1
|
Myrenås M, Pedersen K, Windahl U. Genomic Analyses of Methicillin-Resistant Staphylococcus pseudintermedius from Companion Animals Reveal Changing Clonal Populations, Multidrug Resistance, and Virulence. Antibiotics (Basel) 2024; 13:962. [PMID: 39452228 PMCID: PMC11505346 DOI: 10.3390/antibiotics13100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Staphylococcus pseudintermedius is part of the normal microbiota in dogs. Since 2006, an increase in multidrug-resistant clones of methicillin-resistant S. pseudintermedius has been reported, as well as zoonotic transmission. Longitudinal investigations into clonal population structures, antibiotic resistance patterns, and the presence of resistance and virulence genes are important tools for gaining knowledge of the mechanisms behind the emergence of such clones. METHODS We investigated 87% of all non-repetitive MRSP isolates from dogs and cats in Sweden over a ten-year period (n = 356). All isolates were subjected to staphylococcal chromosomal cassette mec identification, whole-genome sequencing, multi-locus sequence typing, and analyses of genomic relatedness, as well as investigation of phenotypical resistance patterns and the presence of antibiotic resistance genes and virulence genes. RESULTS A considerable increase over time in the number of clonal lineages present was observed, indicating genomic diversification, and four clones became dominant: ST71, ST258, ST265, and ST551. In total, 96% of the isolates were multidrug-resistant. Statistically significant differences in resistance to several antibiotic classes between the four dominant clones were present. All isolates carried several virulence genes encoding factors associated with attachment, colonization, toxin synthesis, quorum sensing, antibiotic resistance, and immune evasion.
Collapse
Affiliation(s)
- Mattias Myrenås
- Swedish Veterinary Agency, Ulls väg 2b, SE-75189 Uppsala, Sweden
| | - Karl Pedersen
- Department of Animal and Veterinary Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark;
| | - Ulrika Windahl
- Swedish Veterinary Agency, Ulls väg 2b, SE-75189 Uppsala, Sweden
| |
Collapse
|
2
|
Teixeira IM, de Moraes Assumpção Y, Paletta ACC, Aguiar L, Guimarães L, da Silva IT, Côrtes MF, Botelho AMN, Jaeger LH, Ferreira RF, de Oliveira Ferreira E, Penna B. Investigation of antimicrobial susceptibility and genetic diversity among Staphylococcus pseudintermedius isolated from dogs in Rio de Janeiro. Sci Rep 2023; 13:20219. [PMID: 37980395 PMCID: PMC10657392 DOI: 10.1038/s41598-023-47549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023] Open
Abstract
Staphylococcus pseudintermedius is an opportunistic pathogen causing a variety of infections that are difficult to treat, especially because of the development of antimicrobial resistance. It has a clonal distribution around the world. To have a better understanding of the MRSP population, we search the presence of MRSP in colonized or infected dogs. Samples from 99 dogs with infections and 35 from asymptomatic dogs were collected. Isolates were identified by mass spectrometry and Multiplex-PCR. The mecA gene was confirmed by conventional PCR. MRSP strains were analyzed by whole-genome sequencing. 75 S. pseudintermedius were identified, most from infection cases. The species were isolated from 70 out of the 135 dogs. Penicillin and Trimethoprim/Sulfamethoxazole presented higher resistance rates. Forty-seven strains were classified as multi-drug resistant (MDR), and were more isolated from dogs with infection (P < 0.05). Eighteen samples were classified as MRSP, representing 24.0% of the population. Six of 16 MRSP sequenced samples belonged to the world spread clone ST71; others belonged to unknown clones. Most samples carried the SCCmec type IIIA. Twenty-one different genetic resistance determinants were found among MRPS strains. MRSP is circulating among infected and colonized dogs in Rio de Janeiro, Brazil.
