1
|
Li J, Huang F, Zhou Y, Huang T, Tong X, Zhang M, Chen J, Zhang Z, Du H, Liu Z, Zhou M, Xiahou Y, Ai H, Chen C, Huang L. Comprehensive lung microbial gene and genome catalogs assist the mechanism survey of Mesomycoplasma hyopneumoniae strains causing pig lung lesions. IMETA 2024; 3:e258. [PMID: 39742304 PMCID: PMC11683470 DOI: 10.1002/imt2.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Understanding the community structure of the lower respiratory tract microbiome is crucial for elucidating its roles in respiratory tract diseases. However, there are few studies about this topic due to the difficulty in obtaining microbial samples from both healthy and disease individuals. Here, using 744 high-depth metagenomic sequencing data of lower respiratory tract microbial samples from 675 well-phenotyped pigs, we constructed a lung microbial gene catalog containing the largest scale of 10,031,593 nonredundant genes to date, 44.8% of which are novel. We obtained 356 metagenome-assembled genomes (MAGs) which were further clustered into 256 species-level genome bins with 41.8% being first reported in the current databases. Based on these data sets and through integrated analysis of the isolation of the related bacterial strains, in vitro infection, and RNA sequencing, we identified and confirmed that Mesomycoplasma hyopneumoniae (M. hyopneumoniae) MAG_47 and its adhesion-related virulence factors (VFs) were associated with lung lesions in pigs. Differential expression levels of adhesion- and immunomodulation-related VFs likely determined the heterogenicity of adhesion and pathogenicity among M. hyopneumoniae strains. M. hyopneumoniae adhesion activated several pathways, including nuclear factor kappa-light-chain-enhancer of activated B, mitogen-activated protein kinase, cell apoptosis, T helper 1 and T helper 2 cell differentiation, tumor necrosis factor signaling, interleukin-6/janus kinase 2/signal transducer and activator of transcription signaling, and response to reactive oxygen species, leading to cilium loss, epithelial cell‒cell barrier disruption, and lung tissue lesions. Finally, we observed the similar phylogenetic compositions of the lung microbiome between humans with Mycoplasma pneumoniae and pigs infected with M. hyopneumoniae. The results provided important insights into pig lower respiratory tract microbiome and its relationship with lung health.
Collapse
Affiliation(s)
- Jingquan Li
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Fei Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Yunyan Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Tao Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Xinkai Tong
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Mingpeng Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Jiaqi Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Zhou Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Huipeng Du
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Zifeng Liu
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Meng Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Yiwen Xiahou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Huashui Ai
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Congying Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
2
|
Brandalise L, Takeuti KL, Kich JD, Clavijo MJ, Simão GMR, Sato JPH, Coldebella A, Pigozzo R, Nagae R, Dezen D. Mycoplasma hyopneumoniae infection dynamics in naïve replacement gilts introduced to positive farms. Vet Microbiol 2023; 286:109886. [PMID: 37862723 DOI: 10.1016/j.vetmic.2023.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/29/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
This study was designed to characterize the dynamics of infection of Mycoplasma hyopneumoniae in naïve replacement gilts after introduction to positive systems. Ninety-eight naïve gilts were monitored in three positive commercial farms (A, B, and C). The näive gilts were housed for 21 days in pens adjacently located to older gilt cohorts (named seeders), which have been naturally exposed to the positive farms. The infection dynamics was evaluated by PCR and ELISA, from laryngeal swabs and serum samples, respectively. Samples were collected at 150 (arrival), 165, 180, 210, 240, 270, 300 days of age (doa), and pre-farrowing. Infection occurred rapidly on farms A and B, taking 25.2 and 23.9 days for 95% of gilts to be PCR positive, respectively. There was no influence on the number of seeders at the time of exposure, but their absence (farm C) could explain the extended period it took for gilts to get infected (69.4 days). On average, it took 162.2 days after the first PCR detection for 85% of gilts to stop shedding the bacterium. The serology results were consistent with the herd infection curve. At pre-farrowing, 100% of gilts seroconverted and 36.7% remained PCR positive. A total of 1.33% of piglets were positive at weaning. Fifteen variants were detected among the three farms by MLVA. The acclimation protocol was efficient and easy to perform, and the presence of seeders was likely critical for early acclimation for M. hyopneumoniae.
Collapse
Affiliation(s)
- Luciano Brandalise
- College of Veterinary Medicine, Catarinense Federal Institute, Concórdia, SC, Brazil; Agroceres PIC, Rio Claro, SP, Brazil
| | - Karine L Takeuti
- College of Veterinary Medicine, Feevale University, Campo Bom, RS, Brazil
| | | | - Maria J Clavijo
- Veterinary Diagnostic and Population Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA; Pig Improvement Company, PIC®, Hendersonville, TN, USA
| | | | | | | | | | | | - Diogenes Dezen
- College of Veterinary Medicine, Catarinense Federal Institute, Concórdia, SC, Brazil.
