1
|
Xu H, Xie Y, Deng K, He D. Isolation and identification, genome-wide analysis and pathogenicity study of a novel PRRSV-1 in southern China. Front Microbiol 2024; 15:1465449. [PMID: 39323887 PMCID: PMC11422217 DOI: 10.3389/fmicb.2024.1465449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused severe economic losses to the global swine industry. In recent years, the incidence of PRRSV-1 has been gradually increasing in China, but there are still few studies on it. In this study, clinical samples for PRRS virus isolation were collected from a pig farm in South China in 2022. We effectively isolated a strain of PRRSV utilizing PAM cells and demonstrated its consistent transmission capability on Marc-145 cells. The isolated strain was confirmed as PRRSV-1 by RT-qPCR, IFA, electron microscopy, etiolated spot purification and whole genome sequencing, the strain was named GD2022. The length of GD2022 genome is 15058nt; Based on the genome-wide genetic evolutionary analysis of GD2022, the strain was classified as PRRSV-1. Further genetic evolutionary analysis of its ORF5 gene showed that GD2022 belonged to PRRSV-1 subtype 1 and formed an independent branch in the evolutionary tree. Compared with the sequence of the classical PRRSV-1 strain (LV strain), GD2022 has several amino acid site mutations in the antigenic region from GP3 to GP5, these mutations are different from those of other PRRSV-1 strains in China. Recombination analysis showed no recombination events with GD2022. In addition, piglets infected with GD2022 displayed clinical respiratory symptoms and typical pathological changes. In this study, a strain of the PRRSV-1 virus was isolated using both PAM cells and Marc-145 and proved to be pathogenic to piglets, providing an important reference for the identification, prevention, and control of PRRSV-1.
Collapse
Affiliation(s)
- Huirui Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Yongsheng Xie
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi, China
| | - Kehui Deng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Dongsheng He
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| |
Collapse
|
2
|
Sun Q, Xu H, An T, Cai X, Tian Z, Zhang H. Recent Progress in Studies of Porcine Reproductive and Respiratory Syndrome Virus 1 in China. Viruses 2023; 15:1528. [PMID: 37515213 PMCID: PMC10384046 DOI: 10.3390/v15071528] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Due to the high incidence of PRRSV mutation and recombination, PRRSV infection is difficult to prevent and control in China and worldwide. Two species of PRRSV, Betaarterivirus suid 1 (PRRSV-1) and Betaarterivirus suid 2 (PRRSV-2), exist in China, and PRRSV-1 has always received less attention in China. However, the number of PRRSV-1 strains detected in China has increased recently. To date, PRRSV-1 has spread to more than 23 regions in China. Based on the phylogenetic analysis of ORF5 and the whole genome of PRRSV-1, Chinese PRRSV-1 can be divided into at least seven independent subgroups. Among them, BJEU06-1-like has become the mainstream subgroup in some regions of China. This subgroup of strains has a 5-aa (4 + 1) characteristic discontinuous deletion pattern at aa 357~aa 360 and aa 411 in Nsp2. Previous studies have indicated that the pathogenicity of PRRSV-1 in China is mild, but recent studies found that the pathogenicity of PRRSV-1 was enhanced in China. Therefore, the emergence of PRRSV-1 deserves attention, and the prevention and control of PRRSV-1 infection in China should be strengthened. PRRSV infection is usually prevented and controlled by a combination of virus monitoring, biosafety restrictions, herd management measures and vaccination. However, the use of PRRSV-1 vaccines is currently banned in China. Thus, we should strengthen the monitoring of PRRSV-1 and the biosafety management of pig herds in China. In this review, we summarize the prevalence of PRRSV-1 in China and clarify the genomic characteristics, pathogenicity, vaccine status, and prevention and control management system of PRRSV-1 in China. Consequently, the purpose of this review is to provide a basis for further development of prevention and control measures for PRRSV-1.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| |
Collapse
|
3
|
Wang X, Bai X, Wang Y, Wang L, Wei L, Tan F, Zhou Z, Tian K. Pathogenicity characterization of PRRSV-1 181187-2 isolated in China. Microb Pathog 2023; 180:106158. [PMID: 37201637 DOI: 10.1016/j.micpath.2023.106158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
PRRSV-1 has caused more clinical infections in pigs in Chinese swine herds in recent years, however, the pathogenicity of PRRSV-1 in China is unclear. In order to study the pathogenicity of PRRSV-1, in this study, a PRRSV-1 strain, 181187-2, was isolated in primary alveolar macrophage (PAM) cells from a farm where abortions had been reported in China. The complete genome of 181187-2 was 14932 bp excluding Poly A, with 54-amino acid continuous deletion in the Nsp2 gene and 1 amino deletion in ORF3 gene compared with LV. Additionally, the piglets inoculated with strain 181187-2 by intranasal and intranasal plus intramuscular injection, animal experiments showed clinical symptoms including transient fever and depression, with no death. The obvious histopathological lesions including interstitial pneumonia and lymph node hemorrhage, and there were no significant differences in clinical symptoms and histopathological lesions with different challenge ways. Our results indicated that PRRSV -1 181187-2 was a moderately pathogenic strain in piglets.