Collapse
Affiliation(s)
- Izabel Mello Teixeira
- Laboratório de Biologia de Anaeróbios, Departamento Microbiologia Médica, IMPPG, UFRJ, Rio de Janeiro, Brazil
- Laboratório de Cocos Gram Positivos, Departamento de Microbiologia e Parasitologia, UFF, Rio de Janeiro, Brazil
| | - Yasmim de Moraes Assumpção
- Laboratório de Biologia de Anaeróbios, Departamento Microbiologia Médica, IMPPG, UFRJ, Rio de Janeiro, Brazil
- Laboratório de Cocos Gram Positivos, Departamento de Microbiologia e Parasitologia, UFF, Rio de Janeiro, Brazil
| | - Ana Clara Cabral Paletta
- Laboratório de Cocos Gram Positivos, Departamento de Microbiologia e Parasitologia, UFF, Rio de Janeiro, Brazil
| | - Louise Aguiar
- Laboratório de Cocos Gram Positivos, Departamento de Microbiologia e Parasitologia, UFF, Rio de Janeiro, Brazil
| | - Luciana Guimarães
- Laboratório de Cocos Gram Positivos, Departamento de Microbiologia e Parasitologia, UFF, Rio de Janeiro, Brazil
| | - Isabella Thomaz da Silva
- Laboratório de Cocos Gram Positivos, Departamento de Microbiologia e Parasitologia, UFF, Rio de Janeiro, Brazil
| | - Marina F Côrtes
- Laboratório de Investigação Médica, Instituto de Medicina Tropical, USP, São Paulo, Brazil
| | - Ana Maria Nunes Botelho
- Laboratório de Cocos Gram Positivos, Departamento de Microbiologia e Parasitologia, UFF, Rio de Janeiro, Brazil
| | - Lauren Hubert Jaeger
- Laboratório de Células-Tronco e Parasitologia Molecular, Departamento de Ciências Farmacêuticas, UFJF, Juiz de Fora, Brazil
| | | | - Eliane de Oliveira Ferreira
- Laboratório de Biologia de Anaeróbios, Departamento Microbiologia Médica, IMPPG, UFRJ, Rio de Janeiro, Brazil
| | - Bruno Penna
- Laboratório de Cocos Gram Positivos, Departamento de Microbiologia e Parasitologia, UFF, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Sawhney SS, Vargas RC, Wallace MA, Muenks CE, Lubbers BV, Fritz SA, Burnham CAD, Dantas G. Diagnostic and commensal Staphylococcus pseudintermedius genomes reveal niche adaptation through parallel selection of defense mechanisms. Nat Commun 2023; 14:7065. [PMID: 37923729 PMCID: PMC10624692 DOI: 10.1038/s41467-023-42694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Staphylococcus pseudintermedius is historically understood as a prevalent commensal and pathogen of dogs, though modern clinical diagnostics reveal an expanded host-range that includes humans. It remains unclear whether differentiation across S. pseudintermedius populations is driven primarily by niche-type or host-species. We sequenced 501 diagnostic and commensal isolates from a hospital, veterinary diagnostic laboratory, and within households in the American Midwest, and performed a comparative genomics investigation contrasting human diagnostic, animal diagnostic, human colonizing, pet colonizing, and household-surface S. pseudintermedius isolates. Though indistinguishable by core and accessory gene architecture, diagnostic isolates harbor more encoded and phenotypic resistance, whereas colonizing and surface isolates harbor similar CRISPR defense systems likely reflective of common household phage exposures. Furthermore, household isolates that persist through anti-staphylococcal decolonization report elevated rates of base-changing mutations in - and parallel evolution of - defense genes, as well as reductions in oxacillin and trimethoprim-sulfamethoxazole susceptibility. Together we report parallel niche-specific bolstering of S. pseudintermedius defense mechanisms through gene acquisition or mutation.