| |
Collapse
|
3
|
McDowell E, Pieters M, Spronk T, Nerem J, Fano E, Dee S, Sponheim A. Duration of Mycoplasma hyopneumoniae detection in pigs following purposeful aerosol exposure. Vet Microbiol 2023; 282:109758. [PMID: 37167891 DOI: 10.1016/j.vetmic.2023.109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/17/2023] [Accepted: 04/22/2023] [Indexed: 05/13/2023]
Abstract
Swine disease elimination programs for Mycoplasma hyopneumoniae are commonly applied in the North American swine industry and may include the aerosolization of medium containing lung tissue to achieve population exposure prior to start. Field data has indicated M. hyopneumoniae PCR detection in pigs beyond 240 days post-herd closure (dphc; planned end of an elimination program) and is thought to contribute to disease elimination programs' failure. Here, the duration of M. hyopneumoniae detection in sows and replacement gilts following aerosolized lung homogenate exposure, as part of a dual disease elimination program, was determined. A subset of sows and gilts from a commercial sow herd and off-site gilt development unit were longitudinally sampled to collect deep tracheal catheter secretions at various times post-exposure. Samples were tested for M. hyopneumoniae using a species-specific real-time PCR. A proportion of 58, 51, 52, 19, and 2% females were detected positive at 30, 60, 120, 180 and 240 dphc, respectively. Noteworthy, a greater proportion of gilts exposed at the off-site GDU were detected PCR positive for M. hyopneumoniae at each sampling event, compared to sows. In this study, assaying for genetic material in live female pigs showed extended detection of M. hyopneumoniae until at least 240 dphc. This data suggests persistence of M. hyopneumoniae longer than previously reported and highlights the importance of performing diagnostic testing to confirm negativity to the bacterium, prior to opening sow herds, especially late in the herd closure timeline.
Collapse
Affiliation(s)
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | | | - Joel Nerem
- Pipestone Veterinary Services, Pipestone, MN, USA
| | - Eduardo Fano
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA
| | - Scott Dee
- Pipestone Applied Research, Pipestone, MN, USA
| | - Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA.
| |
Collapse
|
4
|
Takeuti KL, Betlach AM, Fano E, Schwartz M, Yaros J, Wayne S, Schmaling E, de Barcellos DESN, Pieters M. The effect of gilt flow management during acclimation on Mycoplasma hyopneumoniae detection. Vet Microbiol 2023; 276:109554. [PMID: 36435011 DOI: 10.1016/j.vetmic.2022.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 12/27/2022]
Abstract
The objective of this study was to characterize the Mycoplasma hyopneumoniae (M. hyopneumoniae) detection and seroconversion patterns in recently acclimated gilts to be introduced to endemically infected farms using different types of replacement management. Three gilt developing units (GDUs) belonging to sow farms were included in this investigation: two farms managed gilts in continuous flow, and one farm managed gilts all-in/all-out. Two replicates of 35 gilts each were selected per GDU and sampled approximately every 60 days for a total of four or five samplings, per replicate and per GDU. Detection of M. hyopneumoniae was evaluated by PCR, while antibodies were measured using a commercial ELISA assay. Also, M. hyopneumoniae genetic variability was evaluated using Multiple-Locus Variable number tandem repeat Analysis. Detection of M. hyopneumoniae was similar across GDUs. Although a significant proportion of gilts was detected positive for M. hyopneumoniae after acclimation, an average of 30.3 % of gilts was negative at any point during the study. Detection of M. hyopneumoniae antibodies was similar among GDUs regardless of flow type or vaccination protocol. The genetic variability analysis revealed a limited number of M. hyopneumoniae types within each GDU. Results of this study showed a similar pattern of M. hyopneumoniae detection by PCR and seroconversion by ELISA among GDUs, regardless of the type of flow management strategies applied to gilts.
Collapse
Affiliation(s)
- Karine L Takeuti
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Swine Vet Center, St. Peter, MN, United States
| | - Eduardo Fano
- Boehringer Ingelheim Animal Health, Duluth, GA, United States
| | - Mark Schwartz
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Schwartz Farms Inc, Sleepy Eye, MN, United States
| | - Joseph Yaros
- Pipestone Veterinary Services, Pipestone, MN, United States
| | - Spencer Wayne
- Pipestone Veterinary Services, Pipestone, MN, United States
| | - Ethan Schmaling
- Boehringer Ingelheim Animal Health, Duluth, GA, United States
| | - David E S N de Barcellos
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|
5
|
Vangroenweghe F. Evaluating the role of gilts in the kinetics of
Mycoplasma hyopneumoniae
outbreaks. Vet Rec 2022; 191:298-300. [DOI: 10.1002/vetr.2312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Frédéric Vangroenweghe
- Elanco Animal Health Benelux – BU Swine & Ruminants Antwerpen Belgium
- Porcine Health Management Unit, Department of Internal Medicine, Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| |
Collapse
|
6
|
Garcia-Morante B, Maes D, Sibila M, Betlach AM, Sponheim A, Canturri A, Pieters M. Improving Mycoplasma hyopneumoniae diagnostic capabilities by harnessing the infection dynamics. Vet J 2022; 288:105877. [PMID: 35901923 DOI: 10.1016/j.tvjl.2022.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Mycoplasma hyopneumoniae remains one of the most problematic bacterial pathogens for pig production. Despite an abundance of observational and laboratory testing capabilities for this organism, diagnostic interpretation of test results can be challenging and ambiguous. This is partly explained by the chronic nature of M. hyopneumoniae infection and its tropism for lower respiratory tract epithelium, which affects diagnostic sensitivities associated with sampling location and stage of infection. A thorough knowledge of the available tools for routine M. hyopneumoniae diagnostic testing, together with a detailed understanding of infection dynamics, are essential for optimizing sampling strategies and providing confidence in the diagnostic process. This study reviewed known information on sampling and diagnostic tools for M. hyopneumoniae and summarized literature reports of the dynamics of key infection outcomes, including clinical signs, lung lesions, pathogen detection, and humoral immune responses. Such knowledge could facilitate better understanding of the performance of different diagnostic approaches at various stages of infection.
