1
|
Chen J, Shi Z, Luo J, Jia C, Zhang X, Wei J, Li S, Zhu Y, Xi T, Zhou J, He Y, Shi X, Liao H, Tian H, Zheng H. Development and optimization of a double antigen sandwich ELISA detecting for Senecavirus A antibodies based on VP2 protein. Microbiol Spectr 2024:e0204324. [PMID: 39436135 DOI: 10.1128/spectrum.02043-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Senecavirus A (SVA) is an emerging viral pathogen that threatens the global swine industry significantly. The major clinical symptoms of SVA-infected animals are vesicular lesions, but various diseases can cause the same symptoms, which makes it difficult to distinguish SVA from other vesicular diseases clinically. The absence of an effective and safe vaccine necessitates the development of a simple, specific, and sensitive serological detection method for SVA antibodies. The VP2 protein of SVA, characterized by high immunogenicity and sequence conservatism, is an essential target for serological diagnosis. In this study, a double-antigen sandwich enzyme-linked immunosorbent assay [ELISA (DAgS-ELISA)] based on VP2 protein expressed by Escherichia coli was established for SVA antibody detection. With a cut-off value of 0.237, this assay demonstrated outstanding performance, showing high sensitivity and sharp specificity, which is manifested in the absence of cross-reaction with classical swine fever virus (CSFV), African swine fever virus (ASFV), pseudorabies virus (PRV), and porcine reproductive and respiratory syndrome virus (PRRSV), and foot-and-mouth disease virus (FMDV) serotype A and O. Additionally, the repeatability of the method is remarkable, as shown by the coefficients variation (CV) of both the intra- and inter-assay below 10%. By detecting 166 clinical sera, it was found that the kappa value of the DAgS-ELISA was 0.78 compared with that of the virus neutralization test (VNT), indicating a high level of consistency. In general, this method has high sensitivity, sharp specificity, remarkable repeatability, sound consistency, and low cost, making it a reliable and effective tool for detecting SVA antibodies.IMPORTANCESVA has rapidly become prevalent in many countries, and its outbreaks have threatened the global swine industry significantly. The major clinical symptoms of SVA-infected animals are vesicular lesions that are similar to other vesicular diseases, making it difficult to distinguish SVA. Currently, no commercial vaccines are available for SVA; therefore, effective diagnosis of SVA infection is vital for its prevention and control. In this study, VP2 protein of SVA was expressed by E. coli, and a double-antigen sandwich enzyme-linked immunosorbent assay [ELISA (DAgS-ELISA)] for SVA antibodies detection was successfully established based on the VP2 protein. The DAgS-ELISA has a high sensitivity, sharp specificity, remarkable repeatability, sound consistency, and low cost for detecting SVA antibodies. Therefore, the DAgS-ELISA established in this study may be a reliable and effective tool for detecting SVA antibodies and may be used to strengthen the monitoring and prevention of SVA epidemic in the long run.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhengwang Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Juncong Luo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Caixia Jia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xiaoyang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Juanjuan Wei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Shuaipeng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yuqian Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Tao Xi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yindi He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xintai Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Huanchen Liao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
2
|
Kim H, Buckley A, Guo B, Kulshreshtha V, Geelen AV, Montiel N, Lager K, Yoon KJ. Experimental Seneca Valley virus infection in sows and their offspring. Vet Microbiol 2024; 289:109958. [PMID: 38181600 DOI: 10.1016/j.vetmic.2023.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024]
Abstract
Neonatal mortality has been increasingly reported on swine breeding farms experiencing swine idiopathic vesicular disease (SIVD) outbreaks, which can be accompanied by lethargy, diarrhea, and neurologic signs in neonates. Seneca Valley Virus (SVV), or Senecavirus A, has been detected in clinical samples taken from pigs with SIVD. Experimental SVV inoculation has caused vesicular disease in pigs, particularly during the stages from weaning to finishing. However, it remains crucial to investigate whether SVV directly contributes to the increase in neonatal mortality rates. The following study was conducted to chronicle the pathogenesis of SVV infection in sows and their offspring. Ten sows were intranasally inoculated with 4.75 × 107 plaque-forming units of the virus per sow either late in gestation (n = 5) or within fourteen days of farrowing (n = 5). Each sow replicated SVV following intranasal inoculation, but only one out of ten sows developed a vesicular lesion on the snout. Evidence of transplacental infection was observed in two litters, and an additional two litters became infected following parturition out of five litters from sows inoculated in late gestation. No clinical signs were observed in the infected neonates. Likewise, no clinical signs were observed in the other five litters inoculated after farrowing, although each piglet did replicate the challenge virus. In this study, the experimental challenge of SVV did not result in neonatal mortality in contrast to observations in the field; however, it has shed light on the pathogenesis of the virus, the transmission of SVV between sows and their offspring, and host immune response that can help shape control measures in the field.