Collapse
Affiliation(s)
- Sanjam S Sawhney
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rhiannon C Vargas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meghan A Wallace
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Carol E Muenks
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian V Lubbers
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| | - Stephanie A Fritz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
4
|
Östholm Balkhed Å, Söderlund R, Gunnarsson L, Wikström C, Ljung H, Claesson C, Börjesson S. An investigation of household dogs as the source in a case of human bacteraemia caused by Staphylococcus pseudintermedius. Infect Ecol Epidemiol 2023; 13:2229578. [PMID: 37416510 PMCID: PMC10321180 DOI: 10.1080/20008686.2023.2229578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Staphylococcus pseudintermedius is a commensal and an opportunistic pathogen in dogs, and is also an opportunistic pathogen in humans. Here we report about a case of bacteraemia with a fatal outcome in a 77-year-old co-morbid male likely caused by a S. pseudintermedius and the investigation into the possible transmission from the two dogs in the patient's household. The two dogs carried the same S. pseudintermedius strain, but this dog strain was unrelated to the strain from the patient. In contrast to the patient strain, the dog strain showed reduced susceptibility to several antibiotics and both dogs had received antibiotic treatment prior to sampling. So, it is conceivable that these treatments can have eliminated the patient's strain between the transmission event and the dog sampling. It is also worth noting that the patient strain was positive for the expA gene, which encodes an exfoliative toxin closely related to the S. aureus exfoliative toxin B. This toxin has been linked to canine pyoderma, but its effect on humans remains unknown. Transmission of S. pseudintermedius was confirmed in the household between the dogs. However, we could not verify that the dogs were the source for the S. pseudintermedius in the patient.
Collapse
Affiliation(s)
- Åse Östholm Balkhed
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robert Söderlund
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Lotta Gunnarsson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| | - Camilla Wikström
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Helena Ljung
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Carina Claesson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Stefan Börjesson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
5
|
Detecting mecA in Faecal Samples: A Tool for Assessing Carriage of Meticillin-Resistant Staphylococci in Pets and Owners in the Microbiological ‘Fast Age’? MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sampling animals for carriage of meticillin-resistant, coagulase-positive staphylococci (MRCoPS), considered zoonotic pathogens, can be challenging and time-consuming. Developing methods to identify mecA from non-invasive samples, e.g., faeces, would benefit AMR surveillance and management of MRS carrier animals. This study aimed to distinguish MRS carriers from non-carriers from faecal samples using quantitative polymerase chain reaction (qPCR) for mecA. Paired faecal and nasal swab samples (n = 86) were obtained from 13 dogs and 20 humans as part of a longitudinal study. Nasal MRCoPS carriage (either MR-Staphylococcus aureus or MR-Staphylococcus pseudintermedius was confirmed by identification of species (nuc) and meticillin resistance (mecA) (PCR). Faecal DNA (n = 69) was extracted and a qPCR method was optimised to provide a robust detection method. The presence of faecal mecA was compared between MRS carriers and non-carriers (Kruskal–Wallis test). Nasal swabbing identified seven canine and four human MRCoPS carriers. mecA was detected in 13/69 faecal samples, including four MRCoPS carriers and nine non-carriers. For dogs, there was no significant association (p = 1.000) between carrier status and mecA detection; for humans, mecA was more commonly detected in MRCoPS carriers (p = 0.047). mecA was detected in faeces of MRCoPS carriers and non-carriers by qPCR, but larger sample sizes are required to determine assay sensitivity. This rapid method enables passive surveillance of mecA in individuals and the environment.
Collapse
|
6
|
Risk Factors for Antimicrobial Resistance of Staphylococcus Species Isolated from Dogs with Superficial Pyoderma and Their Owners. Vet Sci 2022; 9:vetsci9070306. [PMID: 35878323 PMCID: PMC9325117 DOI: 10.3390/vetsci9070306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
The microbial communities on the skin of dogs include several species of bacteria, which contribute to skin health and disease. Staphylococcus pseudintermedius, cultured at high frequency from the skin of dogs, is an opportunistic pathogen causing superficial pyoderma. Effective treatment against S. pseudintermedius infections is an important issue in veterinary medicine. However, multiple antibiotic-resistant mechanisms gradually developed by bacteria make treatment more challenging nowadays. Drug-resistant genes may have the chance to be transferred from infected dogs to other staphylococci in humans. The objective of this survey is to investigate the bacterial species that cause canine superficial pyoderma and characterize the antibiotic-resistant profiles and drug-resistant genes of isolated S. pseudintermedius. In addition, the possible risk factors causing S. pseudintermedius colonizing owners were also evaluated by a questionnaire survey. Sixty-five bacteria were isolated from dogs with superficial pyoderma, which included 47 S. pseudintermedius (72.3%), 12 other staphylococci (18.5%), 4 other Gram-positive bacteria (6.2%) and 2 Gram-negative bacteria (3.1%). Strains containing mecA and blaZ genes showed multiple-drug resistance characteristics. Dogs that received antimicrobial treatment within a recent month were at significantly higher risk of MRSP infections. Only five S. pseudintermedius strains (8.33%) were isolated from 60 samples of owners. Risk factor analysis indicated there was no significant association between S. pseudintermedius isolated from dogs and owners, but the “Keeping three or more dogs” and “Dogs can lick the owner’s face” have high odds ratios of 3.503 and 5.712, respectively. MRSP isolates belonged to three different dru types, including dt11y (29.41%), dt11a (47.06%) and dt10cp (23.53%). In conclusion, the major pathogen of canine superficial pyoderma is found to be S. pseudintermedius in Taiwan, and isolates which are mecA- or blaZ-positive are generally more resistant to commonly used antibiotics. Although S. pseudintermedius isolated from the owners might be transferred from their dogs, definite risk factors should be examined in the future study.