Collapse
Affiliation(s)
- Xiaojuan Wang
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Xiaofei Bai
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Yuzhou Wang
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Lulu Wang
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Lulu Wei
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Feifei Tan
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China; WOAH Porcine Reproductive and Respiratory Syndrome Reference Laboratory, China Animal Disease Control Center, No. 17 Tiangui Road, Daxing District, Beijing, 100125, People's Republic of China
| | - Zhi Zhou
- WOAH Porcine Reproductive and Respiratory Syndrome Reference Laboratory, China Animal Disease Control Center, No. 17 Tiangui Road, Daxing District, Beijing, 100125, People's Republic of China.
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China; WOAH Porcine Reproductive and Respiratory Syndrome Reference Laboratory, China Animal Disease Control Center, No. 17 Tiangui Road, Daxing District, Beijing, 100125, People's Republic of China.
| |
Collapse
|
4
|
Xu H, Gong B, Sun Q, Li C, Zhao J, Xiang L, Li W, Guo Z, Tang YD, Leng C, Li Z, Wang Q, Zhou G, An T, Cai X, Tian ZJ, Peng J, Zhang H. Genomic Characterization and Pathogenicity of BJEU06-1-Like PRRSV-1 ZD-1 Isolated in China. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/6793604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV)-1 and PRRSV-2 have long been cocirculating in China. To date, all PRRSV-1 strains in China have been classified as subtype 1. We investigated the prevalence of PRRSV-1 in several areas of China from 2016 to 2022 and found that BJEU06-1-like strains comprised the main epidemic branch of PRRSV-1. Pathogenicity data for this subgroup are currently lacking. In this study, the Chinese BJEU06-1-like PRRSV-1 strain ZD-1 was isolated from primary alveolar macrophages (PAMs). ZD-1 has undergone no recombination and has a 5-aa discontinuous deletion in the Nsp2 protein, similar to other BJEU06-1-like strains; additionally, ZD-1 has a 26 aa C-terminal truncation in the GP3 gene. Pathogenicity studies revealed that ZD-1 causes obvious clinical symptoms: prolonged fever; reduced body weight; alveolar epithelial proliferation and moderate alveolar diaphragm widening in the lungs; diffuse lymphocytic hyperplasia in the lymph nodes; high levels of viremia in the serum; and elevated viral loads in the lungs, lymph nodes, and tonsils. These results suggested that the BJEU06-1-like PRRSV-1 strain ZD-1 is moderately pathogenic to piglets. This is the first study to evaluate the pathogenicity of the BJEU06-1-like branch in China, enriching the understanding of PRRSV-1 in China.
Collapse
|
5
|
Metagenomic Approach Reveals the Second Subtype of PRRSV-1 in a Pathogen Spectrum during a Clinical Outbreak with High Mortality in Western Siberia, Russia. Viruses 2023; 15:v15020565. [PMID: 36851780 PMCID: PMC9965736 DOI: 10.3390/v15020565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has a significant economic impact on pig farming worldwide by causing reproductive problems and affecting the respiratory systems of swine. In Eastern Europe, PRRSV-1 strains are characterized by high genetic variability, and pathogenicity differs among all known subtypes. This case study describes the detection of a wide pathogen spectrum, including the second subtype PRRSV-1, with a high mortality rate among nursery piglets (23.8%). This study was conducted at a farrow-to-finish farm in the Western Siberia region of Russia. Clinical symptoms included apathy, sneezing, and an elevation in body temperature, and during the autopsy, degenerative lesions in different tissues were observed. Moreover, 1.5 percent of the affected animals displayed clinical signs of the central nervous system and were characterized by polyserositis. Nasal swabs from diseased piglets and various tissue swabs from deceased animals were studied. For diagnostics, the nanopore sequencing method was applied. All the samples tested positive for PRRSV, and a more detailed analysis defined it as a second subtype of PRRSV-1. The results, along with the clinical picture, showed a complex disease etiology with the dominant role of PRRSV-1 and were informative about the high pathogenicity of the subtype in question under field conditions.
