1
|
Cassola F, Ramírez N, Delarmelina C, Duarte MCT. In vitro determination of the susceptibility of Malassezia furfur biofilm to different commercially used antimicrobials. APMIS 2024. [PMID: 38658316 DOI: 10.1111/apm.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Malassezia furfur is a yeast known as the etiological agent of seborrheic dermatitis. We evaluated the action of five different antimicrobials (amphotericin B, chloramphenicol, ketoconazole, fluconazole, and nystatin) on inhibiting biofilm formation and removing biofilm already formed by M. furfur. The assays were carried out using the microdilution method, and scanning electron microscopy images were used to analyze the biofilm structure. According to the results obtained, the percentage of inhibition was higher for chloramphenicol, followed by ketoconazole, nystatin, and amphotericin B. Regarding the eradication of the biofilm formed, the highest percentage was chloramphenicol, followed by ketoconazole and nystatin. Amphotericin B did not affect biofilm eradication, whereas fluconazole did not cause significant changes inhibiting or removing M. furfur biofilm. Therefore, except for fluconazole, all evaluated antimicrobials had inhibiting effects on the biofilm of M. furfur, either in its formation and/or eradication. Although the results achieved with chloramphenicol have been highlighted, further in vitro and in vivo studies are still needed in order to include this antimicrobial in the therapy of seborrheic dermatitis due to its toxicity, especially to the bone marrow.
Collapse
Affiliation(s)
- Fábio Cassola
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, Brasil
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, Brasil
| | - Nedy Ramírez
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, Brasil
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, Brasil
| | - Camila Delarmelina
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, Brasil
| | | |
Collapse
|
2
|
Álvarez-Pérez S, Rodríguez-Franco F, García-Sancho M, Tercero-Guerrero D, Sainz Á, García ME, Blanco JL. Analysis of the culturable gut yeast microbiota of dogs with digestive disorders. Res Vet Sci 2024; 168:105153. [PMID: 38219470 DOI: 10.1016/j.rvsc.2024.105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Despite the increasing interest in studying the gut mycobiota of dogs, the association between fungal colonization and the development of digestive disorders in this species remains largely understudied. On the other hand, the high prevalence of antifungal-resistant yeasts detected in previous studies in samples from animals represents a major threat to public health. We analyzed the presence of culturable yeasts in 112 rectal swab samples obtained from dogs with digestive disorders attended in a veterinary teaching hospital. Our results revealed that Malassezia pachydermatis was frequently isolated from the studied dog population (33.9% of samples), and that the isolation of this yeast was significantly associated to the age of animals, but not to their sex, disease group, or the presence of vomits and/or diarrhea. In contrast, other yeast species were less prevalent (17.9% of samples in total), and their isolation was not significantly associated to any variable included in the analysis. Additionally, we observed that 97.5% of the studied M. pachydermatis isolates (n = 158, 1-6 per positive episode) displayed a minimum inhibitory concentration (MIC) value >4 μg/ml to nystatin, 31.6% had a MIC ≥32 μg/ml to fluconazole, and 27.2% had a MIC >4 μg/ml to amphotericin B. The antifungal susceptibility profiles of non-Malassezia (n = 43, 1-7 per episode) were more variable and included elevated MIC values for some antifungal-species combinations. These results confirm that the intestine of dogs is a reservoir of opportunistic pathogenic yeasts and suggest that the prevalence of M. pachydermatis colonization depends more on the age of animals than on any specific digestive disorder.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain; Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain.
| | - Fernando Rodríguez-Franco
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain; Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| | - Mercedes García-Sancho
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain; Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| | - Daniela Tercero-Guerrero
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| | - Ángel Sainz
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain; Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain; Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| | - José L Blanco
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain; Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| |
Collapse
|
3
|
Romero V, Kalinhoff C, Saa LR, Sánchez A. Fungi's Swiss Army Knife: Pleiotropic Effect of Melanin in Fungal Pathogenesis during Cattle Mycosis. J Fungi (Basel) 2023; 9:929. [PMID: 37755037 PMCID: PMC10532448 DOI: 10.3390/jof9090929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Fungal threats to public health, food security, and biodiversity have escalated, with a significant rise in mycosis cases globally. Around 300 million people suffer from severe fungal diseases annually, while one-third of food crops are decimated by fungi. Vertebrate, including livestock, are also affected. Our limited understanding of fungal virulence mechanisms hampers our ability to prevent and treat cattle mycoses. Here we aim to bridge knowledge gaps in fungal virulence factors and the role of melanin in evading bovine immune responses. We investigate mycosis in bovines employing a PRISMA-based methodology, bioinformatics, and data mining techniques. Our analysis identified 107 fungal species causing mycoses, primarily within the Ascomycota division. Candida, Aspergillus, Malassezia, and Trichophyton were the most prevalent genera. Of these pathogens, 25% produce melanin. Further research is required to explore the involvement of melanin and develop intervention strategies. While the literature on melanin-mediated fungal evasion mechanisms in cattle is lacking, we successfully evaluated the transferability of immunological mechanisms from other model mammals through homology. Bioinformatics enables knowledge transfer and enhances our understanding of mycosis in cattle. This synthesis fills critical information gaps and paves the way for proposing biotechnological strategies to mitigate the impact of mycoses in cattle.