Collapse
|
7
|
Godijk NG, Bootsma MCJ, Bonten MJM. Transmission routes of antibiotic resistant bacteria: a systematic review. BMC Infect Dis 2022; 22:482. [PMID: 35596134 PMCID: PMC9123679 DOI: 10.1186/s12879-022-07360-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Quantification of acquisition routes of antibiotic resistant bacteria (ARB) is pivotal for understanding transmission dynamics and designing cost-effective interventions. Different methods have been used to quantify the importance of transmission routes, such as relative risks, odds ratios (OR), genomic comparisons and basic reproduction numbers. We systematically reviewed reported estimates on acquisition routes’ contributions of ARB in humans, animals, water and the environment and assessed the methods used to quantify the importance of transmission routes. Methods PubMed and EMBASE were searched, resulting in 6054 articles published up until January 1st, 2019. Full text screening was performed on 525 articles and 277 are included. Results We extracted 718 estimates with S. aureus (n = 273), E. coli (n = 157) and Enterobacteriaceae (n = 99) being studied most frequently. Most estimates were derived from statistical methods (n = 560), mainly expressed as risks (n = 246) and ORs (n = 239), followed by genetic comparisons (n = 85), modelling (n = 62) and dosage of ARB ingested (n = 17). Transmission routes analysed most frequently were occupational exposure (n = 157), travelling (n = 110) and contacts with carriers (n = 83). Studies were mostly performed in the United States (n = 142), the Netherlands (n = 87) and Germany (n = 60). Comparison of methods was not possible as studies using different methods to estimate the same route were lacking. Due to study heterogeneity not all estimates by the same method could be pooled. Conclusion Despite an abundance of published data the relative importance of transmission routes of ARB has not been accurately quantified. Links between exposure and acquisition are often present, but the frequency of exposure is missing, which disables estimation of transmission routes’ importance. To create effective policies reducing ARB, estimates of transmission should be weighed by the frequency of exposure occurrence. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07360-z.