Collapse
|
6
|
Makau DN, Prieto C, Martínez-Lobo FJ, Paploski IAD, VanderWaal K. Predicting Antigenic Distance from Genetic Data for PRRSV-Type 1: Applications of Machine Learning. Microbiol Spectr 2023; 11:e0408522. [PMID: 36511691 PMCID: PMC9927307 DOI: 10.1128/spectrum.04085-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
The control of porcine reproductive and respiratory syndrome (PRRS) remains a significant challenge due to the genetic and antigenic variability of the causative virus (PRRSV). Predominantly, PRRSV management includes using vaccines and live virus inoculations to confer immunity against PRRSV on farms. While understanding cross-protection among strains is crucial for the continued success of these interventions, understanding how genetic diversity translates to antigenic diversity remains elusive. We developed machine learning algorithms to estimate antigenic distance in silico, based on genetic sequence data, and identify differences in specific amino acid sites associated with antigenic differences between viruses. First, we obtained antigenic distance estimates derived from serum neutralization assays cross-reacting PRRSV monospecific antisera with virus isolates from 27 PRRSV1 viruses circulating in Europe. Antigenic distances were weakly to moderately associated with ectodomain amino acid distance for open reading frames (ORFs) 2 to 4 (ρ < 0.2) and ORF5 (ρ = 0.3), respectively. Dividing the antigenic distance values at the median, we then categorized the sera-virus pairs into two levels: low and high antigenic distance (dissimilarity). In the machine learning models, we used amino acid distances in the ectodomains of ORFs 2 to 5 and site-wise amino acid differences between the viruses as potential predictors of antigenic dissimilarity. Using mixed-effect gradient boosting models, we estimated the antigenic distance (high versus low) between serum-virus pairs with an accuracy of 81% (95% confidence interval, 76 to 85%); sensitivity and specificity were 86% and 75%, respectively. We demonstrate that using sequence data we can estimate antigenic distance and potential cross-protection between PRRSV1 strains. IMPORTANCE Understanding cross-protection between cocirculating PRRSV1 strains is crucial to reducing losses associated with PRRS outbreaks on farms. While experimental studies to determine cross-protection are instrumental, these in vivo studies are not always practical or timely for the many cocirculating and emerging PRRSV strains. In this study, we demonstrate the ability to rapidly estimate potential immunologic cross-reaction between different PRRSV1 strains in silico using sequence data routinely collected by production systems. These models can provide fast turn-around information crucial for improving PRRS management decisions such as selecting vaccines/live virus inoculation to be used on farms and assessing the risk of outbreaks by emerging strains on farms previously exposed to certain PRRSV strains and vaccine development among others.