Collapse
Affiliation(s)
- Beatriz Garcia-Morante
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Unit Porcine Health Management, Ghent University, Salisburylaan, 133 B-9820 Merelbeke, Belgium
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Swine Vet Center, 1608 S Minnesota Ave, St. Peter, MN 56082, USA
| | - Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd NW, Duluth, GA 30096, USA
| | - Albert Canturri
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, St Paul, 55108 MN, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, 1988 Fitch Ave, St. Paul, MN 55108, USA.
| |
Collapse
|
7
|
Chemotherapeutic Strategies with Valnemulin, Tilmicosin, and Tulathromycin to Control Mycoplasma hyopneumoniae Infection in Pigs. Antibiotics (Basel) 2022; 11:antibiotics11070893. [PMID: 35884148 PMCID: PMC9311983 DOI: 10.3390/antibiotics11070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma hyopneumoniae is the primary agent of Swine Enzootic Pneumonia (SEP). Vaccines reduce the clinical manifestation of the disease but do not prevent infection. The present study aimed to evaluate the use of antimicrobial drugs to minimize the impact of M. hyopneumoniae. For this, 32 pregnant female pigs and their litters were selected and then followed from birth to slaughter. The study involved three experimental groups that received metaphylactic treatment with different protocols involving tilmicosin, valnemulin, tulathromycin, and a control group to compare the effect of treatments against M. hyopneumoniae infection throughout the phases. Performance data were recorded, and the piglets were evaluated for the occurrence of cough. Nasal swab and blood collection was conducted periodically to detect M. hyopneumoniae shedding and anti-M. hyopneumoniae IgG, respectively. At slaughter, the lungs of animals from all groups were evaluated, and samples were collected for histopathological examination and qPCR for M. hyopneumoniae detection. All protocols promoted a reduction in consolidation lung lesions when compared to the control group. Individuals treated with valnemulin showed increased performance results, lower mortality, and low bacterial load in the lung. The results are promising and may indicate an alternative in the strategic control of M. hyopneumoniae infection in pigs.
Collapse
|
8
|
Biebaut E, Chantziaras I, Boyen F, Devriendt B, Haesebrouck F, Gomez-Duran CO, Maes D. Influence of parity and reproductive stage on the prevalence of Mycoplasma hyopneumoniae in breeding animals in belgian farrow-to-finish pig herds. Porcine Health Manag 2022; 8:26. [PMID: 35681230 PMCID: PMC9178894 DOI: 10.1186/s40813-022-00267-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Dam-to-piglet transmission plays an important role in the epidemiology of enzootic pneumonia on farms. Although Mycoplasma hyopneumoniae (M. hyopneumoniae) infections in breeding animals are often subclinical, their control could have a positive effect on M. hyopneumoniae infection levels in fattening pigs. This study investigated the presence of M. hyopneumoniae in the breeding population of ten Belgian farrow-to-finish farms suspected by the herd veterinarian to be M. hyopneumoniae infected. Gilt vaccination against M. hyopneumoniae prior to first insemination was practiced on nine of the ten farms. At four different time points in the reproductive cycle 20 animals were sampled on each farm, namely 30–40 days of gestation, 75–85 days of gestation, 3–5 days after farrowing, and 1–3 days after weaning. In total, tracheobronchial swabs and blood samples were collected from 344 gilts and 456 sows (n = 80/farm). Swabs were analysed for the presence of M. hyopneumoniae DNA using nested PCR and M. hyopneumoniae-specific antibodies were detected in serum with a commercial ELISA. Generalized linear mixed models with farm as random factor were used to test the effect of time point in the reproductive cycle and parity on M. hyopneumoniae PCR prevalence and seroprevalence. Results M. hyopneumoniae PCR prevalence ranged between 0% and 43.8% at the farm level and the seroprevalence between 32.5% and 93.8%. Gilts were significantly more M. hyopneumoniae PCR positive than sows at the 2-4th parity (P = 0.02) and > 4th parity (P = 0.02). At 30–40 days of gestation, significantly more breeding animals were PCR positive as compared to 75–85 days of gestation (P = 0.04), 3–5 days after farrowing (P = 0.02) and 1–3 days after weaning (P = 0.02). Gilts had significantly more often M. hyopneumoniae-specific antibodies than sows (P = 0.03). Conclusions M. hyopneumoniae PCR prevalence varied a lot between farms and due to gilt vaccination the number of animals with M. hyopneumoniae-specific antibodies was high on most farms. Gilts were more often M. hyopneumoniae PCR positive than sows and positive animals were mostly found at 30–40 days of gestation. This emphasizes the importance of a sufficiently long quarantine period and proper gilt acclimation practices before introducing gilts to the sow herd. Supplementary Information The online version contains supplementary material available at 10.1186/s40813-022-00267-w.
Collapse
Affiliation(s)
- Evelien Biebaut
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Ilias Chantziaras
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Boyen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
Deffner P, Maurer R, Cvjetković V, Sipos W, Krejci R, Ritzmann M, Eddicks M. Cross-sectional study on the in-herd prevalence of Mycoplasma hyopneumoniae at different stages of pig production. Vet Rec 2022; 191:e1317. [PMID: 35032397 DOI: 10.1002/vetr.1317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/04/2021] [Accepted: 11/28/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND A cross-sectional study was carried out to assess the prevalence of Mycoplasma hyopneumoniae infections before vaccination in 3-week-old piglets and to gain information about infection dynamics. METHODS In 13 German and three Austrian farms with a known history of enzootic pneumonia, 790 piglets and 158 sows were sampled (blood samples, tracheobronchial swabs [TBS] [piglets], laryngeal swabs [LS] [sows]), and 525 pen-based oral fluids (OFs) were collected in growing and fattening pigs. Laboratory diagnostics included enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR) analyses. RESULTS Antibodies to M. hyopneumoniae were present in 87.5 per cent of all herds. Seroprevalence ranged from 0.0 to 100.0 per cent and 0.0 to 88.0 per cent in sows and piglets, respectively. M. hyopneumoniae-deoxyribonucleic acid (DNA) was present in 3.8 and 0.4 per cent of LS and TBS, respectively. Gilts had a 10.9 times higher chance being M. hyopneumoniae PCR-positive than older sows. In 75.0 per cent of all farms, M. hyopneumoniae-DNA was present in OFs. Detection rate was significantly higher in OFs of 20-week-old than in younger pigs (p < 0.001). CONCLUSION Results indicate that M. hyopneumoniae infections of the lower respiratory tract in piglets are rare but highlight the role of gilts in maintaining infection in the herd. Collecting OFs seems promising for surveillance, if coughing occurs simultaneously.