Collapse
Affiliation(s)
- Noortje G Godijk
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Martin C J Bootsma
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Mathematics, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Silva V, Caniça M, Manageiro V, Vieira-Pinto M, Pereira JE, Maltez L, Poeta P, Igrejas G. Antimicrobial Resistance and Molecular Epidemiology of Staphylococcus aureus from Hunters and Hunting Dogs. Pathogens 2022; 11:548. [PMID: 35631069 PMCID: PMC9143024 DOI: 10.3390/pathogens11050548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Several studies have showed that a dog-to-human transmission of Staphylococcus aureus occurs. Hunting dogs do not have as much contact with their owners as dogs that live in the same household as the owners; however, these dogs have contact with their owners during hunting activities as well as when hunting game; therefore, we aimed to isolate S. aureus from hunters and their hunting dogs to investigate a possible S. aureus transmission. Nose and mouth samples were collected from 30 hunters and their 78 hunting dogs for staphylococcal isolation. The species identification was performed using MALDI-TOF. The antimicrobial susceptibility profiles were accessed using the Kirby-Bauer method and respective antimicrobial resistance genes were investigated by PCR. Multilocus sequence typing (MLST) and spa- and agr-typing was performed in all S. aureus isolates. S. aureus were detected in 10 (30%) human samples and in 11 (15.4%) dog samples of which 11 and 5 were methicillin-resistant S. aureus (MRSA). Other staphylococci were identified, particularly, S. pseudintermedius. Most S. aureus isolates were resistant to penicillin, erythromycin, and tetracycline. Evidence of a possible transmission of S. aureus between human and dogs was detected in three hunters and their dogs. S. aureus isolates were ascribed to 10 STs and 9 spa-types. A moderate colonization of S. aureus in hunting dogs and their owners was detected in this study. A few dog-to-dog and dog-to-human possible transmissions were identified.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.E.P.); (L.M.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (M.C.); (V.M.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (M.C.); (V.M.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Madalena Vieira-Pinto
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Eduardo Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.E.P.); (L.M.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís Maltez
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.E.P.); (L.M.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.E.P.); (L.M.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
9
|
Fungwithaya P, Sontigun N, Boonhoh W, Boonchuay K, Wongtawan T. Antimicrobial resistance in Staphylococcus pseudintermedius on the environmental surfaces of a recently constructed veterinary hospital in Southern Thailand. Vet World 2022; 15:1087-1096. [PMID: 35698521 PMCID: PMC9178593 DOI: 10.14202/vetworld.2022.1087-1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
Background and Aim: Staphylococcus pseudintermedius is a zoonotic bacterium commonly found in animals, especially dogs. These bacteria can survive on environmental surfaces for several months. The infection of S. pseudintermedius from the environment is possible, but properly cleaning surface objects can prevent it. This study aimed to investigate the prevalence of methicillin-resistant S. pseudintermedius (MRSP) in the environment of a recently constructed veterinary hospital in Southern Thailand, where we hypothesized that the prevalence of MRSP might be very low. Materials and Methods: At three different time points, 150 samples were collected from different environmental surfaces and wastewater across the veterinary hospital. The collection was done after the hospital’s cleaning. Bacteria were purified in the culture before being identified as species by biochemical tests and polymerase chain reaction (PCR). Next, the antimicrobial-resistant profile was performed using an automated system (Vitek 2). Finally, the antimicrobial resistance genes were identified using PCR. Results: Fifteen colonies of S. pseudintermedius were isolated from the surfaces of eight floors, four tables, two chairs, and one rebreathing tube. Fourteen colonies (93.3%) were multidrug-resistant (MDR) and carried the blaZ gene (93.3%). The majority of colonies were resistant to benzylpenicillin (93.3%), cefovecin (93.3%), ceftiofur (93.3%), kanamycin (93.3%), and neomycin (93.3%). Notably, only four colonies (26.7%) were methicillin-susceptible S. pseudintermedius, whereas 11 colonies (73.3%) were MRSP and carried both the mecA and blaZ genes. Five MRSP (45.5%) were resistant to at least 14 antimicrobial drugs, represented as extensively drug-resistant (XDR) bacteria. Ten of eleven MRSP (90.9%) were Staphylococcal chromosomal mec type V, while another displayed untypeable. Despite the routine and extensive cleaning with detergent and disinfectant, MRSP isolates were still detectable. Conclusion: Many isolates of MRSP were found in this veterinary hospital. Almost all of them were MDR, and nearly half were XDR, posing a threat to animals and humans. In addition, the current hospital cleaning procedure proved ineffective. Future research should be conducted to determine the bacterial biofilm properties and bacterial sensitivity to certain detergents and disinfectants.