Collapse
Affiliation(s)
- Hanjun Kim
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Alexandra Buckley
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA
| | - Baoqing Guo
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Vikas Kulshreshtha
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA
| | - Albert van Geelen
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA
| | - Nestor Montiel
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA
| | - Kelly Lager
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
3
|
Bai L, Zhang R, Zheng H, Zhang Z, Zhang Z, Li Y. Seneca Valley Virus Degrades STING via PERK and ATF6-Mediated Reticulophagy. Viruses 2023; 15:2209. [PMID: 38005886 PMCID: PMC10674438 DOI: 10.3390/v15112209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Seneca Valley Virus (SVV), a member of the Picornaviridae family, is an emerging porcine virus that can cause vesicular disease in pigs. However, the immune evasion mechanism of SVV remains unclear, as does its interaction with other pathways. STING (Stimulator of interferon genes) is typically recognized as a critical factor in innate immune responses to DNA virus infection, but its role during SVV infection remains poorly understood. In the present study, we observed that STING was degraded in SVV-infected PK-15 cells, and SVV replication in the cells was affected when STING was knockdown or overexpressed. The STING degradation observed was blocked when the SVV-induced autophagy was inhibited by using autophagy inhibitors (Chloroquine, Bafilomycin A1) or knockdown of autophagy related gene 5 (ATG5), suggesting that SVV-induced autophagy is responsible for STING degradation. Furthermore, the STING degradation was inhibited when reticulophagy regulator 1 (FAM134B), a reticulophagy related receptor, was knocked down, indicating that SVV infection induces STING degradation via reticulophagy. Further study showed that in eukaryotic translation initiation factor 2 alpha kinase 3 (PERK)/activating transcription factor 6 (ATF6) deficient cells, SVV infection failed to induce reticulophagy-medaited STING degradation, indicating that SVV infection caused STING degradation via PERK/ATF6-mediated reticulophagy. Notably, blocking reticulophagy effectively hindered SVV replication. Overall, our study suggested that SVV infection resulted in STING degradation via PERK and ATF6-mediated reticulophagy, which may be an immune escape strategy of SVV. This finding improves the understanding of the intricate interplay between viruses and their hosts and provides a novel strategy for the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Ling Bai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (L.B.); (H.Z.); (Z.Z.)
| | - Rui Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China;
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (L.B.); (H.Z.); (Z.Z.)
| | - Zhixiong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (L.B.); (H.Z.); (Z.Z.)
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China;
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China;
| |
Collapse
|
4
|
Li C, Wu X, Wang X, Shi J, Liu C, Peng Z, Han H, Xu S, Wang S, Ma Y, Zheng L, Hrabchenko N, Li J. Complete genome and pathogenesis of a novel recombinant Senecavirus A isolate in P.R. China. J Gen Virol 2022; 103. [PMID: 36748492 DOI: 10.1099/jgv.0.001788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Senecavirus A (SVA), formerly called Seneca Valley virus (SVV) was first isolated from the USA in 2002. This study isolated an SVA strain from a pig herd in Shandong Province, PR China and designated it SVA-CH-SDGT-2017. The full-length genome, excluding the poly(A) tails of the SVA isolates, was 7280 nucleotides long, with the genomic organization resembling and sharing high nucleotide identities of 90.7-96.9 % with other previously reported SVA isolates. To investigate the pathogenicity of the SVA isolates, experimental infections of pigs were performed. The SVA strains successfully infected the pigs, as evidenced by the presence of virus shedding and robust serum neutralizing antibody responses. In addition, the contact-exposed experiment showed that the virus shedding of the contact-exposed pigs was approximately a 100-fold reduced compared to that of the inoculated group, indicating that the virus is capable of transmission to pigs. Our findings provide useful data for studying the pathogenesis and transmission of SVA in pigs.