Collapse
Affiliation(s)
- Víctor Romero
- Maestría en Biotecnología Agropecuaria, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador
- Museo de Zoología, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador
| | - Carolina Kalinhoff
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador; (C.K.)
| | - Luis Rodrigo Saa
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador; (C.K.)
| | - Aminael Sánchez
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador; (C.K.)
| |
Collapse
|
4
|
Díaz L, Castellá G, Bragulat MR, Cabañes FJ. ERG11 Gene Variability and Azole Susceptibility in Malassezia pachydermatis. Mycopathologia 2023; 188:21-34. [PMID: 36495417 PMCID: PMC10169892 DOI: 10.1007/s11046-022-00696-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Malassezia pachydermatis is part of the normal skin microbiota of various animal species but under certain circumstances becomes an opportunistic pathogen producing otitis and dermatitis. Commonly these Malassezia diseases are effectively treated using azoles. However, some cases of treatment failure have been reported. Alterations in the ERG11 gene have been associated with in vitro azole resistance in M. pachydermatis. In the present study, in vitro antifungal susceptibility of 89 different strains of M. pachydermatis isolated from different animal species and health status was studied. The susceptibility to fluconazole (FLZ), itraconazole (ITZ), ketoconazole and amphotericin B was tested by a disk diffusion method and 17 strains were also subjected to an ITZ E-test. Mueller-Hinton supplemented with 2% glucose and methylene blue was used as culture medium in both susceptibility assays. Multilocus sequence typing was performed in 30 selected strains using D1D2, ITS, CHS2 and β-tubulin genes. Also, ERG11 gene was sequenced. The four antifungals tested were highly effective against most of the strains. Only two strains showed no inhibition zone to antifungals and a strain showed an increased MIC to ITZ. The study of the ERG11 sequences revealed a high diversity of DNA sequences and a total of 23 amino acid substitutions, from which only two have been previously described. Also, three deleterious substitutions (A302T, G459D and G461D) previously associated with azole resistance in this yeast were recovered. A correlation between certain genotypes and ERG11 mutations was observed. Some of the ERG11 mutations recovered were correlated with a reduced susceptibility to azoles.
Collapse
Affiliation(s)
- Leyna Díaz
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Gemma Castellá
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.
- Grup de Micologia Veterinària, Departament de Sanitat i d'Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - M Rosa Bragulat
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - F Javier Cabañes
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
5
|
Rhimi W, Chebil W, Ugochukwu ICI, Babba H, Otranto D, Cafarchia C. Comparison of virulence factors and susceptibility profiles of Malassezia furfur from pityriasis versicolor patients and bloodstream infections of preterm infants. Med Mycol 2022; 61:6982906. [PMID: 36626926 DOI: 10.1093/mmy/myad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
In spite of the increasing medical interest in Malassezia yeasts, the virulence factors of Malassezia furfur causing bloodstream infections (BSI) were never investigated. Therefore, phospholipase (Pz), lipase (Lz), hemolysin (Hz), biofilm production, and in vitro antifungal susceptibility profiles were evaluated in M. furfur strains, isolated from both pityriasis versicolor (PV) patients (n = 18; Group 1) or from preterm infants BSI (n = 21; Group 2). All the test stains exhibited Pz activity, whereas 92.3% and 97.4% of strains exhibited Lz and Hz activities, respectively. Pz, Lz, and Hz activities were higher (i.e., lower values) within Group 1 strains (i.e., 0.48, 0.40, and 0.77) than those within Group 2 (i.e., 0.54, 0.54, and 0.81). The biofilm production was higher within Malassezia isolates from Group 2 (0.95 ± 0.3) than from Group 1 (0.72 ± 0.4). Itraconazole and posaconazole were the most active drugs against M. furfur, followed by amphotericin B and fluconazole. The minimum inhibitory concentrations (MIC) values varied according to the origin of M. furfur strains being statistically lower in M. furfur from Group 1 than from Group 2. This study suggests that M. furfur strains produce hydrolytic enzymes and biofilm when causing PV and BSI. Data show that the phospholipase activity, biofilm production, and a reduced antifungal susceptibility profile might favor M. furfur BSI, whereas lipase and hemolytic activities might display a synergic role in skin infection.
Collapse
Affiliation(s)
- Wafa Rhimi
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy
| | - Wissal Chebil
- Laboratory of Medical and Molecular Parasitology-Mycology, Department of Clinical Biology, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Iniobong Chukwuebuka Ikenna Ugochukwu
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy.,Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Hamouda Babba
- Laboratory of Medical and Molecular Parasitology-Mycology, Department of Clinical Biology, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy.,Department of Pathobiology, Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy
| |
Collapse
|
6
|
Čonková E, Proškovcová M, Váczi P, Malinovská Z. In Vitro Biofilm Formation by Malassezia pachydermatis Isolates and Its Susceptibility to Azole Antifungals. J Fungi (Basel) 2022; 8:1209. [PMID: 36422031 PMCID: PMC9693420 DOI: 10.3390/jof8111209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 10/27/2023] Open
Abstract
The yeast Malassezia pachydermatis, an opportunistic pathogen that inhabits the skin of various domestic and wild animals, is capable of producing a biofilm that plays an important role in antifungal resistance. The aim of this research study was to find the intensity of biofilm production by M. pachydermatis strains isolated from the ear canal of healthy dogs, and to determine the susceptibility of planktonic, adhered and biofilm-forming cells to three azole antifungals-itraco-nazole, voriconazole and posaconazole-that are most commonly used to treat Malassezia infections. Out of 52 isolates, 43 M. pachydermatis strains (82.7%) were biofilm producers with varying levels of intensity. For planktonic cells, the minimum inhibitory concentration (MIC) range was 0.125-2 µg/mL for itraconazole, 0.03-1 µg/mL for voriconazole and 0.03-0.25 µg/mL for posaconazole. Only two isolates (4.7%) were resistant to itraconazole, one strain (2.3%) to voriconazole and none to posaconazole. For adhered cells and the mature biofilm, the following MIC ranges were found: 0.25-16 µg/mL and 4-16 µg/mL for itraconazole, 0.125-8 µg/mL and 0.25-26 µg/mL for voriconazole, and 0.03-4 µg/mL and 0.25-16 µg/mL for posaconazole, respectively. The least resistance for adhered cells was observed for posaconazole (55.8%), followed by voriconazole (62.8%) and itraconazole (88.4%). The mature biofilm of M. pachydermatis showed 100% resistance to itraconazole, 95.3% to posaconazole and 83.7% to voriconazole. The results of this study show that higher concentrations of commonly used antifungal agents are needed to control infections caused by biofilm-forming strains of M. pachydermatis.