Collapse
Affiliation(s)
- Punpichaya Fungwithaya
- Centre of Excellence Research for Melioidosis and other Microorganism, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Narin Sontigun
- Centre of Excellence Research for Melioidosis and other Microorganism; Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worakan Boonhoh
- Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kanpapat Boonchuay
- Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tuempong Wongtawan
- Centre of Excellence Research for Melioidosis and other Microorganism, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
10
|
Genomic insights into the emergence and spread of methicillin-resistant Staphylococcus pseudintermedius in veterinary clinics. Vet Microbiol 2021; 258:109119. [PMID: 34023637 DOI: 10.1016/j.vetmic.2021.109119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/13/2021] [Indexed: 11/23/2022]
Abstract
Staphylococcus pseudintermedius is a common cause of skin and soft tissue infections in dogs but can also cause infections in cats and humans. The frequency of methicillin-resistant S. pseudintermedius (MRSP) strains is increasing worldwide. Here, we obtained 43 MRSP isolates from dogs (n = 41), one cat (n = 1) and the small animal clinic environment (n = 1) in Slovenia from the period 2008-2018, which underwent whole-genome sequencing (WGS) and antimicrobial susceptibility testing. Five sequence types (STs) were identified, with ST71 (32/43) and ST551 (8/43) being the predominant. In Slovenia, ST551 was first detected in 2016, whereas a decrease in the frequency of ST71 was observed after 2015. All isolates were multidrug-resistant and most antimicrobial-resistant phenotypes could be linked to acquisition of the corresponding resistance genes or gene mutations. Core-genome multilocus sequence typing (cgMLST) revealed several potential MRSP transmission routes: (i) between two veterinary clinics by a single MRSP-positive dog, (ii) between the environment of a veterinary clinic and a dog, and (iii) between a canine and a feline patient through the contaminated environment of a veterinary clinic. Of the six dogs that were additionally sampled from 14 days to five months after the initial sampling, each harbored the same MRSP strain, suggesting a limited within-host diversity of MRSP in symptomatic dogs. The present results highlight the importance of MRSP-positive dogs in the spread of veterinary care-associated MRSP infections and call for the implementation of strict control measures to reduce MRSP contamination in veterinary clinic environments originating from animal-contact surfaces.
Collapse
|
11
|
Lynch SA, Helbig KJ. The Complex Diseases of Staphylococcus pseudintermedius in Canines: Where to Next? Vet Sci 2021; 8:11. [PMID: 33477504 PMCID: PMC7831068 DOI: 10.3390/vetsci8010011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus pseudintermedius is a pathogenic bacterium of concern within the veterinary sector and is involved in numerous infections in canines, including topical infections such as canine pyoderma and otitis externa, as well as systemic infections within the urinary, respiratory and reproductive tract. The high prevalence of methicillin-resistant Staphylococcus pseudintermedius (MRSP) within such infections is a growing concern. Therefore, it is crucial to understand the involvement of S. pseudintermedius in canine disease pathology to gain better insight into novel treatment avenues. Here, we review the literature focused on S. pseudintermedius infection in multiple anatomic locations in dogs and the role of MRSP in treatment outcomes at these niches. Multiple novel treatment avenues for MRSP have been pioneered in recent years and these are discussed with a specific focus on vaccines and phage therapy as potential therapeutic options. Whilst both undertakings are in their infancy, phage therapy is versatile and has shown high success in both animal and human medical use. It is clear that further research is required to combat the growing problems associated with MRSP in canines.