Collapse
Affiliation(s)
- Chen Li
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Xiaoyan Wu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China.,College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Xiaoli Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, PR China
| | - Jianli Shi
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Chang Liu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Zhe Peng
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Hong Han
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Shaojian Xu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Shuo Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Yingru Ma
- Qingdao Agricultural University, Qingdao, PR China
| | - Limei Zheng
- Qingdao Agricultural University, Qingdao, PR China
| | - Nataliia Hrabchenko
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Jun Li
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China.,College of Life Sciences, Shandong Normal University, Jinan, PR China.,Qingdao Agricultural University, Qingdao, PR China
| |
Collapse
|
5
|
Hoffman KS, Humphrey NL, Korslund JA, Anderson TK, Faaberg KS, Lager KM, Buckley AC. Characterization of Senecavirus A Isolates Collected From the Environment of U.S. Sow Slaughter Plants. Front Vet Sci 2022; 9:923878. [PMID: 35812884 PMCID: PMC9257094 DOI: 10.3389/fvets.2022.923878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Vesicular disease caused by Senecavirus A (SVA) is clinically indistinguishable from foot-and-mouth disease (FMD) and other vesicular diseases of swine. When a vesicle is observed in FMD-free countries, a costly and time-consuming foreign animal disease investigation (FADI) is performed to rule out FMD. Recently, there has been an increase in the number of FADIs and SVA positive samples at slaughter plants in the U.S. The objectives of this investigation were to: (1) describe the environmental burden of SVA in sow slaughter plants; (2) determine whether there was a correlation between PCR diagnostics, virus isolation (VI), and swine bioassay results; and (3) phylogenetically characterize the genetic diversity of contemporary SVA isolates. Environmental swabs were collected from three sow slaughter plants (Plants 1-3) and one market-weight slaughter plant (Plant 4) between June to December 2020. Of the 426 samples taken from Plants 1-3, 304 samples were PCR positive and 107 were VI positive. There was no detection of SVA by PCR or VI at Plant 4. SVA positive samples were most frequently found in the summer (78.3% June-September, vs. 59.4% October-December), with a peak at 85% in August. Eighteen PCR positive environmental samples with a range of Ct values were selected for a swine bioassay: a single sample infected piglets (n = 2). A random subset of the PCR positive samples was sequenced; and phylogenetic analysis demonstrated co-circulation and divergence of two genetically distinct groups of SVA. These data demonstrate that SVA was frequently found in the environment of sow slaughter plants, but environmental persistence and diagnostic detection was not indicative of whether a sampled was infectious to swine. Consequently, a more detailed understanding of the epidemiology of SVA and its environmental persistence in the marketing chain is necessary to reduce the number of FADIs and aide in the development of control measures to reduce the spread of SVA.
