021.6707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for Classical swine fever (CSF). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radii of the protection and surveillance zones, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, details of the model used for answering these questions are presented in this opinion as well as the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. Here, several recommendations are given on how to increase the effectiveness of some of the sampling procedures. Based on the average length of the period between virus introduction and the reporting of a CSF suspicion, the monitoring period was assessed as non-effective. In a similar way, it was recommended that the length of the measures in the protection and surveillance zones were increased from 15 to 25 days in the protection zone and from 30 to 40 days in the surveillance zone. Finally, the analysis of existing Kernels for CSF suggested that the radius of the protection and the surveillance zones comprise 99% of the infections from an affected establishment if transmission occurred. Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to CSF.
Collapse
|
6
|
Jelsma T, Wijnker JJ, Smid B, Verheij E, van der Poel WH, Wisselink HJ. Salt inactivation of classical swine fever virus and African swine fever virus in porcine intestines confirms the existing in vitro casings model. Vet Microbiol 2019; 238:108424. [DOI: 10.1016/j.vetmic.2019.108424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022]
|
7
|
Li H, Wei X, Zhang X, Xu H, Zhao X, Zhou S, Huang S, Liu X. Establishment of a multiplex RT-PCR assay for identification of atmospheric virus contamination in pig farms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:358-364. [PMID: 31325880 DOI: 10.1016/j.envpol.2019.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/20/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Spread of pathogens in pig farms not only causes transfection of diseases to other pigs or even farmers working in the farms, but also induces pollution to the living atmospheric environment of the residents around the farm. Therefore, it is necessary to establish a rapid and simple monitoring method. In this study, full genome sequences of common viruses were analyzed in pig farms, in combination with the design of primers, optimization of the reaction parameters, so as to establish a multiplex RT-PCR assay for the identification of classical swine fever virus (CSFV), Japanese encephalitis virus (JEV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus Type 2 (PCV-2), porcine pseudorabies virus (PRV) and porcine parvovirus virus (PPV), which are common in pig farms. This method has a minimal detectable concentration of 10-3 ng/μL, which is highly specific. Furthermore, multiplex RT-PCR was applied to examine air samples from 4 pig farms located in different cities of China. The results were in line with those obtained by single PCR. Therefore, this study can be expected to provide essential technique support for the early warning mechanism as well as disease prevention and control system against the major viruses.
Collapse
Affiliation(s)
- Han Li
- Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Xiaobing Wei
- Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Xiulin Zhang
- Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Hao Xu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xuesong Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shaofeng Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xingyou Liu
- Xinxiang University, Xinxiang 453003, Henan, PR China
| |
Collapse
|
8
|
Schulz K, Staubach C, Blome S. African and classical swine fever: similarities, differences and epidemiological consequences. Vet Res 2017; 48:84. [PMID: 29183365 PMCID: PMC5706370 DOI: 10.1186/s13567-017-0490-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/08/2017] [Indexed: 11/19/2022] Open
Abstract
For the global pig industry, classical (CSF) and African swine fever (ASF) outbreaks are a constantly feared threat. Except for Sardinia, ASF was eradicated in Europe in the late 1990s, which led to a research focus on CSF because this disease continued to be present. However, ASF remerged in eastern Europe in 2007 and the interest in the disease, its control and epidemiology increased tremendously. The similar names and the same susceptible species suggest a similarity of the two viral diseases, a related biological behaviour and, correspondingly, similar epidemiological features. However, there are several essential differences between both diseases, which need to be considered for the design of control or preventive measures. In the present review, we aimed to collate differences and similarities of the two diseases that impact epidemiology and thus the necessary control actions. Our objective was to discuss critically, if and to which extent the current knowledge can be transferred from one disease to the other and where new findings should lead to a critical review of measures relating to the prevention, control and surveillance of ASF and CSF. Another intention was to identify research gaps, which need to be closed to increase the chances of a successful eradication of ASF and therefore for a decrease of the economic threat for pig holdings and the international trade.
Collapse
Affiliation(s)
- Katja Schulz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald, Insel Riems Germany
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald, Insel Riems Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald, Insel Riems Germany
| |
Collapse
|
9
|
Cador C, Hervé S, Andraud M, Gorin S, Paboeuf F, Barbier N, Quéguiner S, Deblanc C, Simon G, Rose N. Maternally-derived antibodies do not prevent transmission of swine influenza A virus between pigs. Vet Res 2016; 47:86. [PMID: 27530456 PMCID: PMC4988049 DOI: 10.1186/s13567-016-0365-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Abstract
A transmission experiment involving 5-week-old specific-pathogen-free (SPF) piglets, with (MDA(+)) or without maternally-derived antibodies (MDA(-)), was carried out to evaluate the impact of passive immunity on the transmission of a swine influenza A virus (swIAV). In each group (MDA(+)/MDA(-)), 2 seeders were placed with 4 piglets in direct contact and 5 in indirect contact (3 replicates per group). Serological kinetics (ELISA) and individual viral shedding (RT-PCR) were monitored for 28 days after infection. MDA waning was estimated using a nonlinear mixed-effects model and survival analysis. Differential transmission rates were estimated depending on the piglets' initial serological status and contact structure (direct contact with pen-mates or indirect airborne contact). The time to MDA waning was 71.3 [52.8-92.1] days on average. The airborne transmission rate was 1.41 [0.64-2.63] per day. The compared shedding pattern between groups showed that MDA(+) piglets had mainly a reduced susceptibility to infection compared to MDA(-) piglets. The resulting reproduction number estimated in MDA(+) piglets (5.8 [1.4-18.9]), although 3 times lower than in MDA(-) piglets (14.8 [6.4-27.1]), was significantly higher than 1. Such an efficient and extended spread of swIAV at the population scale in the presence of MDAs could contribute to swIAV persistence on farms, given the fact that the period when transmission is expected to be impacted by the presence of MDAs can last up to 10 weeks.
Collapse
Affiliation(s)
- Charlie Cador
- Swine Epidemiology and Welfare Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France. .,Université Bretagne Loire, Rennes, France.
| | - Séverine Hervé
- Swine Virology Immunology Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Mathieu Andraud
- Swine Epidemiology and Welfare Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Stéphane Gorin
- Swine Virology Immunology Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Frédéric Paboeuf
- SPF Pig Production and Experimental Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Nicolas Barbier
- Swine Virology Immunology Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Stéphane Quéguiner
- Swine Virology Immunology Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Céline Deblanc
- Swine Virology Immunology Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Gaëlle Simon
- Swine Virology Immunology Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Nicolas Rose
- Swine Epidemiology and Welfare Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| |
Collapse
|