Collapse
Affiliation(s)
- Eva Čonková
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | | | | | | |
Collapse
|
7
|
Ianiri G, LeibundGut-Landmann S, Dawson TL. Malassezia: A Commensal, Pathogen, and Mutualist of Human and Animal Skin. Annu Rev Microbiol 2022; 76:757-782. [PMID: 36075093 DOI: 10.1146/annurev-micro-040820-010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identified in the late nineteenth century as a single species residing on human skin, Malassezia is now recognized as a diverse genus comprising 18 species inhabiting not only skin but human gut, hospital environments, and even deep-sea sponges. All cultivated Malassezia species are lipid dependent, having lost genes for lipid synthesis and carbohydrate metabolism. The surging interest in Malassezia results from development of tools to improve sampling, culture, identification, and genetic engineering, which has led to findings implicating it in numerous skin diseases, Crohn disease, and pancreatic cancer. However, it has become clear that Malassezia plays a multifaceted role in human health, with mutualistic activity in atopic dermatitis and a preventive effect against other skin infections due to its potential to compete with skin pathogens such as Candida auris. Improved understanding of complex microbe-microbe and host-microbe interactions will be required to define Malassezia's role in human and animal health and disease so as to design targeted interventions.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Agricultural, Environmental, and Food Sciences, University of Molise, Campobasso, Italy
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Faculty of Vetsuisse, and Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Thomas L Dawson
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore; .,Department of Drug Discovery, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
8
|
Ehemann K, Mantilla MJ, Mora-Restrepo F, Rios-Navarro A, Torres M, Celis Ramírez AM. Many ways, one microorganism: Several approaches to study Malassezia in interactions with model hosts. PLoS Pathog 2022; 18:e1010784. [PMID: 36074792 PMCID: PMC9455852 DOI: 10.1371/journal.ppat.1010784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malassezia, a lipophilic and lipid-dependent yeast, is a microorganism of current interest to mycobiologists because of its role as a commensal or pathogen in health conditions such as dermatological diseases, fungemia, and, as discovered recently, cancer and certain neurological disorders. Various novel approaches in the study of Malassezia have led to increased knowledge of the cellular and molecular mechanisms of this yeast. However, additional efforts are needed for more comprehensive understanding of the behavior of Malassezia in interactions with the host. This article reviews advances useful in the experimental field for Malassezia.
Collapse
Affiliation(s)
- Kevin Ehemann
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - María Juliana Mantilla
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Felipe Mora-Restrepo
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Andrea Rios-Navarro
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
9
|
Chebil W, Rhimi W, Haouas N, Romano V, Belgacem S, Ali HB, Babba H, Cafarchia C. Virulence factors of Malassezia strains isolated from pityriasis versicolor patients and healthy individuals. Med Mycol 2022; 60:6652903. [PMID: 35913746 DOI: 10.1093/mmy/myac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, Malassezia species have emerged as increasingly important pathogens associated with a wide range of dermatological disorders and bloodstream infections. The pathogenesis of Malassezia yeasts is not completely clear but it seems to be strictly related to Malassezia strains and hosts and need to be better investigated. This study aimed to assess the enzymatic activities, biofilm formation and in vitro antifungal profiles of Malassezia spp. from Pityriasis versicolor and heathy patients. The potential relationship between virulence attributes, the antifungal profiles and the origin of strains were also assessed. A total of 44 Malassezia strains isolated from patients with (n = 31) and without (n = 13) Pityriasis versicolor (PV) were employed to evaluate phospholipase (Pz), lipase (Lz), hemolytic (Hz) activities and biofilm formation. In addition, in vitro antifungal susceptibility testing was conducted using the CLSI broth microdilution with some modifications. A high percentage of strains produced phospholipase, lipase, hemolysins and biofilm regardless of their clinical origin. The highest number of strains producing high enzymatic activities came from PV patients. A correlation between the intensity of hydrolytic activities (lipase and phospholipase activities) and the hemolytic activity was detected. Positive associations between Lz and the low fluconazole susceptibility and Hz and biofilm formation were observed. These results suggest that enzyme patterns and biofilm formation together with antifungal profiles play a role in the pathogenicity of Malassezia spp. and might explain the implication of some Malassezia spp. in invasive fungal infections and in the development of inflammation.
Collapse
Affiliation(s)
- Wissal Chebil
- University of Monastir, Faculty of Pharmacy, Laboratory of Medical and Molecular Parasitology-Mycology LP3M (code LR12ES08), Department of Clinical Biology B, 5000, Monastir, Tunisia
| | - Wafa Rhimi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", 70010, Valenzano, Bari, Italy
| | - Najoua Haouas
- University of Monastir, Faculty of Pharmacy, Laboratory of Medical and Molecular Parasitology-Mycology LP3M (code LR12ES08), Department of Clinical Biology B, 5000, Monastir, Tunisia
| | - Valentina Romano
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", 70010, Valenzano, Bari, Italy
| | - Sameh Belgacem
- Laboratory of Parasitology-Mycology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Hichem Belhadj Ali
- Dermatology Department, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Hamouda Babba
- University of Monastir, Faculty of Pharmacy, Laboratory of Medical and Molecular Parasitology-Mycology LP3M (code LR12ES08), Department of Clinical Biology B, 5000, Monastir, Tunisia
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", 70010, Valenzano, Bari, Italy
| |
Collapse
|
10
|
Hobi S, Cafarchia C, Romano V, Barrs VR. Malassezia: Zoonotic Implications, Parallels and Differences in Colonization and Disease in Humans and Animals. J Fungi (Basel) 2022; 8:jof8070708. [PMID: 35887463 PMCID: PMC9324274 DOI: 10.3390/jof8070708] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
Malassezia spp. are commensals of the skin, oral/sinonasal cavity, lower respiratory and gastrointestinal tract. Eighteen species have been recovered from humans, other mammals and birds. They can also be isolated from diverse environments, suggesting an evolutionary trajectory of adaption from an ecological niche in plants and soil to the mucocutaneous ecosystem of warm-blooded vertebrates. In humans, dogs and cats, Malassezia-associated dermatological conditions share some commonalities. Otomycosis is common in companion animals but is rare in humans. Systemic infections, which are increasingly reported in humans, have yet to be recognized in animals. Malassezia species have also been identified as pathogenetic contributors to some chronic human diseases. While Malassezia species are host-adapted, some species are zoophilic and can cause fungemia, with outbreaks in neonatal intensive care wards associated with temporary colonization of healthcare worker’s hands from contact with their pets. Although standardization is lacking, susceptibility testing is usually performed using a modified broth microdilution method. Antifungal susceptibility can vary depending on Malassezia species, body location, infection type, disease duration, presence of co-morbidities and immunosuppression. Antifungal resistance mechanisms include biofilm formation, mutations or overexpression of ERG11, overexpression of efflux pumps and gene rearrangements or overexpression in chromosome 4.