Collapse
Affiliation(s)
- Kyle S. Hoffman
- Virus and Prion Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Nicki L. Humphrey
- Veterinary Services, U.S. Department of Agriculture, Animal Plant Health Inspection Service, Fort Collins, CO, United States
| | - John A. Korslund
- Veterinary Services, U.S. Department of Agriculture, Animal Plant Health Inspection Service, Riverdale, MD, United States
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Kay. S. Faaberg
- Virus and Prion Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Kelly M. Lager
- Virus and Prion Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Alexandra C. Buckley
- Virus and Prion Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Ames, IA, United States
- *Correspondence: Alexandra C. Buckley
| |
Collapse
|
6
|
Buckley A, Lager K. Infectious dose of Senecavirus A in market weight and neonatal pigs. PLoS One 2022; 17:e0267145. [PMID: 35486625 PMCID: PMC9053780 DOI: 10.1371/journal.pone.0267145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a picornavirus that produces a highly transmissible vesicular disease that can devastate meat and dairy production to such an extent that FMDV-free countries commit significant economic resources to maintain their FMDV-free status. Senecavirus A (SVA), also a picornavirus, causes vesicular disease in swine that is indistinguishable from FMDV. Since 2015, SVA outbreaks have been reported around the world requiring FMDV-free countries to investigate these cases to rule out FMDV. Understanding the pathogenesis of the SVA and its ability to transmit to naïve populations is critical to formulating control and prevention measures, which could reduce FMDV investigations. The primary objective of this study was to determine the infectious dose of SVA in market weight and neonatal pigs. A 2011 SVA isolate was serially hundred-fold diluted to create four challenge inoculums ranging from 106.5 to 100.5 TCID50/ml. Four market weight pigs individually housed were intranasally inoculated with 5 mL of each dose (n = 16). Serial ten-fold dilutions were used to create 6 challenge inoculums ranging from 105.5 to 100.5 TCID50/ml for neonatal pigs. Again, four animals in individual housing were challenged orally with 2 mL of each dose (n = 24). Detection of SVA by PCR in collected samples and/or neutralizing antibody response was utilized to classify an animal as infected. The minimum infectious dose for this study in market weight animals was 1,260 TCID50/ml (103.1 TCID50/ml) and for neonates it was 316 TCID50/ml (102.5 TCID50/ml). Knowledge of the infectious dose of SVA can guide biosecurity and disinfection measures to control the spread of SVA.
Collapse
Affiliation(s)
- Alexandra Buckley
- Virus and Prion Research Unit, National Animal Disease Center, Agriculture Research Service, United State Department of Agriculture, Ames, Iowa, United States of America
| | - Kelly Lager
- Virus and Prion Research Unit, National Animal Disease Center, Agriculture Research Service, United State Department of Agriculture, Ames, Iowa, United States of America
| |
Collapse
|
7
|
Comparative Proteomic Profiling: Cellular Metabolisms Are Mainly Affected in Senecavirus A-Inoculated Cells at an Early Stage of Infection. Viruses 2021; 13:v13061036. [PMID: 34072643 PMCID: PMC8226903 DOI: 10.3390/v13061036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 02/03/2023] Open
Abstract
Senecavirus A (SVA), also known as Seneca Valley virus, belongs to the genus Senecavirus in the family Picornaviridae. SVA can cause vesicular disease and epidemic transient neonatal losses in pigs. This virus efficiently propagates in some non-pig-derived cells, like the baby hamster kidney (BHK) cell line and its derivate (BSR-T7/5). Conventionally, a few proteins or only one protein is selected for exploiting a given mechanism concerning cellular regulation after SVA infection in vitro. Proteomics plays a vital role in the analysis of protein profiling, protein-protein interactions, and protein-directed metabolisms, among others. Tandem mass tag-labeled liquid chromatography-tandem mass spectrometry combined with the parallel reaction monitoring technique is increasingly used for proteomic research. In this study, this combined method was used to uncover separately proteomic profiles of SVA- and non-infected BSR-T7/5 cells. Furthermore, both proteomic profiles were compared with each other. The proteomic profiling showed that a total of 361 differentially expressed proteins were identified, out of which, 305 and 56 were upregulated and downregulated in SVA-infected cells at 12 h post-inoculation, respectively. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses showed that cellular metabolisms were affected mainly in SVA-inoculated cells at an early stage of infection. Therefore, an integrated metabolic atlas remains to be explored via metabolomic methods.
Collapse
|
8
|
Buckley AC, Michael DD, Faaberg KS, Guo B, Yoon KJ, Lager KM. Comparison of historical and contemporary isolates of Senecavirus A. Vet Microbiol 2020; 253:108946. [PMID: 33341466 DOI: 10.1016/j.vetmic.2020.108946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022]
Abstract
Senecavirus A (SVA) was discovered as a cell culture contaminant in 2002, and multiple attempts to experimentally reproduce disease were unsuccessful. Field reports of porcine idiopathic vesicular disease (PIVD) cases testing PCR positive for SVA in addition to outbreaks of PIVD in Brazil and the United States in 2015 suggested SVA was a causative agent, which has now been consistently demonstrated experimentally. Ease of experimental reproduction of disease with contemporary strains of SVA raised questions concerning the difficulty of reproducing vesicular disease with historical isolates. The following study was conducted to compare the pathogenicity of SVA between historical and contemporary isolates in growing pigs. Six groups of pigs (n = 8) were intranasally inoculated with the following SVA isolates: SVV001/2002, CAN/2011, HI/2012, IA/2015, NC/2015, SD/2015. All isolates induced vesicular disease in at least half of the inoculated pigs from each group. All pigs replicated virus as demonstrated by serum and/or swab samples positive for SVA by quantitative PCR. Pig sera tested by virus neutralization assay demonstrated cross-neutralizing antibodies against all viruses utilized in the study. Cross-neutralizing antibodies from pigs inoculated with historical isolates were lower than those pigs that were inoculated with contemporary isolates. Phylogenetic analysis revealed two clades with SVV001/2002 being in a separate clade compared to the other five isolates. Although differences in the infection kinetics and sequences of these six isolates were found, clinical presentation of vesicular disease was similar between both historical and contemporary isolates.