Collapse
Affiliation(s)
- Pauline Deffner
- Clinic for Swine, Centre for Clinical Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | - Roland Maurer
- Clinic for Swine, Centre for Clinical Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | | | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Mathias Ritzmann
- Clinic for Swine, Centre for Clinical Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | - Matthias Eddicks
- Clinic for Swine, Centre for Clinical Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| |
Collapse
|
10
|
Abstract
Mycoplasma hyopneumoniae: is the etiological agent of porcine enzootic pneumonia (EP), a disease that impacts the swine industry worldwide. Pathogen-induced damage, as well as the elicited host-response, contribute to disease. Here, we provide an overview of EP epidemiology, control and prevention, and a more in-depth review of M. hyopneumoniae pathogenicity determinants, highlighting some molecular mechanisms of pathogen-host interactions relevant for pathogenesis. Based on recent functional, immunological, and comparative “omics” results, we discuss the roles of many known or putative M. hyopneumoniae virulence factors, along with host molecules involved in EP. Moreover, the known molecular bases of pathogenicity mechanisms, including M. hyopneumoniae adhesion to host respiratory epithelium, protein secretion, cell damage, host microbicidal response and its modulation, and maintenance of M. hyopneumoniae homeostasis during infection are described. Recent findings regarding M. hyopneumoniae pathogenicity determinants also contribute to the development of novel diagnostic tests, vaccines, and treatments for EP.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| |
Collapse
|
11
|
Almeida HMS, Mechler-Dreibi ML, Sonálio K, Ferreira MM, Martinelli PEB, Gatto IRH, Maes D, Montassier HJ, Oliveira LG. Dynamics and chronology of Mycoplasma hyopneumoniae strain 232 infection in experimentally inoculated swine. Porcine Health Manag 2021; 7:42. [PMID: 34193314 PMCID: PMC8243732 DOI: 10.1186/s40813-021-00221-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022] Open
Abstract
Direct detection of Mycoplasma hyopneumoniae through molecular tools is a growing trend for early diagnosis, highlighting the importance of knowing M. hyopneumoniae dynamics in the respiratory tract upon infection. This study focused on monitoring the infection level and its effects in different anatomic sites of the respiratory tract of experimentally infected swine in four time-points post-infection. To this end, 24 pigs were allocated to either non-inoculated group (n = 8) or inoculated group (n = 16). On day 0 post-infection (dpi), animals of the inoculated group were intratracheally inoculated with M. hyopneumoniae. Nasal swabs were collected weekly for qPCR detection of bacterial shedding. At 14, 28, 42, and 56 dpi, four animals from the inoculated group and two from the control group were necropsied. Bronchoalveolar lavage fluid (BALF) and samples from three different anatomical tracheal sections (cranial - CT, medium - MT, lower - LT) were collected for qPCR and histopathology. Bacterial loads (qPCR) in tracheal samples were: 4.47 × 102 copies∕μL (CT), 1.5 × 104- copies∕ μL (MT) and 1.4 × 104 copies∕μL (LT samples). M. hyopneumoniae quantification in BALF showed the highest load at 28 dpi (2.0 × 106 copies∕ μL). Microscopic lesions in LT samples presented the highest scores at 56 dpi and were significantly correlated with the pathogen load on 14 dpi (0.93) and 28 dpi (0.75). The greatest bacterial load of M. hyopneumoniae in CT samples and BALF was registered at 28 dpi, and it remained high in BALF and LT throughout the 56 dpi. The pathogen was able to persist during the whole experimental period, however higher estimated quantification values were registered in the lower parts of the respiratory tract, especially at 56 dpi. These findings are important for improving diagnostics, treatment, and control measures of M. hyopneumoniae infection in swine herds.