Collapse
Affiliation(s)
| | - Karla J. Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia;
| |
Collapse
|
12
|
Brooks MR, Padilla-Vélez L, Khan TA, Qureshi AA, Pieper JB, Maddox CW, Alam MT. Prophage-Mediated Disruption of Genetic Competence in Staphylococcus pseudintermedius. mSystems 2020; 5:e00684-19. [PMID: 32071159 PMCID: PMC7029219 DOI: 10.1128/msystems.00684-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is a major cause of soft tissue infections in dogs and occasionally infects humans. Hypervirulent multidrug-resistant (MDR) MRSP clones have emerged globally. The sequence types ST71 and ST68, the major epidemic clones of Europe and North America, respectively, have spread to other regions. The genetic factors underlying the success of these clones have not been investigated thoroughly. Here, we performed a comprehensive genomic analysis of 371 S. pseudintermedius isolates to dissect the differences between major clonal lineages. We show that the prevalence of genes associated with antibiotic resistance, virulence, prophages, restriction-modification (RM), and CRISPR/Cas systems differs significantly among MRSP clones. The isolates with GyrA+GrlA mutations, conferring fluoroquinolone resistance, carry more of these genes than those without GyrA+GrlA mutations. ST71 and ST68 clones carry lineage-specific prophages with genes that are likely associated with their increased fitness and virulence. We have discovered that a prophage, SpST71A, is inserted within the comGA gene of the late competence operon comG in the ST71 lineage. A functional comG is essential for natural genetic competence, which is one of the major modes of horizontal gene transfer (HGT) in bacteria. The RM and CRISPR/Cas systems, both major genetic barriers to HGT, are also lineage specific. Clones harboring CRISPR/Cas or a prophage-disrupted comG exhibited less genetic diversity and lower rates of recombination than clones lacking these systems. After Listeria monocytogenes, this is the second example of prophage-mediated competence disruption reported in any bacteria. These findings are important for understanding the evolution and clonal expansion of MDR MRSP clones.IMPORTANCE Staphylococcus pseudintermedius is a bacterium responsible for clinically important infections in dogs and can infect humans. In this study, we performed genomic analysis of 371 S. pseudintermedius isolates to understand the evolution of antibiotic resistance and virulence in this organism. The analysis covered significant reported clones, including ST71 and ST68, the major epidemic clones of Europe and North America, respectively. We show that the prevalence of genes associated with antibiotic resistance, virulence, prophages, and horizontal gene transfer differs among clones. ST71 and ST68 carry prophages with novel virulence and antibiotic resistance genes. Importantly, site-specific integration of a prophage, SpST71A, has led to the disruption of the genetic competence operon comG in ST71 clone. A functional comG is essential for the natural uptake of foreign DNA and thus plays an important role in the evolution of bacteria. This study provides insight into the emergence and evolution of antibiotic resistance and virulence in S. pseudintermedius, which may help in efforts to combat this pathogen.
Collapse
Affiliation(s)
- Michael R Brooks
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lyan Padilla-Vélez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tarannum A Khan
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Azaan A Qureshi
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jason B Pieper
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Carol W Maddox
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Md Tauqeer Alam
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Nisa S, Bercker C, Midwinter AC, Bruce I, Graham CF, Venter P, Bell A, French NP, Benschop J, Bailey KM, Wilkinson DA. Combining MALDI-TOF and genomics in the study of methicillin resistant and multidrug resistant Staphylococcus pseudintermedius in New Zealand. Sci Rep 2019; 9:1271. [PMID: 30718644 PMCID: PMC6361924 DOI: 10.1038/s41598-018-37503-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/28/2018] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus pseudintermedius is an opportunistic and emerging zoonotic pathogen that primarily colonises the skin of dogs. Many common variants are methicillin resistant (MRSP) or multidrug resistant (MDR), and drug resistance is increasingly reported across the globe. In New Zealand, MRSP isolation remains rare in clinics. To pre-emptively inform diagnostic and antimicrobial stewardship practices, we examine isolates of S. pseudintermedius, MRSP and MDR-MRSP from New Zealand dogs using a combination of methodologies. Genetic and genomic data combined with antimicrobial susceptibility screening identify common drug-resistance profiles and their genetic determinants. We demonstrate that sensitive and specific species-level identification of S. pseudintermedius can be achieved using Bruker MALDI-TOF MS and, further, that this technique can be used to identify some common subtype variants, providing a level of categorical precision that falls somewhere between single-locus and multi-locus sequence typing. Comparative genomics analysis of global S. pseudintermedius data shows that MRSP moves frequently across the globe, but that horizontal gene transfer events resulting in the acquisition of the SCCmec cassette (responsible for beta-lactam antibiotic resistance) are infrequent. This suggests that biosecurity and surveillance in addition to antibiotic stewardship should play important roles in mitigating the risk of MRSP, especially in countries such as New Zealand where MRSP is still rare.