Collapse
Affiliation(s)
- Alexandra C Buckley
- Virus and Prion Research Unit, National Animal Disease Center, Agriculture Research Service, U.S. Department of Agriculture, Ames, IA, USA.
| | - David D Michael
- Virus and Prion Research Unit, National Animal Disease Center, Agriculture Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, National Animal Disease Center, Agriculture Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | - Baoqing Guo
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, Agriculture Research Service, U.S. Department of Agriculture, Ames, IA, USA
| |
Collapse
|
9
|
Identification of linear B cell epitopes on VP1 and VP2 proteins of Senecavirus A (SVA) using monoclonal antibodies. Vet Microbiol 2020; 247:108753. [PMID: 32768207 DOI: 10.1016/j.vetmic.2020.108753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Senecavirus A (SVA), previously called Seneca Valley virus, belongs to the family Picornaviridae, species Senecavirus A, in the Senecavirus genus, and can cause vesicular lesions in sows and acute death in piglets. In this study, recombinant VP1 and VP2 proteins were expressed in prokaryotic expression system and used to generate eight monoclonal antibodies (mAbs) against VP1 or VP2 protein. And all of the mAbs reacted specifically with SVA virus by both Western blot and indirect immunofluorescence assay (IFA). The resurts showed that all of the epitopes aganist these mAbs were B cell linear epitopes. To map the epitopes, both Western blot and indirect enzyme-linked immunosorbant assay (indirect ELISA) were performed. The epitope 21GELAAP26 recognized by mAb 1G9, was likely to be a significant B cell epitope due to the high antigenic index and the fully exposure on the surface of the VP1. Other mAbs were recognized by VP2 protein. MAbs 1E7 and 8E8 recognized the same epitope at 12DRVITQT18, 1A5 recognized the epitope at 71WTKAVK76, 1G2 recognized the epitope at 98GGAFTA103, 9D2 and 6B11 recognized the same epitope at 150KSLQELN156, and 7E4 recognized the epitope at 248YKEGAT253. Alignment of amino acids revealed that four epitopes were completely conserved among all SVA strains, including 21GELAAP26, 71WTKAVK76, 98GGAFTA103, and 248YKEGAT253. Interestingly, there were some amino acid mutations in 12DRVITQT18 and 150KSLQELN156, but no significant difference was detected on the reaction intensity between epitopes and the corresponding mAbs. This is the first report about the SVA epitopes, which will benefit to the study of viral pathogenic mechanism, vaccine design, as well as the establishment of detection methods.
Collapse
|
10
|
Liu F, Huang Y, Wang Q, Shan H. Construction of eGFP-Tagged Senecavirus A for Facilitating Virus Neutralization Test and Antiviral Assay. Viruses 2020; 12:v12030283. [PMID: 32150804 PMCID: PMC7150990 DOI: 10.3390/v12030283] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Senecavirus A (SVA), also known as Seneca Valley virus, is an emerging virus that causes vesicular disease in pigs. This virus belongs to the genus Senecavirus in the family Picornaviridae. The SVA CH-LX-01-2016 was isolated from Guangdong Province of China in 2016. In this study, a recombinant SVA CH-LX-01-2016 was constructed using reverse genetics, and proven to be able to express efficiently an enhanced green fluorescent protein (eGFP) in vitro. This eGFP-tagged recombinant SVA (rSVA-eGFP) exhibited a high capacity for viral replication. Its fluorescence-tracked characteristics greatly facilitated both virus neutralization test (VNT) and antiviral assay. The rSVA-eGFP-based VNT was used to detect eight porcine serum samples, out of which four were determined to be neutralization titer-positive. Subsequently, two antiviral drugs, ribavirin and apigenin, were assayed for evaluating both effects against the rSVA-eGFP in vitro. The result showed that only the ribavirin exhibited an anti-SVA activity.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.H.); (Q.W.)