Collapse
Affiliation(s)
- Henrique M S Almeida
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Marina L Mechler-Dreibi
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Karina Sonálio
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Marcela M Ferreira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Paulo E B Martinelli
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Igor R H Gatto
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hélio J Montassier
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Luís G Oliveira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
12
|
Sponheim A, Munoz-Zanzi C, Fano E, Polson D, Pieters M. Pooled-sample testing for detection of Mycoplasma hyopneumoniae during late experimental infection as a diagnostic tool for a herd eradication program. Prev Vet Med 2021; 189:105313. [PMID: 33676323 DOI: 10.1016/j.prevetmed.2021.105313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Early and accurate detection of Mycoplasma hyopneumoniae infection in live pigs is a critical component to measure the success of disease eradication strategies. However, the imperfect sensitivity of in vivo diagnostic tools, change in sensitivity over the course of infection, and expected low prevalence level at the end of an eradication program create a challenging diagnostic scenario. Here, the individual and pool sensitivities for detection of M. hyopneumoniae during the chronic phase of infection was determined using deep tracheal catheter samples, the in vivo sample type with the highest reported diagnostic sensitivity. Fifty samples from known infected pigs collected at 113 days post-M. hyopneumoniae intra-tracheal inoculation, were diluted in known negative samples to form pools of 1:3 and 1:5. Samples were tested for M. hyopneumoniae by a species-specific PCR. Ninety-eight percent (49/50) of individual samples, 84 % (42/50) of pools of 1:3, and 82 % (41/50) of 1:5 were detected positive for M. hyopneumoniae. To apply the sensitivity estimates for detection of M. hyopneumoniae in a low prevalence scenario, sample sizes with associated sample collection costs were calculated for individual and pooled testing using algorithms within the program EpiTools One-Stage Freedom Analyses. Assumptions included a ≥95 % population sensitivity, infinite population size, prevalence levels of ≥0.5 %, ≥1 %, ≥2 %, ≥3 %, ≥4 %, or ≥5 %, 100 % specificity, along with the mean and lower confidence limit of the individual or pool sensitivity for each pool size, when appropriate. For instance, following completion of a herd eradication program, if a low risk approach is targeted, sample size estimates for ≥2 % prevalence using the lower limit of the diagnostic or pool sensitivity 95 %CI may be followed. If samples were to be tested individually, 167 individuals would be sampled at a cost of 6,012 USD. If pooled by 3, 213 would be sampled (testing cost 3,266 USD), and for pools of 5, 220 individuals would be sampled (testing cost 2,464 USD). Population sensitivity was also calculated for a range of testing scenarios. Our study indicated that pooling samples by 3 or 5 was a cost-effective method for M. hyopneumoniae detection in low prevalence scenarios. Cost-effective detection was evidenced despite the increased sample collection costs associated with large sample sizes in order to offset decreased testing sensitivity attributable to pooling. The post-eradication sample collection scheme, combined with pooling, suggested lower cost options than individual sampling for testing to be applied at the end of an eradication program, without significantly compromising the likelihood of detection.
Collapse
Affiliation(s)
- Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN, 55108, USA; Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd NW, Duluth, GA, 30096, USA
| | - Claudia Munoz-Zanzi
- School of Public Health, Division Environmental Health Sciences, University of Minnesota, 1260 Mayo Building, 420 Delaware Street SE, Minneapolis, MN, 55454, USA
| | - Eduardo Fano
- Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd NW, Duluth, GA, 30096, USA
| | - Dale Polson
- Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd NW, Duluth, GA, 30096, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN, 55108, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, St. Paul, MN, 55108, USA.
| |
Collapse
|
13
|
Ferraz MES, Almeida HMS, Storino GY, Sonálio K, Souza MR, Moura CAA, Costa WMT, Lunardi L, Linhares DCL, de Oliveira LG. Lung consolidation caused by Mycoplasma hyopneumoniae has a negative effect on productive performance and economic revenue in finishing pigs. Prev Vet Med 2020; 182:105091. [PMID: 32683190 DOI: 10.1016/j.prevetmed.2020.105091] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/04/2023]
Abstract
This study aimed to measure the impact of productivity and the consequent economic losses related to lung lesions caused by M. hyopneumoniae. Five-hundred 75 days-old pigs were selected and weighed at the beginning and at the end of the finishing phase to assess the average daily gain (ADG). These animals were evaluated at the slaughter, and samples were collected for laboratory analysis to confirm the presence of M. hyopneumoniae DNA. The lungs of each pig were examined and classified into groups based on the extension of macroscopic lung lesions. Four-hundred eighty-six lungs were examined and 68.5% (n = 333) had macroscopic lung lesions. All pigs with lesions were positive for M. hyopneumoniae in qPCR. Linear mixed regression models (proc Glimmix) were performed on SAS to estimate the effect of macroscopic lung lesion scores on the ADG of finishing pigs. All pairwise comparisons among lesion score groups were performed using p < 0.05. For each increase of one percent in the lesion area, there was a decrease of 1.8 g in the daily weight gain. All the groups had a numerically lower ADG when compared to Group 1 (no lesions). The economic analysis was performed by simulation on Excel to estimate and compare the financial performance of the different lung lesion score groups. The negative correlation found between the group with no lung lesions and the group with more than 15.1% of lesions, showed a statistical difference in ADG, which could mean an opportunity to gain up to $ 6.55 per pig at slaughter. The presence of lesions causes the animals to decrease their productive potential, causing financial loss and generating impacts on the production system.
Collapse
Affiliation(s)
- M E S Ferraz
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - H M S Almeida
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - G Y Storino
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - K Sonálio
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - M R Souza
- Ceva Animal Health, Paulínia, São Paulo, Brazil
| | - C A A Moura
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - W M T Costa
- Ceva Animal Health, Paulínia, São Paulo, Brazil
| | - L Lunardi
- Ceva Animal Health, Paulínia, São Paulo, Brazil
| | - D C L Linhares
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - L G de Oliveira
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
14
|
Almeida HMS, Mechler-Dreibi ML, Sonálio K, Ferraz MES, Storino GY, Barbosa FO, Maes D, Montassier HJ, de Oliveira LG. Cytokine expression and Mycoplasma hyopneumoniae burden in the development of lung lesions in experimentally inoculated pigs. Vet Microbiol 2020; 244:108647. [PMID: 32402328 DOI: 10.1016/j.vetmic.2020.108647] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
This study aimed to assess immunopathological factors and M. hyopneumoniae (M. hyo) load in macroscopic lesion formation at four timepoints after experimental infection of swine. To do this, 24 M. hyo-free pigs were divided into two groups: non-inoculated control (n = 8) and inoculated (n = 16). At day 0 post-infection (dpi), animals of infected group were intratracheally inoculated with 5 mL of lung inoculum containing 107 CCU (Color Changing Units) ∕mL of M. hyo strain 232, while control group was mock infected with 5 mL of sterilized Friis medium. At 14, 28, 42 and 56 dpi, four animals from the infected group and two from the control group were euthanized and necropsied. The extent of macroscopic lung lobe lesions was visually assessed, scored and lesion samples (qPCR, histopathology and gene expression) were collected. The macroscopic lesion score and estimated M. hyo load (in copies/μL) at the different timepoints were: 14 dpi: 18.5 %-1.55 × 103 copies∕μL; 28dpi: 15.8 %-8.4 × 103 copies∕μL; 42 dpi: 7.0 %-3.2 × 104 copies∕μL and 56 dpi: 6.3 %-1.11 × 105 copies∕μL; Significant and positive correlations between macroscopic lung lesion and the pathogen load were found (coefficient range: 0.77-0.99). The cytokine's IL-6 (0.73) and INF-γ (-0.69) gene expression were significantly (p < 0.05) correlated to macroscopic lung lesion score while IL-8, TNF- α, IL-1α and IL-1β were associated to other pathological effects such as losses in average daily weight gain and microscopic lesion score. The results provide a better understanding about the pathogenicity of M. hyo strain 232 and the host-pathogen interactions, which may be helpful for the development of new treatments or control measures.