Collapse
Affiliation(s)
- Dennis N. Makau
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| | - Cinta Prieto
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - I. A. D. Paploski
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| |
Collapse
|
7
|
Li C, Xu H, Zhao J, Gong B, Sun Q, Xiang L, Li W, Guo Z, Li J, Tang YD, Leng C, Peng J, Wang Q, An T, Cai X, Tian ZJ, Zhou G, Zhang H. Epidemiological investigation and genetic evolutionary analysis of PRRSV-1 on a pig farm in China. Front Microbiol 2022; 13:1067173. [PMID: 36532471 PMCID: PMC9751794 DOI: 10.3389/fmicb.2022.1067173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 07/30/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has brought serious economic losses to pig industry. PRRSV-1 have existed in China for more than 25 years. The prevalence and features of PRRSV-1 on Chinese farms are unclear. We continuously monitored PRRSV in a pig farm with strict biosafety measures in Henan Province, China, in 2020. The results showed that multiple types of PRRSV coexisted on this single pig farm. PRRSV-1 was one of the main circulating strains on the farm and was responsible for infections throughout nearly the entire epidemic cycle. Phylogenetic analysis showed that PRRSV-1 isolates from this pig farm formed an independent branch, with all isolates belonging to BJEU06-1-like PRRSV. The analysis of selection pressure on ORF5 on this branch identified 5 amino acids as positive selection sites, indicating that PRRSV-1 had undergone adaptive evolution on this farm. According to the analysis of ORF5 of PRRSV-1 on this farm, the evolutionary rate of the BJEU06-1-like branch was estimated to be 1.01 × 10-2 substitutions/site/year. To further understand the genome-wide characteristics of PRRSV-1 on this pig farm, two full-length PRRSV-1 genomes representative of pig farms were obtained. The results of amino acid alignment revealed that although one NSP2 deletion was consistent with BJEU06-1, different new features were found in ORF3 and ORF4. According to the above results, PRRSV-1 has undergone considerable evolution in China. This study is the first to report the prevalence and characteristics of PRRSV-1 on a large farm in mainland China, which will provide a reference for the identification and further prevention and control of PRRSV-1.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lirun Xiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wansheng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhenyang Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinhao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohui Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
8
|
Kreutzmann H, Stadler J, Knecht C, Sassu EL, Ruczizka U, Zablotski Y, Vatzia E, Balka G, Zaruba M, Chen HW, Riedel C, Rümenapf T, Ladinig A. Phenotypic Characterization of a Virulent PRRSV-1 Isolate in a Reproductive Model With and Without Prior Heterologous Modified Live PRRSV-1 Vaccination. Front Vet Sci 2022; 9:820233. [PMID: 35464363 PMCID: PMC9022457 DOI: 10.3389/fvets.2022.820233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Reproductive disorders induced by porcine reproductive and respiratory syndrome virus (PRRSV) cause high economic losses in the pig industry worldwide. In this study, we aimed to phenotypically characterize a virulent PRRSV-1 subtype 1 isolate (AUT15-33) in a reproductive model. Furthermore, the protective effect of a heterologous modified live virus vaccine (ReproCyc® PRRS EU) was evaluated. In addition, PRRSV AUT15-33 was genotypically compared to other well-characterized isolates. Sixteen gilts were equally divided into four groups: a vaccinated and infected group (V–I), a vaccinated and non-infected group (V–NI), a non-vaccinated and infected group (NV–I), and a non-vaccinated and non-infected (NV–NI) group. After PRRSV infection on gestation day 84, all gilts were clinically examined on a daily basis, and blood samples were taken at five timepoints. Necropsy was performed 3 weeks after infection. The fetal preservation status was assessed, and PRRSV RNA concentrations were measured in the blood and tissue samples from all gilts and fetuses. After infection, all four gilts in the NV–I group were viremic throughout 17 days post-infection (dpi), whereas two gilts in the V–I group were viremic at only one timepoint at 6 dpi. The viral load was significantly higher in gilt serum, tracheobronchial lymph nodes, uterine lymph nodes, maternal endometrium, and fetal placenta of NV–I gilts compared to the V–I ones (p < 0.05). Moreover, the preservation status of the fetuses derived from NV–I gilts was significantly impaired (55.9% of viable fetuses) compared to the other groups (p < 0.001). Upon comparison with other known isolates, the phylogenetic analyses revealed the closest relation to a well-characterized PRRSV-1 subtype 1 field isolate from Belgium. In conclusion, the high virulence of AUT15-33 was phenotypically confirmed in an experimental reproductive model. The vaccination of the gilts showed promising results in reducing viremia, fetal damage, and transplacental transmission of the PRRSV-1 strain characterized in this study.