Collapse
Affiliation(s)
- Stefan Hobi
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Tat Chee Avenue, Kowloon, Hong Kong, China
- Correspondence: (S.H.); (V.R.B.)
| | - Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari, Str. prov. per Casamassima Km 3, Valenzano, (Bari), 70010, Italy; (C.C.); (V.R.)
| | - Valentina Romano
- Department of Veterinary Medicine, University of Bari, Str. prov. per Casamassima Km 3, Valenzano, (Bari), 70010, Italy; (C.C.); (V.R.)
| | - Vanessa R. Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University, Tat Chee Avenue, Kowloon, Hong Kong, China
- Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Correspondence: (S.H.); (V.R.B.)
| |
Collapse
|
11
|
Martins E, Maboni G, Battisti R, da Costa L, Selva HL, Levitzki ED, Gressler LT. High rates of multidrug resistance in bacteria associated with small animal otitis: A study of cumulative microbiological culture and antimicrobial susceptibility. Microb Pathog 2022; 165:105399. [PMID: 35182615 DOI: 10.1016/j.micpath.2022.105399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
The etiology of otitis in dogs and cats is multifactorial and complex, involving bacterial and fungal pathogens. As empiric antimicrobial prescription is a common practice when treating such cases, antimicrobial resistance may represent a complicating factor. The aim of this study was to describe microbiological features and susceptibility profiles of pathogens associated with 142 cases of external otitis, comprising 138 dogs and 4 cats.. The specimens were processed to identify bacterial and fungal etiologies following standard microbiological methods. Antimicrobial susceptibility was determined in vitro against 15 antibiotics and 3 antifungals. Further, Staphylococcus spp. isolates were screened for the detection of β-lactamase enzymes using cefinase paper discs. Pseudomonas spp. and isolates from Enterobacteriaceae family were screened for colistin (Polymyxin E) resistance and for the mcr-1-mediated colistin resistance gene by PCR. The presence of mixed cultures of Enterobacteriaceae, Pseudomonas spp. and Staphylococcus spp., and co-infections with Malassezia spp., emphasizes the polymicrobial etiology of external otitis in small animals. Emerging rates of multidrug resistance observed in almost 50% of the isolates may alert for a near future of challenging veterinary cases unresponsive to first-line antimicrobials. In addition, these results highlight a potential public health concern of multidrug resistant bacteria, given the proximity of pets and their owners. This study addressed central aspects of external otitis, providing microbiologists and clinicians updated information on the etiology and treatment of challenging cases of multidrug resistant bacteria. It also provides priceless surveillance value in monitoring resistant bacteria in small animals.
Collapse
Affiliation(s)
- Eduarda Martins
- Laboratory of Veterinary Microbiology and Immunology, Instituto Federal Farroupilha, Frederico, Westphalen, RS, Brazil
| | - Grazieli Maboni
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Canada
| | - Rutiéli Battisti
- Laboratory of Veterinary Microbiology and Immunology, Instituto Federal Farroupilha, Frederico, Westphalen, RS, Brazil
| | - Luiza da Costa
- Laboratory of Veterinary Microbiology and Immunology, Instituto Federal Farroupilha, Frederico, Westphalen, RS, Brazil
| | - Hellen Laryce Selva
- Laboratory of Veterinary Microbiology and Immunology, Instituto Federal Farroupilha, Frederico, Westphalen, RS, Brazil
| | - Eduarda Dambrós Levitzki
- Laboratory of Veterinary Microbiology and Immunology, Instituto Federal Farroupilha, Frederico, Westphalen, RS, Brazil
| | - Letícia Trevisan Gressler
- Laboratory of Veterinary Microbiology and Immunology, Instituto Federal Farroupilha, Frederico, Westphalen, RS, Brazil.
| |
Collapse
|
12
|
Nunes Rodrigues TC, Vandenabeele SI. Pilot study of dogs with suppurative and non-suppurative Malassezia otitis: A case series. BMC Vet Res 2021; 17:353. [PMID: 34794441 PMCID: PMC8603560 DOI: 10.1186/s12917-021-03066-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rarely, Malassezia otitis presents as a painful, erosive otitis with an otic discharge containing Malassezia and neutrophils on cytology. There are no published reports of this type of suppurative Malassezia otitis (SMO). The role of Malassezia hypersensitivity in otitis is still unknown, and no association has been demonstrated with SMO. We compared Malassezia IgE levels, intradermal test and histology changes in SMO dogs with the more conventional Malassezia otitis (MO) presentation. RESULTS Three dogs (case 1, case 2 and case 3) were diagnosed with SMO, one dog (case 4) was diagnosed with unilateral MO and unilateral SMO, and one dog (case 5) was diagnosed with MO. Only one case (case 4) with SMO/MO had a positive Intradermal Allergy Test (IDAT) and elevated IgE levels for Malassezia. Histopathology findings from SMO revealed: interface dermatitis (case 1 and 3), lymphocytic dermatitis (case 2) and chronic hyperplastic eosinophilic and lymphoplasmacytic dermatitis (case 4). Histopathology findings from MO showed perivascular dermatitis (case 4 and 5). All the cases were treated successfully. CONCLUSIONS SMO presents with a distinct clinical phenotype in comparison with conventional MO. No consistent aetiology could be isolated. In these clinical cases it is possible that previous treatments could have influenced the results. More research is needed to understand the possible aetiologies and the pathogenesis of SMO.