Collapse
Affiliation(s)
- Henrique M S Almeida
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Marina L Mechler-Dreibi
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Karina Sonálio
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Maria Eugênia S Ferraz
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Gabriel Y Storino
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Fernanda O Barbosa
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hélio J Montassier
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Luis G de Oliveira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil.
| |
Collapse
|
15
|
Moiso N, Pieters M, Degano F, Vissio C, Camacho P, Estanguet A, Parada J, Tamiozzo PJ. Detection of Mycoplasma hyopneumoniae in nasal and laryngeal swab specimens in endemically infected pig herds. Vet Rec 2019; 186:27. [PMID: 31732508 DOI: 10.1136/vr.105525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Apparently, laryngeal swabs (LS) are more sensitive than nasal swabs (NS) and allow earlier detection of Mycoplasma hyopneumoniae by PCR. However, antecedents about the compared detection of M hyopneumoniae with NS and LS in growing pigs, from naturally infected herds, are lacking in the literature. Thus, this study compared the PCR detection of M hyopneumoniae from NS and LS in pigs of various ages. METHODS A longitudinal study was performed at two farms where NS and LS were collected from three consecutive groups of 20 pigs at 3, 6, 10, 16 and 22 weeks of age. All samples were analysed by nested PCR for M hyopneumoniae detection. RESULTS The probability of PCR detection of M hyopneumoniae was higher in LS for pigs of all ages (odds ratio (OR)=1.87; 95 per cent confidence interval (CI) 1.31-2.67) and in 22-week-old pigs (OR=4.87; 95 per cent CI 2.86-8.30). The agreement between both sample types was low to moderate (kappa 0.087-0.508), highlighting that M hyopneumoniae does not appear to colonise the respiratory tract in a generalised and consistent fashion. CONCLUSIONS The results suggest that LS could be employed at different ages to achieve greater bacterial detection. Considering that LS is a minimally invasive, highly sensitive sample compared with the traditional NS, it could be suggested to employ this sample type for M hyopneumoniae detection in naturally infected pigs.
Collapse
Affiliation(s)
- Nicolás Moiso
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Maria Pieters
- Veterinary Population Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Facundo Degano
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Claudina Vissio
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.,Instituto para el Desarrollo Agroindustrial y de Salud (IDAS), UNRC- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Argentina
| | - Pablo Camacho
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Abel Estanguet
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Julián Parada
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Argentina
| | - Pablo J Tamiozzo
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| |
Collapse
|
16
|
Balestrin E, Kuhnert P, Wolf JM, Wolf LM, Fonseca ASK, Ikuta N, Lunge VR, Siqueira FM. Clonality of Mycoplasma hyopneumoniae in swine farms from Brazil. Vet Microbiol 2019; 238:108434. [PMID: 31648728 DOI: 10.1016/j.vetmic.2019.108434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Mycoplasma hyopneumoniae causes enzootic pneumonia (EP) in swine, a disease related to high economic losses in production systems. Epidemiological spread of M. hyopneumoniae clones was studied by multi-locus sequence typing (MLST) in several swine production regions but so far not in South America. Using MLST, we have therefore investigated M. hyopneumoniae clones circulating in farms from three main swine production regions in Brazil. Porcine lungs samples were collected between 2015 and 2016 in farms with EP outbreaks. Three geographically distant regions were selected, and 67 M. hyopneumoniae positive samples, each one from a different farm, were included in the study. The occurrence of five sequence types (ST) was demonstrated and the majority of the samples were identified as ST-69 (n = 60; 89.5%), followed by ST-70 (n = 3; 4.5%), ST-123 (n = 2; 3%), ST-124 (n = 1; 1.5%) and ST-127 (n = 1; 1.5%). There was no association of any specific ST with region or production system. The five STs were all new ones, probably representing unique Brazilian clones. ST-69 and ST-70 on one side and ST-123 and ST-124 on the other side are phylogenetically close, while ST-127 is singleton. In conclusion, our results showed a low variability and high clonality of M. hyopneumoniae genotypes from Brazilian farms affected by EP.