Collapse
Affiliation(s)
- Heinrich Kreutzmann
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
- *Correspondence: Heinrich Kreutzmann
| | - Julia Stadler
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Christian Knecht
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elena L. Sassu
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ursula Ruczizka
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yury Zablotski
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Eleni Vatzia
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Marianne Zaruba
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hann-Wei Chen
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christiane Riedel
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Till Rümenapf
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Ladinig
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
9
|
A Molecular and Epidemiological Description of a Severe Porcine Reproductive and Respiratory Syndrome Outbreak in a Commercial Swine Production System in Russia. Viruses 2022; 14:v14020375. [PMID: 35215966 PMCID: PMC8875681 DOI: 10.3390/v14020375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating disease of swine in many parts of the world. Porcine reproductive and respiratory syndrome virus (PRRSV) type 1 is endemic in Europe, and prevalence of the subtypes differ spatially. In this study, we investigated a severe PRRS outbreak reported in 30 farms located in eastern Russia that belong to a large swine production company in the region that was also experiencing a pseudorabies outbreak in the system. Data included 28 ORF5 sequences from samples across 18 of the 25 infected sites, reverse transcriptase real-time polymerase chain reaction (RT-qPCR) results from diagnostic testing, reports of clinical signs, and animal movement records. We observed that the outbreak was due to two distinct variants of wildtype PRRSV type 1 subtype 1 with an average genetic distance of 15%. Results suggest that the wildtype PRRSV variants were introduced into the region around 2019, before affecting this production system (i.e., sow farms, nurseries, and finisher farms). Clinical signs did not differ between the variants, but they did differ by stage of pig production. Biosecurity lapses, including movement of animals from infected farms contributed to disease spread.
Collapse
|
10
|
Martínez-Lobo FJ, Díez-Fuertes F, Simarro I, Castro JM, Prieto C. The Ability of Porcine Reproductive and Respiratory Syndrome Virus Isolates to Induce Broadly Reactive Neutralizing Antibodies Correlates With In Vivo Protection. Front Immunol 2021; 12:691145. [PMID: 34381448 PMCID: PMC8350477 DOI: 10.3389/fimmu.2021.691145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/30/2021] [Indexed: 12/02/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is considered one of the most relevant diseases of swine. The condition is caused by PRRS virus (PRRSV), an extremely variable virus of the Arteriviridae family. Its heterogeneity can be responsible, at least partially, of the poor cross-protection observed between PRRSV isolates. Neutralizing antibodies (NAs), known to play a role in protection, usually poorly recognize heterologous PRRSV isolates, indicating that most NAs are strain-specific. However, some pigs develop broadly reactive NAs able to recognize a wide range of heterologous isolates. The aim of this study was to determine whether PRRSV isolates that induce broadly reactive NAs as determined in vitro are able to confer a better protection in vivo. For this purpose two in vivo experiments were performed. Initially, 40 pigs were immunized with a PRRSV-1 isolate known to induce broadly reactive NAs and 24 additional pigs were used as controls. On day 70 after immunization, the pigs were divided into eight groups composed by five immunized and three control pigs and exposed to one of the eight different heterologous PRRSV isolates used for the challenge. In the second experiment, the same experimental design was followed but the pigs were immunized with a PRRSV-1 isolate, which is known to generate mostly strain-specific NAs. Virological parameters, specifically viremia and the presence of challenge virus in tonsils, were used to determine protection. In the first experiment, sterilizing immunity was obtained in three groups, prevention of viremia was observed in two additional groups, although the challenge virus was detected occasionally in the tonsils of immunized pigs, and partial protection, understood as a reduction in the frequency of viremia compared with controls, was recorded in the remaining three groups. On the contrary, only partial protection was observed in all groups in the second experiment. The results obtained in this study confirm that PRRSV-1 isolates differ in their ability to induce cross-reactive NAs and, although other components of the immune response might have contributed to protection, pigs with cross-reactive NAs at the time of challenge exhibited better protection, indicating that broadly reactive NAs might play a role in protection against heterologous reinfections.
Collapse
Affiliation(s)
- Francisco Javier Martínez-Lobo
- Animal Science Department, School of Agrifood and Forestry Science and Engineering, University of Lleida, Lleida, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Díez-Fuertes
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain.,AIDS Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Isabel Simarro
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - José M Castro
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Cinta Prieto
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Li S, Li X, Qiu M, Li J, Xiao Y, Lin H, Zheng W, Zhu J, Chen N. Transcriptomic profiling reveals different innate immune responses in primary alveolar macrophages infected by two highly homologous porcine reproductive and respiratory syndrome viruses with distinct virulence. Microb Pathog 2021; 158:105102. [PMID: 34298124 DOI: 10.1016/j.micpath.2021.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) isolates show high genetic and pathogenic diversity. The mechanisms underlying different virulence of PRRSV isolates are still not fully clarified. Two highly homologous PRRSV isolates (XJ17-5 and JSTZ1712-12) with distinct virulence were identified in our previous study. To evaluate the association between host responses and different virulence, here we investigated the transcriptomic profiles of porcine alveolar macrophages (PAMs) infected with these two isolates. RNA-Seq results showed that there are 1932 differential expression genes (DEGs) between two PRRSV infected groups containing 1067 upregulation and 865 downregulation genes. Compared with the avirulent JSTZ1712-12 infected group, GO analysis identified significant enrichment gene sets not only associated with virus infection but also innate immune response in the virulent XJ17-5 infected group. In addition, KEGG analysis indicated significantly enriched genes associated with NOD-like and RIG-I-like receptor signaling pathways in XJ17-5 vs JSTZ1712-12 group. Furthermore, XJ17-5 isolate induced significantly higher levels of innate immune response associated genes (IL-1β, CXCL2, S100A8, OAS2, MX1, IFITM3, ISG15 and IFI6) than JSTZ1712-12 isolate, which were further confirmed by real-time PCR. Given that these two isolates share similar replication efficiency in vivo and in vitro, our results indicated that distinct virulence of PRRSV isolates is associated with different host innate immune responses.