- Qingdao Research Center for Veterinary Biological Engineering and Technology, Qingdao 266109, China
- Correspondence: (F.L.); (H.S.)
| | - Yilan Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.H.); (Q.W.)
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.H.); (Q.W.)
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.H.); (Q.W.)
- Shandong Collaborative Innovation Center for Development of New Veterinary Pharmaceuticals, Qingdao 266109, China
- Correspondence: (F.L.); (H.S.)
| |
Collapse
|
11
|
Pathogenesis of a senecavirus a isolate from swine in shandong Province, China. Vet Microbiol 2020; 242:108606. [PMID: 32122609 DOI: 10.1016/j.vetmic.2020.108606] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 11/20/2022]
Abstract
Senecavirus A (SVA), previously called Seneca Valley virus, can cause vesicular lesions in sows and a sharp decline in neonatal piglet production. In this study, a SVA strain was isolated from a pig herd in Shandong Province in China and identified as SVV-CH-SD. The full genome was 7286 nucleotides (nt) in length and contained a single open reading frame (ORF) of 6546 nt, encoding a 2182 amino acid (aa). A phylogenetic analysis showed that the isolate shares highest sequence homology (98.52 %) with SVA strain USA-GBI26-2015. A genetic comparison of virulent and weakly virulent SVA strains showed that some amino acid residues may be associated with virulence. Animal challenge experiments showed that 90-100-day-old pigs inoculated with SVV-CH-SD intraorally and intranasally, intranasally, or intramuscularly developed low fever, blisters, and lameness. They had similar levels of neutralizing antibodies against SVA and viral loads in the serum and organs at 28 days post-CHallenge. However, 30-35- and 55-65-day-old pigs challenged with SVV-CH-SD showed no clinical signs, although anti-SVA neutralizing antibodies were detected. Our findings provide useful data for studying the pathogenesis and transmission of SVA in pigs.
Collapse
|
12
|
Comparison of the Pathogenicity of Two Different Branches of Senecavirus a Strain in China. Pathogens 2020; 9:pathogens9010039. [PMID: 31906571 PMCID: PMC7168630 DOI: 10.3390/pathogens9010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 11/23/2022] Open
Abstract
Senecavirus A (SVA), an emerging infectious disease, is associated with the porcine idiopathic vesicular disease. Here, the pathogenesis of different strains of SVA was investigated in growing-finishing pigs. We aimed to evaluate the replication characteristics, virus particle morphology, clinical signs, and vesicular lesions in comparison with two different strains of SVA. The animals were infected with SVA HB-CH-2016 or CH/AH-02/2017 by intranasal routes (3 mL, 109TCID50/mL) and monitored daily for 14 days post-inoculation (dpi) for clinical signs and vesicular lesions. Viremia or viral shedding was detected in the blood, fecal swab, and nasal swab samples. Results showed no distinct differences in plaque size, replication ability, and characteristic virions between SVA HB-CH-2016 and CH/AH-02/2017 strains. Animal experimental results showed that both SVA CH/AH-02/2017 and SVA HB-CH-2016 could infect pigs. However, an obvious difference in the pathogenicity and dynamics of infection was observed between SVA HB-CH-2016 and CH/AH-02/2017 strains. The pathogenesis of SVA CH/AH-02/2017 was similar to that of published results of USA strains, whereas the SVA HB-CH-2016 strain had low pathogenicity to pigs. Clinical signs and vesicular lesions were observed in SVA CH/AH-02/2017-infected pigs. Additionally, the different branches of SVA should be capable of inducing broad cross-reactive neutralizing antibodies, which play an important role in clearing the SVA virus. This study of animal models for SVA infection will be beneficial to develop vaccines and antivirals.
Collapse
|