Collapse
Affiliation(s)
- Shahista Nisa
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Clément Bercker
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand.,Ecole Nationale Veterinaire de Toulouse, Toulouse, France
| | - Anne C Midwinter
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Ian Bruce
- NZVP (IDEXX), Palmerston North, New Zealand
| | | | - Pierre Venter
- Fonterra Research & Development Centre, Palmerston North, New Zealand
| | | | - Nigel P French
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Jackie Benschop
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | | | - David A Wilkinson
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand. .,New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
14
|
Corrò M, Skarin J, Börjesson S, Rota A. Occurrence and characterization of methicillin-resistant Staphylococcus pseudintermedius in successive parturitions of bitches and their puppies in two kennels in Italy. BMC Vet Res 2018; 14:308. [PMID: 30309348 PMCID: PMC6182839 DOI: 10.1186/s12917-018-1612-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/13/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Multi-drug methicillin-resistant Staphylococcus pseudintermedius (MRSP) detection is rapidly increasing in microbial specimens from pets across Europe. MRSP has also been isolated from bitches and newborns in dog breeding kennels. This study assessed whether MRSP lineage differs between breeding kennels and is maintained over time. Post-partum bitches (at day 3 vaginal and day 3, 9 and 35 milk samples) and their litters (at day 3, 9 and 35 oral and abdominal skin samples) from two Italian breeding kennels (A and B) were sampled and MRSP was subsequently characterized via whole-genome sequencing and antibiotic susceptibility testing. The study was carried out from October 2014 to March 2016 and included successive parturitions from the same animals. RESULTS The analysis revealed different situations in both investigated kennels. In kennel A, circulating strains were from 7-locus sequence types ST688, ST258 and closely related isolates of ST71, which included most isolates. In kennel B, only a new isolate, ST772, was detected. In addition, most isolates from both kennels had multi-resistant antibiotic profiles. MRSP was only isolated from litters of MRSP-positive bitches, thus suggesting that bitch-litter transmission is likely. CONCLUSIONS Our data show that MRSP circulation can differ in different settings, that several clonal lineages can circulate together, and that vertical transmission appears common. MRSP colonization did not affect the health conditions of the bitches or of their litters.
Collapse
Affiliation(s)
- Michela Corrò
- Istituto Zooprofilattico Sperimentale delle Venezie, viale Università 10, 35020, Legnaro, PD, Italy
| | - Joakim Skarin
- Department of Microbiology, National Veterinary Institute (SVA), SE-751 89, Uppsala, Sweden
| | - Stefan Börjesson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), SE-751 89, Uppsala, Sweden
| | - Ada Rota
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10090, Grugliasco, TO, Italy.
| |
Collapse
|
15
|
Epidemiology, Clinical Characteristics, and Antimicrobial Susceptibility Profiles of Human Clinical Isolates of Staphylococcus intermedius Group. J Clin Microbiol 2018; 56:JCM.01788-17. [PMID: 29305548 DOI: 10.1128/jcm.01788-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
Abstract
The veterinary pathogens in the Staphylococcus intermedius group (SIG) are increasingly recognized as causes of human infection. Shared features between SIG and Staphylococcus aureus may result in the misidentification of SIG in human clinical cultures. This study examined the clinical and microbiological characteristics of isolates recovered at a tertiary-care academic medical center. From 2013 to 2015, 81 SIG isolates were recovered from 62 patients. Patients were commonly ≥50 years old, diabetic, and/or immunocompromised. Documentation of dog exposure in the electronic medical record was not common. Of the 81 SIG isolates, common sites of isolation included 37 (46%) isolates from wound cultures and 17 (21%) isolates from respiratory specimens. Although less common, 10 (12%) bloodstream infections were documented in 7 unique patients. The majority of SIG (65%) isolates were obtained from polymicrobial cultures. In comparison to S. aureus isolates from the same time period, significant differences were noted in proportion of SIG isolates that were susceptible to doxycycline (74% versus 97%, respectively; P < 0.001), trimethoprim-sulfamethoxazole (65% versus 97%, respectively; P < 0.001), and ciprofloxacin (78% versus 59%, respectively; P < 0.01). Methicillin resistance (MR) was detected in 12 (15%) of 81 SIG isolates. All MR isolates detected by an oxacillin disk diffusion test would have been misclassified as methicillin susceptible using a cefoxitin disk diffusion test. Thus, SIG is recovered from human clinical specimens, and distinction of SIG from S. aureus is critical for the accurate characterization of MR status in these isolates.
Collapse
|