Collapse
Affiliation(s)
- Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
12
|
Sánchez-Carvajal JM, Ruedas-Torres I, Carrasco L, Pallarés FJ, Mateu E, Rodríguez-Gómez IM, Gómez-Laguna J. Activation of regulated cell death in the lung of piglets infected with virulent PRRSV-1 Lena strain occurs earlier and mediated by cleaved Caspase-8. Vet Res 2021; 52:12. [PMID: 33482914 PMCID: PMC7821682 DOI: 10.1186/s13567-020-00882-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
PRRSV-1 virulent strains cause high fever, marked respiratory disease and severe lesions in lung and lymphoid organs. Regulated cell death (RCD), such as apoptosis, necroptosis and pyroptosis, is triggered by the host to interrupt viral replication eliminating infected cells, however, although it seems to play a central role in the immunopathogenesis of PRRSV, there are significant gaps regarding their sequence and activation upon PRRSV-infection. The present study evaluated RCD events by means of caspases expression in the lung of PRRSV-1-infected pigs and their impact on pulmonary macrophage subpopulations and lung lesion. Conventional piglets were intranasally inoculated with the virulent subtype 3 Lena strain or the low virulent subtype 1 3249 strain and euthanised at 1, 3, 6, 8 and 13 dpi. Lena-infected piglets showed severe and early lung damage with a high frequency of PRRSV-N-protein+ cells, depletion of CD163+ cells and high viral load in the lung. The number of TUNEL+ cells was significantly higher than cCasp3+ cells in Lena-infected piglets during the first week post-infection. cCasp8 and to a lesser extent cCasp9 were activated by both PRRSV-1 strains after one week post-infection together with a replenishment of both CD163+ and Arg-1+ pulmonary macrophages. These results highlight the induction of other forms of RCD beyond apoptosis, such as, necroptosis and pyroptosis during the first week post-infection followed by the activation of, mainly, extrinsic apoptosis during the second week post-infection. The recovery of CD163+ macrophages at the end of the study represents an attempt to restore pulmonary macrophage subpopulations lost during the early stages of the infection but also a macrophage polarisation into M2 macrophages.
Collapse
Affiliation(s)
- Jose María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Spain.,Institut de Recerca i Tecnologia Agroalimentàries - Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
13
|
Raev S, Yuzhakov A, Bulgakov A, Kostina L, Gerasianinov A, Verkhovsky O, Zaberezhny A, Aliper T. An Outbreak of a Respiratory Disorder at a Russian Swine Farm Associated with the Co-Circulation of PRRSV1 and PRRSV2. Viruses 2020; 12:v12101169. [PMID: 33076391 PMCID: PMC7602620 DOI: 10.3390/v12101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 01/21/2023] Open
Abstract
We conducted a cross-sectional study to identify the major respiratory pathogen responsible for an outbreak of respiratory disease at a swine farm in West Siberia in 2019. We discovered that the peak of morbidity and mortality coincided with a high level of porcine reproductive and respiratory syndrome virus (PRRSV) 1 and 2-related viremia. Based on longer PRRSV2 viremia, the dominant role of PRRSV2 over PRRSV1 in the outbreak was assumed. Phylogenetic analysis revealed that the PRRSV1 strain belonged to sub-genotype 2—one of the predominant groups of genotype 1 PRRSVs in Russia. A partial open reading frame 7 sequence of the PRRSV2 isolate demonstrated a high identity with modified live vaccine-related strains from Denmark (93%) and wild-type VR2332 (92%). We identified the first instance of PRRSV1/PRRSV2 mixed infection in Russia. This finding indicates that further field investigations are needed to access PRRSV2 epidemiology in eastern Europe.