Collapse
Affiliation(s)
- Tania C Nunes Rodrigues
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Sophie I Vandenabeele
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
13
|
Rhimi W, Theelen B, Boekhout T, Aneke CI, Otranto D, Cafarchia C. Conventional therapy and new antifungal drugs against Malassezia infections. Med Mycol 2021; 59:215-234. [PMID: 33099634 DOI: 10.1093/mmy/myaa087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Malassezia yeasts are commensal microorganisms occurring on the skin of humans and animals causing dermatological disorders or systemic infections in severely immunocompromised hosts. Despite attempts to control such yeast infections with topical and systemic antifungals, recurrence of clinical signs of skin infections as well as treatment failure in preventing or treating Malassezia furfur fungemia have been reported most likely due to wrong management of these infections (e.g., due to early termination of treatment) or due to the occurrence of resistant phenomena. Standardized methods for in vitro antifungal susceptibility tests of these yeasts are still lacking, thus resulting in variable susceptibility profiles to azoles among Malassezia spp. and a lack of clinical breakpoints. The inherent limitations to the current pharmacological treatments for Malassezia infections both in humans and animals, stimulated the interest of the scientific community to discover new, effective antifungal drugs or substances to treat these infections. In this review, data about the in vivo and in vitro antifungal activity of the most commonly employed drugs (i.e., azoles, polyenes, allylamines, and echinocandins) against Malassezia yeasts, with a focus on human bloodstream infections, are summarized and their clinical implications are discussed. In addition, the usefulness of alternative compounds is discussed.
Collapse
Affiliation(s)
- Wafa Rhimi
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Chioma Inyang Aneke
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy.,Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy.,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy
| |
Collapse
|
14
|
Niae S, Yurayart C, Thengchaisri N, Sattasathuchana P. Prevalence and in vitro antifungal susceptibility of commensal yeasts in the external ear canal of cats. BMC Vet Res 2021; 17:288. [PMID: 34454490 PMCID: PMC8400901 DOI: 10.1186/s12917-021-02995-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/17/2021] [Indexed: 11/15/2022] Open
Abstract
Background Lifestyle factors such as hair length, the frequency of ear cleaning and bathing, age, cat rearing, and sex may contribute to opportunistic yeast infections in the external ear canal of cats. This study aimed to determine the prevalence of commensal yeast organisms in cats’ external ear canals, evaluate their predisposing lifestyle factors, and test the susceptibility of Malassezia pachydermatis to antifungal agents. Results A total of 53 cats (33 male and 20 female) seronegative for feline leukemia virus and feline immunodeficiency virus were enrolled in this study. Their mean age (± standard deviation) was 6.04 (± 3.49) years. Fungal cultures and polymerase chain reaction tests were performed to identify the yeast species derived from the external ear canal. The association between lifestyle factors and the presence of M. pachydermatis was evaluated using Fisher’s exact test. The susceptibility of M. pachydermatis to antifungal agents was also analyzed. M. pachydermatis was the most frequently recovered yeast species, with a prevalence of 50.94 % (95 % confidence interval [CI]: 36.84–64.94 %). There was an association between hair length and a positive culture for M. pachydermatis (p = 0.0001). The odds of a negative culture for M. pachydermatis among short-haired cats was 11.67 (95 % CI, 3.22–42.24) times higher than that among long-haired cats (p = 0.0002). There was also an association between the frequency of ear cleaning and the presence of M. pachydermatis (p = 0.007). The odds of a negative culture for M. pachydermatis in cats that were receiving ear cleaning at intervals of ≤ 2 weeks was 5.78 (95 % CI, 1.67–19.94) times greater than that of cats receiving ear cleaning at intervals greater than 2 weeks or never (p = 0.0055). Ranges of minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations for itraconazole, ketoconazole, miconazole, and terbinafine against M. pachydermatis were ≤ 0.063–4 and ≤ 0.063–≥32, ≤ 0.063–8 and 0.125–≥32, ≤ 0.063–≥32 and 0.5–≥32, and ≤ 0.016–1 and 0.125–8 µg/ml, respectively. Conclusions M. pachydermatis was the most commonly identified yeast organism in the external ear canal of healthy cats. Hair length and the frequency of ear cleaning played a role in the colonization of M. pachydermatis. The M. pachydermatis isolates had various MIC levels for common fungicides.
Collapse
Affiliation(s)
- Sara Niae
- Graduate Student in Veterinary Clinical Studies, Faculty of Veterinary Medicine, Kasetsart University, 10900, Bangkok, Thailand
| | - Chompoonek Yurayart
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, 10900, Bangkok, Thailand
| | - Naris Thengchaisri
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd, Latyao, Jatujak, 10900, Bangkok, Thailand
| | - Panpicha Sattasathuchana
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Rd, Latyao, Jatujak, 10900, Bangkok, Thailand.
| |
Collapse
|
15
|
Molecular Characterization of Microbial and Fungal Communities on Dry-Aged Beef of Hanwoo Using Metagenomic Analysis. Foods 2020; 9:foods9111571. [PMID: 33138191 PMCID: PMC7693710 DOI: 10.3390/foods9111571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Dry aging has been widely applied for the aging of meat to produce a unique flavor and tenderness of meat. A number of microorganisms are present, forming a community with interactions that affect the meat aging process. However, their comprehensive compositions are still not well understood. In this study, we analyzed longitudinal changes in microbial and fungal communities in dry-aged beef using a metagenomic platform. 16S rRNA sequencing revealed that dry aging led to an increase in bacterial diversity, and Actinobacteria and Firmicutes, which are mostly lactic acid bacteria, were dominant on dry-aged beef. However, prolonged dry aging reduced the diversity of lactic acid bacteria. Sequencing of the internal transcribed spacer (ITS) region showed that fungal diversity was reduced by aging and that Helicostylum sp. was the most common species. These results suggest that there are various microorganisms on dry-aged beef that interrelate with each other and affect meat quality. Understanding microbial characteristics during the aging process will help to enhance beef quality and functional effects.