Collapse
Affiliation(s)
- Eder Balestrin
- Laboratory of Molecular Diagnostic, Lutheran University from Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Jonas Michel Wolf
- Laboratory of Molecular Diagnostic, Lutheran University from Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Lucas Michel Wolf
- Laboratory of Molecular Diagnostic, Lutheran University from Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | | | - Nilo Ikuta
- Laboratory of Molecular Diagnostic, Lutheran University from Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil
| | - Vagner Ricardo Lunge
- Laboratory of Molecular Diagnostic, Lutheran University from Brazil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil
| | - Franciele Maboni Siqueira
- Laboratory of Veterinary Bacteriology, Veterinary Pathology Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
17
|
Qiu G, Rui Y, Yi B, Liu T, Hao Z, Li X, Zhang L, Huang S, Li K, Han Z. Identification and Genomic Analysis of a Pathogenic Strain of Mycoplasma hyopneumoniae (TB1) Isolated from Tibetan Pigs. DNA Cell Biol 2019; 38:922-932. [PMID: 31329463 DOI: 10.1089/dna.2018.4560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study aims to identify the species and strains of Mycoplasma hyopneumoniae isolated from Tibetan pigs (Mh TB1) at the genetic level for understanding the basis of its pathogenicity. Mh TB1 was isolated from the consolidated lungs of Tibetan pigs by liquid culture and agar plate colony method. Polymerase chain reaction (PCR) amplification of the 16S recombinant DNA (rDNA) conservative sequence and a species-specific gene (P36) of Mh provided species confirmation. PCR products were imaged on gels and shotgun sequencing was performed. DNA sequences were compared for assessing genetic similarity between Mh TB1 and Mh reference strains in the GenBank database. The isolated strains were >98% similar to the Mh reference strains. Genomic analysis revealed significant sequence conservation between Mh TB1 and the reference strains; however, differential genes were more prevalent in Mh TB1 than in other reported strains. Therefore, we concluded that Mh is a major pathogen of Tibetan pigs that cause enzootic pneumonia. The Mh TB1 strain harbors more genes and specific virulence factors, consistent with its plateau-related adaptability to hypoxia and virulence. Differential gene analysis revealed gene variations in the inclement plateau environment, enriched gene pool, and plateau adaptability of the Mh TB1 strain, which will be important for vaccine development.
Collapse
Affiliation(s)
- Gang Qiu
- Department of Animal Husbandry and Veterinary Engineering, Xinyang Agriculture and Forestry University, Xinyang, People's Republic of China
| | - Yapei Rui
- Department of Animal Husbandry and Veterinary Engineering, Xinyang Agriculture and Forestry University, Xinyang, People's Republic of China
| | - Benchi Yi
- Department of Animal Husbandry and Veterinary Engineering, Xinyang Agriculture and Forestry University, Xinyang, People's Republic of China
| | - Tao Liu
- Department of Animal Husbandry and Veterinary Engineering, Xinyang Agriculture and Forestry University, Xinyang, People's Republic of China
| | - Zhaojing Hao
- Department of Animal Science, Tibet Agriculture and Animal Husbandry College, Tibet, People's Republic of China
| | - Xiang Li
- Department of Animal Science, Tibet Agriculture and Animal Husbandry College, Tibet, People's Republic of China
| | - Lihong Zhang
- Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shucheng Huang
- Department of Animal Science and Veterinary Medicine, Henan Agriculture University, Zhengzhou, People's Republic of China
| | - Kun Li
- Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Zhaoqing Han
- Department of Agriculture and Forestry Science, Linyi University, Linyi, People's Republic of China
| |
Collapse
|
18
|
Garza-Moreno L, Pieters M, López-Soria S, Carmona M, Krejci R, Segalés J, Sibila M. Comparison of vaccination protocols against Mycoplasma hyopneumoniae during the gilt acclimation period. Vet Microbiol 2019; 229:7-13. [DOI: 10.1016/j.vetmic.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 11/28/2022]
|
19
|
Arsenakis I, Michiels A, Schagemann G, Gomez-Duran CO, Boyen F, Haesebrouck F, Maes DGD. Effects of pre-farrowing sow vaccination against Mycoplasma hyopneumoniae on offspring colonisation and lung lesions. Vet Rec 2019; 184:222. [PMID: 30630875 PMCID: PMC6589467 DOI: 10.1136/vr.104972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/13/2018] [Accepted: 11/27/2018] [Indexed: 11/06/2022]
Abstract
This study investigated Mycoplasma hyopneumoniae colonisation and lung lesions at slaughter in pigs from vaccinated (V) and non-vaccinated (NV) sows, in two herds (A and B). In each herd, two sow batches were V against M. hyopneumoniae with a commercial bacterin at six and three weeks before farrowing and two sow batches remained NV. From each sow batch, laryngeal swabs were collected from the litters of five primiparous sows at weaning and seven days post-weaning. All samples were tested for M. hyopneumoniae by nested PCR. In total, 488 piglets were sampled. At slaughter, the extent of Mycoplasma-like pneumonia lesions (lung lesion score (LLS)) was assessed. The colonisation rates with M. hyopneumoniae at weaning and seven days post-weaning were (V-A=14.2, NV-A=20.0 (P=0.225); V-B=0.9, NV-B=0.8 (P=0.948)) and (V-A=0.8, NV-A=7.0 (P=0.039); V-B=1.8, NV-B=2.5 (P=0.738)), respectively. The average LLS (in per cent) was V-A=15.5, NV-A=26.4 (P=0.021); V-B=9.7, NV-B=8.4 (P=0.541). In conclusion, in herd A, with a substantially higher level of piglet colonisation at weaning than herd B, offspring from V sows had a significantly lower colonisation rate seven days post-weaning and a significantly lower LLS at slaughter compared with the offspring of the NV sows. This implies that sow vaccination might be useful for control of M. hyopneumoniae infections, although significant results may not be achieved at all times (such as in herd B).