Collapse
Affiliation(s)
- Sergei Raev
- Federal State Budget Scientific Institution “Federal Scientific Center VIEV”, 109428 Moscow, Russia; (A.Y.); (A.B.); (L.K.); (A.Z.); (T.A.)
- Correspondence: ; Tel.: +1-330-601-4796
| | - Anton Yuzhakov
- Federal State Budget Scientific Institution “Federal Scientific Center VIEV”, 109428 Moscow, Russia; (A.Y.); (A.B.); (L.K.); (A.Z.); (T.A.)
| | - Alexandr Bulgakov
- Federal State Budget Scientific Institution “Federal Scientific Center VIEV”, 109428 Moscow, Russia; (A.Y.); (A.B.); (L.K.); (A.Z.); (T.A.)
| | - Ludmila Kostina
- Federal State Budget Scientific Institution “Federal Scientific Center VIEV”, 109428 Moscow, Russia; (A.Y.); (A.B.); (L.K.); (A.Z.); (T.A.)
| | | | - Oleg Verkhovsky
- Laboratory of Virology, Diagnostics and Prevention Research Institute for Human and Animal Diseases, 123098 Moscow, Russia;
| | - Alexei Zaberezhny
- Federal State Budget Scientific Institution “Federal Scientific Center VIEV”, 109428 Moscow, Russia; (A.Y.); (A.B.); (L.K.); (A.Z.); (T.A.)
| | - Taras Aliper
- Federal State Budget Scientific Institution “Federal Scientific Center VIEV”, 109428 Moscow, Russia; (A.Y.); (A.B.); (L.K.); (A.Z.); (T.A.)
| |
Collapse
|
14
|
Yuzhakov AG, Raev SA, Shchetinin AM, Gushchin VA, Alekseev KP, Stafford VV, Komina AK, Zaberezhny AD, Gulyukin AM, Aliper TI. Full-genome analysis and pathogenicity of a genetically distinct Russian PRRSV-1 Tyu16 strain. Vet Microbiol 2020; 247:108784. [PMID: 32768228 DOI: 10.1016/j.vetmic.2020.108784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
Porcine reproductive and respiratory syndrome virus-1 (PRRSV-1) strains from Eastern Europe have a high diversity. All three known subtypes (1, 2, 3) of PRRSV-1 have been detected in Russia. There are two different groups of viruses belonging to the subtype 1: pan-European subtype 1 strains, and insufficiently studied Russian strains. The main objective of this study was to characterize the full genomic structure of the atypical Tyu16 strain of the Russian group subtype 1 PRRSV-1 and to assess its pathogenicity. Complete sequencing of the Tyu16 strain revealed that it did not belong to any existing subtype. Comparison of the whole genome sequence of the Tyu16 strain with that of PRRSV-1 prototype strains revealed 78.1 % (subtype 1 Lelystad), 78.1 % (subtype 2 WestSib13) and 77.7 % (subtype 3 Lena) nucleotide identity level, respectively. The coding sequence of different parts of the Tyu16 strain genome demonstrated a varying percentage identity to the different reference PRRSV-1 strains, which may indicate recombination events in its evolutionary history. We assume that among PRRSV-1 isolates, the Tyu16 is the closest relative to the common ancestor of PRRSV-1 and PRRSV-2. Low pathogenicity of the Tyu16 was demonstrated by experimental infection of 70-day-old piglets. Infected animals showed fever not exceeding 7 days, dyspnea in two out of five pigs and reduced weight gain. The virus shedding was undetectable and viremia was at low level.
Collapse
Affiliation(s)
- Anton G Yuzhakov
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Sergei A Raev
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Alexey M Shchetinin
- N. F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow, Russia.
| | - Vladimir A Gushchin
- N. F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow, Russia.
| | - Konstantin P Alekseev
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Viсtoria V Stafford
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Alina K Komina
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Alexei D Zaberezhny
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Alexey M Gulyukin
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Taras I Aliper
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| |
Collapse
|