Collapse
|
16
|
Torres M, de Cock H, Celis Ramírez AM. In Vitro or In Vivo Models, the Next Frontier for Unraveling Interactions between Malassezia spp. and Hosts. How Much Do We Know? J Fungi (Basel) 2020; 6:jof6030155. [PMID: 32872112 PMCID: PMC7558575 DOI: 10.3390/jof6030155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Malassezia is a lipid-dependent genus of yeasts known for being an important part of the skin mycobiota. These yeasts have been associated with the development of skin disorders and cataloged as a causal agent of systemic infections under specific conditions, making them opportunistic pathogens. Little is known about the host-microbe interactions of Malassezia spp., and unraveling this implies the implementation of infection models. In this mini review, we present different models that have been implemented in fungal infections studies with greater attention to Malassezia spp. infections. These models range from in vitro (cell cultures and ex vivo tissue), to in vivo (murine models, rabbits, guinea pigs, insects, nematodes, and amoebas). We additionally highlight the alternative models that reduce the use of mammals as model organisms, which have been gaining importance in the study of fungal host-microbe interactions. This is due to the fact that these systems have been shown to have reliable results, which correlate with those obtained from mammalian models. Examples of alternative models are Caenorhabditis elegans, Drosophila melanogaster, Tenebrio molitor, and Galleria mellonella. These are invertebrates that have been implemented in the study of Malassezia spp. infections in order to identify differences in virulence between Malassezia species.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 N° 18A—12, Bogotá, Bogotá D.C. 11711, Colombia;
| | - Hans de Cock
- Microbiology, Department of Biology, Faculty of Science, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 N° 18A—12, Bogotá, Bogotá D.C. 11711, Colombia;
- Correspondence:
| |
Collapse
|
17
|
Bond R, Morris DO, Guillot J, Bensignor EJ, Robson D, Mason KV, Kano R, Hill PB. Biology, diagnosis and treatment of Malassezia dermatitis in dogs and cats Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 2020; 31:28-74. [PMID: 31957204 DOI: 10.1111/vde.12809] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The genus Malassezia is comprised of a group of lipophilic yeasts that have evolved as skin commensals and opportunistic cutaneous pathogens of a variety of mammals and birds. OBJECTIVES The objective of this document is to provide the veterinary community and other interested parties with current information on the ecology, pathophysiology, diagnosis, treatment and prevention of skin diseases associated with Malassezia yeasts in dogs and cats. METHODS AND MATERIAL The authors served as a Guideline Panel (GP) and reviewed the literature available prior to October 2018. The GP prepared a detailed literature review and made recommendations on selected topics. The World Association of Veterinary Dermatology (WAVD) Clinical Consensus Guideline committee provided guidance and oversight for this process. The document was presented at two international meetings of veterinary dermatology societies and one international mycology workshop; it was made available for comment on the WAVD website for a period of six months. Comments were shared with the GP electronically and responses incorporated into the final document. CONCLUSIONS AND CLINICAL IMPORTANCE There has been a remarkable expansion of knowledge on Malassezia yeasts and their role in animal disease, particularly since the early 1990's. Malassezia dermatitis in dogs and cats has evolved from a disease of obscurity and controversy on its existence, to now being a routine diagnosis in general veterinary practice. Clinical signs are well recognised and diagnostic approaches are well developed. A range of topical and systemic therapies is known to be effective, especially when predisposing factors are identified and corrected.
Collapse
Affiliation(s)
- Ross Bond
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Daniel O Morris
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancy Street, Philadelphia, PA, 19104, USA
| | - Jacques Guillot
- École nationale vétérinaire d'Alfort, BioPôle Alfort, EA 7380 Dynamyc, UPEC, EnvA, Maisons Alfort, Ile-de-France, France
| | | | - David Robson
- Animal Skin and Ear Specialists, Melbourne Veterinary Specialist Centre, 70 Blackburn Road, Glen Waverley, Victoria, 3150, Australia
| | - Kenneth V Mason
- Dermcare-vet PTY LTD, 7 Centenary Road, Slacks Creek, Queensland, 4127, Australia
| | - Rui Kano
- Department of Veterinary Pathobiology, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Peter B Hill
- Department of Veterinary Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
18
|
Navarro BS, Auler ME, Dos Santos RLO, da Silva Ruiz L, Nascimento DC, Felippe PAN, Domaneschi C, Moreira D, Baroni FA, Pires MFC, Paula CR. Antifungal sensitivity and species of yeasts in oral mucosa of street mixed-breed dogs. J Mycol Med 2020; 30:101010. [PMID: 32690370 DOI: 10.1016/j.mycmed.2020.101010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 10/05/2019] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
The aim of this research is to verify the yeast species isolated from oral mucosa in street mixed-breed dogs and to determine the antifungal profiles. After capturing and sedating the animals, oral mucosa samples were collected from fifty dogs and the materials were inoculated on Sabouraud dextrose agar with chloramphenicol. Forty-three yeast strains were isolated and identified trough the API-20C AUX method. Thirty-seven (86.1%) of the yeasts belonged to genus Candida, five (11.6%) to genus Trichosporon and only one strain (2.3%) to genus Malassezia. The sensitivity profiles to anifungals (amphotericin B, itraconanole, ketoconazole, fluconazole and variconazole) were determined through Etest® method. This study found resistance of some yeasts to amphotericin B and a good susceptibility to voriconazole and ketoconazole. Some of these antifungals are used in veterinary medical practice. This research is the first investigation on street mixed-breed dogs regarding yeast identifications and antifungals profiles.