Collapse
Affiliation(s)
- Ioannis Arsenakis
- Unit Porcine Health Management, Department of Reproduction, Obstetrics & Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annelies Michiels
- Unit Porcine Health Management, Department of Reproduction, Obstetrics & Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dominiek G D Maes
- Unit Porcine Health Management, Department of Reproduction, Obstetrics & Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
20
|
Garza-Moreno L, Segalés J, Pieters M, Romagosa A, Sibila M. Acclimation strategies in gilts to control Mycoplasma hyopneumoniae infection. Vet Microbiol 2018; 219:23-29. [PMID: 29778201 DOI: 10.1016/j.vetmic.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the primary causative agent of enzootic pneumonia (EP), one of the most economically important infectious disease for the swine industry worldwide. M. hyopneumoniae transmission occurs mainly by direct contact (nose-to-nose) between infected to susceptible pigs as well as from infected dams to their offspring (sow-to-piglet). Since disease severity has been correlated with M. hyopneumoniae prevalence at weaning in some studies, and gilts are considered the main bacterial shedders, an effective gilt acclimation program should help controlling M. hyopneumoniae in swine farms. The present review summarizes the different M. hyopneumoniae monitoring strategies of incoming gilts and recipient herd and proposes a farm classification according to their health statuses. The medication and vaccination programs against M. hyopneumoniae most used in replacement gilts are reviewed as well. Gilt replacement acclimation against M. hyopneumoniae in Europe and North America indicates that vaccination is the main strategy used, but there is a current trend in US to deliberately expose gilts to the pathogen.
Collapse
Affiliation(s)
- Laura Garza-Moreno
- IRTA, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra Spain.
| | - Maria Pieters
- Departament of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States.
| | - Anna Romagosa
- PIC Europe, C/ Pau Vila 22, 2º 6ª, 08174 Sant Cugat del Vallés, Barcelona, Spain.
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
21
|
Maes D, Sibila M, Kuhnert P, Segalés J, Haesebrouck F, Pieters M. Update on Mycoplasma hyopneumoniae infections in pigs: Knowledge gaps for improved disease control. Transbound Emerg Dis 2017; 65 Suppl 1:110-124. [PMID: 28834294 DOI: 10.1111/tbed.12677] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Indexed: 02/07/2023]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the primary pathogen of enzootic pneumonia, a chronic respiratory disease in pigs. Infections occur worldwide and cause major economic losses to the pig industry. The present paper reviews the current knowledge on M. hyopneumoniae infections, with emphasis on identification and analysis of knowledge gaps for optimizing control of the disease. Close contact between infected and susceptible pigs is the main route of M. hyopneumoniae transmission. Management and housing conditions predisposing for infection or disease are known, but further research is needed to better understand M. hyopneumoniae transmission patterns in modern pig production systems, and to assess the importance of the breeding population for downstream disease control. The organism is primarily found on the mucosal surface of the trachea, bronchi and bronchioles. Different adhesins and lipoproteins are involved in the adherence process. However, a clear picture of the virulence and pathogenicity of M. hyopneumoniae is still missing. The role of glycerol metabolism, myoinositol metabolism and the Mycoplasma Ig binding protein-Mycoplasma Ig protease system should be further investigated for their contribution to virulence. The destruction of the mucociliary apparatus, together with modulating the immune response, enhances the susceptibility of infected pigs to secondary pathogens. Clinical signs and severity of lesions depend on different factors, such as management, environmental conditions and likely also M. hyopneumoniae strain. The potential impact of strain variability on disease severity is not well defined. Diagnostics could be improved by developing tests that may detect virulent strains, by improving sampling in live animals and by designing ELISAs allowing discrimination between infected and vaccinated pigs. The currently available vaccines are often cost-efficient, but the ongoing research on developing new vaccines that confer protective immunity and reduce transmission should be continued, as well as optimization of protocols to eliminate M. hyopneumoniae from pig herds.
Collapse
Affiliation(s)
- D Maes
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - P Kuhnert
- Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - J Segalés
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - F Haesebrouck
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
22
|
Takeuti KL, de Barcellos DESN, de Andrade CP, de Almeida LL, Pieters M. Infection dynamics and genetic variability of Mycoplasma hyopneumoniae in self-replacement gilts. Vet Microbiol 2017; 208:18-24. [PMID: 28888635 DOI: 10.1016/j.vetmic.2017.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022]
Abstract
The aim of this study was to assess the longitudinal pattern of M. hyopneumoniae detection in self-replacement gilts at various farms and to characterize the genetic diversity among samples. A total of 298 gilts from three M. hyopneumoniae positive farms were selected at 150days of age (doa). Gilts were tested for M. hyopneumoniae antibodies by ELISA, once in serum at 150 doa and for M. hyopneumoniae detection in laryngeal swabs by real time PCR two or three times. Also, 425 piglets were tested for M. hyopneumoniae detection in laryngeal swabs. A total of 103 samples were characterized by Multiple Locus Variable-number tandem repeats Analysis. Multiple comparison tests were performed and adjusted using Bonferroni correction to compare prevalences of positive gilts by ELISA and real time PCR. Moderate to high prevalence of M. hyopneumoniae in gilts was detected at 150 doa, which decreased over time, and different detection patterns were observed among farms. Dam-to-piglet transmission of M. hyopneumoniae was not detected. The characterization of M. hyopneumoniae showed 17 different variants in all farms, with two identical variants detected in two of the farms. ELISA testing showed high prevalence of seropositive gilts at 150 doa in all farms. Results of this study showed that circulation of M. hyopneumoniae in self-replacement gilts varied among farms, even under similar production and management conditions. In addition, the molecular variability of M. hyopneumoniae detected within farms suggests that in cases of minimal replacement gilt introduction bacterial diversity maybe farm specific.
Collapse
Affiliation(s)
- Karine L Takeuti
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - David E S N de Barcellos
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline P de Andrade
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura L de Almeida
- Virology Laboratory, Institute of Veterinary Researches Desidério Finamor, Eldorado do Sul, RS, Brazil
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|