Collapse
Affiliation(s)
- B S Navarro
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - M E Auler
- School of Pharmacy, University of Paraná-Unicentro, Paraná, Brazil
| | - R L O Dos Santos
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - L da Silva Ruiz
- Adolfo Lutz Institute, Section of Biomedical Sciences, Mycology Laboratory, Bauru, São Paulo, Brazil
| | | | | | - C Domaneschi
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - D Moreira
- University Brasil, São Paulo, Brazil
| | - F A Baroni
- Rural Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M F C Pires
- Adolfo Lutz Institute, Section of Biomedical Sciences, São Paulo, São Paulo, Brazil
| | - C R Paula
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
19
|
Antifungal Resistance Regarding Malassezia pachydermatis: Where Are We Now? J Fungi (Basel) 2020; 6:jof6020093. [PMID: 32630397 PMCID: PMC7345795 DOI: 10.3390/jof6020093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022] Open
Abstract
Malassezia pachydermatis is a yeast inhabiting the skin and ear canals in healthy dogs. In the presence of various predisposing conditions it can cause otitis and dermatitis, which are treated with multiple antifungal agents, mainly azole derivatives. This manuscript aims to review the available evidence regarding the occurrence of resistance phenomena in this organism. Various findings support the capacity of M. pachydermatis for developing resistance. These include some reports of treatment failure in dogs, the reduced antifungal activity found against yeast isolates sampled from dogs with exposure to antifungal drugs and strains exposed to antifungal agents in vitro, and the description of resistance mechanisms. At the same time, the data reviewed may suggest that the development of resistance is a rare eventuality in canine practice. For example, only three publications describe confirmed cases of treatment failure due to antifungal resistance, and most claims of resistance made by past studies are based on interpretive breakpoints that lack sound support from the clinical perspective. However, it is possible that resistant cases are underreported in literature, perhaps due to the difficulty of obtaining a laboratory confirmation given that a standard procedure for susceptibility testing of M. pachydermatis is still unavailable. These considerations highlight the need for maintaining surveillance for the possible emergence of clinically relevant resistance, hopefully through a shared strategy put in place by the scientific community.
Collapse
|
20
|
Torres M, Pinzón EN, Rey FM, Martinez H, Parra Giraldo CM, Celis Ramírez AM. Galleria mellonella as a Novelty in vivo Model of Host-Pathogen Interaction for Malassezia furfur CBS 1878 and Malassezia pachydermatis CBS 1879. Front Cell Infect Microbiol 2020; 10:199. [PMID: 32432057 PMCID: PMC7214729 DOI: 10.3389/fcimb.2020.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Malassezia furfur and Malassezia pachydermatis are lipophilic and lipid dependent yeasts, associated with the skin microbiota in humans and domestic animals, respectively. Although they are commensals, under specific conditions they become pathogens, causing skin conditions, such as pityriasis versicolor, dandruff/seborrheic dermatitis, folliculitis in humans, and dermatitis and otitis in dogs. Additionally, these species are associated with fungemia in immunocompromised patients and low-weight neonates in intensive care units with intravenous catheters or with parenteral nutrition and that are under-treatment of broad-spectrum antibiotics. The host-pathogen interaction mechanism in these yeasts is still unclear; for this reason, it is necessary to implement suitable new host systems, such as Galleria mellonella. This infection model has been widely used to assess virulence, host-pathogen interaction, and antimicrobial activity in bacteria and fungi. Some advantages of the G. mellonella model are: (1) the immune response has phagocytic cells and antimicrobial peptides that are similar to those in the innate immune response of human beings; (2) no ethical implications; (3) low cost; and (4) easy to handle and inoculate. This study aims to establish G. mellonella as an in vivo infection model for M. furfur and M. pachydermatis. To achieve this objective, first, G. mellonella larvae were first inoculated with different inoculum concentrations of these two Malassezia species, 1.5 × 106 CFU/mL, 1.5 × 107 CFU/mL, 1.5 × 108 CFU/mL, and 11.5 × 109 CFU/mL, and incubated at 33 and 37°C. Then, for 15 days, the mortality and melanization were evaluated daily. Finally, the characterization of hemocytes and fungal burden assessment were as carried out. It was found that at 33 and 37°C both M. furfur and M. pachydermatis successfully established a systemic infection in G. mellonella. M. pachydermatis proved to be slightly more virulent than M. furfur at a temperature of 37°C. The results suggest that larvae mortality and melanization is dependent on the specie of Malassezia, the inoculum concentration and the temperature. According to the findings, G. mellonella can be used as an in vivo model of infection to conduct easy and reliable approaches to boost our knowledge of the Malassezia genus.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Elkin Nicolás Pinzón
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Flor Maria Rey
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Heydys Martinez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Claudia Marcela Parra Giraldo
- Unidad de Investigación en Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
21
|
Sastoque A, Triana S, Ehemann K, Suarez L, Restrepo S, Wösten H, de Cock H, Fernández-Niño M, González Barrios AF, Celis Ramírez AM. New Therapeutic Candidates for the Treatment of Malassezia pachydermatis -Associated Infections. Sci Rep 2020; 10:4860. [PMID: 32184419 PMCID: PMC7078309 DOI: 10.1038/s41598-020-61729-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/24/2020] [Indexed: 11/26/2022] Open
Abstract
The opportunistic pathogen Malassezia pachydermatis causes bloodstream infections in preterm infants or individuals with immunodeficiency disorders and has been associated with a broad spectrum of diseases in animals such as seborrheic dermatitis, external otitis and fungemia. The current approaches to treat these infections are failing as a consequence of their adverse effects, changes in susceptibility and antifungal resistance. Thus, the identification of novel therapeutic targets against M. pachydermatis infections are highly relevant. Here, Gene Essentiality Analysis and Flux Variability Analysis was applied to a previously reported M. pachydermatis metabolic network to identify enzymes that, when absent, negatively affect biomass production. Three novel therapeutic targets (i.e., homoserine dehydrogenase (MpHSD), homocitrate synthase (MpHCS) and saccharopine dehydrogenase (MpSDH)) were identified that are absent in humans. Notably, L-lysine was shown to be an inhibitor of the enzymatic activity of MpHCS and MpSDH at concentrations of 1 mM and 75 mM, respectively, while L-threonine (1 mM) inhibited MpHSD. Interestingly, L- lysine was also shown to inhibit M. pachydermatis growth during in vitro assays with reference strains and canine isolates, while it had a negligible cytotoxic activity on HEKa cells. Together, our findings form the bases for the development of novel treatments against M. pachydermatis infections.
Collapse
Affiliation(s)
- Angie Sastoque
- Instituto de Biotecnología (IBUN), Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 11001, Colombia
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, 111711, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Sergio Triana
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, 111711, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Kevin Ehemann
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Lina Suarez
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Silvia Restrepo
- Laboratorio de Micología y Fitopatología (LAMFU), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Han Wösten
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Hans de Cock
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Miguel Fernández-Niño
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia.
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, 111711, Colombia.
| |
Collapse
|
22
|
Arisov MV, Indyuhova EN, Arisova GB. The use of multicomponent ear drops in the treatment of otitis of various etiologies in animals. J Adv Vet Anim Res 2020; 7:115-126. [PMID: 32219117 PMCID: PMC7096122 DOI: 10.5455/javar.2020.g400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE The objective of this study was to investigate the efficacy of newly developed multicomponent ear drops for the treatment of otitis caused by parasites, bacteria, and fungi in dogs, cats, ferrets, fancy rabbits, and foxes. MATERIALS AND METHODS A new drug for veterinary use was developed that contained levofloxacin hemihydrate (0.3%), clotrimazole (0.1%), dexamethasone sodium phosphate (0.1%), and moxidectin (0.01%). In the initial stage of otoacariasis (or the ear form of psoroptic scab), the drug was used twice with an interval of 5-7 days. When otoacariasis (psoroptic scab) was complicated by otitis of bacterial and/or fungal etiology, the drug was used as follows: instilled once a day, within 10-14 days in the ear canal for 2-5 drops of the drug. The study of therapeutic efficacy was performed on cats, dogs, ferrets, foxes, and fancy rabbits with ear pathology. RESULTS The recovery of cats, ferrets, dogs, and foxes after the double use of ear drops during otoacariasis was established. In the ear form of psoroptic scab in fancy rabbits after treatment, Psoroptes cuniculi mites were not detected. The specific (antimicrobial and antifungal) activity of the drug was confirmed in vivo using the following scheme of drug use: the drug was instilled once a day, within 10-14 days in the ear canal, 2-5 drops of the drug in animals with external otitis and otitis media. CONCLUSION The rational combination of active components developed in this study is effective and safe for use in animals with microbial diseases of the ears.
Collapse
|
23
|
Guillot J, Bond R. Malassezia Yeasts in Veterinary Dermatology: An Updated Overview. Front Cell Infect Microbiol 2020; 10:79. [PMID: 32181160 PMCID: PMC7059102 DOI: 10.3389/fcimb.2020.00079] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/17/2020] [Indexed: 12/23/2022] Open
Abstract
Lipophilic yeasts of the genus Malassezia are important skin commensals and opportunistic skin pathogens in a variety of animals. The species M. pachydermatis was first isolated from the skin of a captive Indian rhinoceros with an exfoliative dermatitis in 1925, recognized as an important otic pathogen of dogs in the 1950's, and finally accepted, after several years of controversy, as a common cause of canine dermatitis in the 1990's. Since then, there has been considerable research into the biology of Malassezia yeasts and their interaction with their animal hosts. In dogs and cats, M. pachydermatis is associated with ceruminous otitis externa and a "seborrhoeic" dermatitis, wherein pruritic, erythematous skin lesions, often with brown/black greasy, malodourous material matting hairs, preferentially develop in intertriginous areas. Skin disease is favored by folds, underlying hypersensitivity disorders, endocrinopathies, defects of cornification, and in cats, various visceral paraneoplastic syndromes. Diagnosis is based on detecting the yeast in compatible skin lesions, usually by cytology, and observing a clinical and mycological response to therapy. Treatment normally comprises topical or systemic azole therapy, often with miconazole-chlorhexidine shampoos or oral itraconazole or ketoconazole. Management of concurrent diseases is important to minimize relapses. Historically, wild-type Malassezia isolates from dogs and cats were typically susceptible to azoles, with the exception of fluconazole, but emerging azole resistance in field strains has recently been associated with either mutations or quadruplication of the ERG11 gene. These observations have prompted increased interest in alternative topical antifungal drugs, such as chlorhexidine, and various essential oils. Further clinical trials are awaited with interest.
Collapse
Affiliation(s)
- Jacques Guillot
- École Nationale Vétérinaire d'Alfort, BioPôle Alfort, EA Dynamyc, UPEC, EnvA, Maisons-Alfort, France
| | - Ross Bond
- Department of Clinical Sciences and Services, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
24
|
Wikramanayake TC, Borda LJ, Miteva M, Paus R. Seborrheic dermatitis—Looking beyondMalassezia. Exp Dermatol 2019; 28:991-1001. [DOI: 10.1111/exd.14006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Tongyu C. Wikramanayake
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Luis J. Borda
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Mariya Miteva
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Centre for Dermatology Research University of Manchester Manchester UK
- NIHR Biomedical Research Centre Manchester UK
| |
Collapse
|
25
|
Merkel S, Heidrich D, Danilevicz CK, Scroferneker ML, Zanette RA. Drosophila melanogaster as a model for the study of Malassezia pachydermatis infections. Vet Microbiol 2018; 224:31-33. [DOI: 10.1016/j.vetmic.2018.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/01/2022]
|