1
|
Wang AD, Shen YX, Li SY, Zhang HL, Wang D, Guo ZW, Huang YM, Cui M, Xia J, Huang Y. The N545S and K717N substitution at the N-glycosylation sites of the S2 subunit of avian infectious bronchitis virus can significantly enhance viral pathogenicity. Poult Sci 2024; 103:103991. [PMID: 38991387 PMCID: PMC11283224 DOI: 10.1016/j.psj.2024.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
The S2 subunit of infectious bronchitis virus (IBV) is a heavily glycosylated protein that can impact various characteristics of the virus. It is currently known that N-glycosylation modifications are predominantly located on the S2 subunit. However, the exact role of their N-glycosylation modification remains undisclosed. To elucidate the function of these N-glycosylation sites, we identified 14 common sites distributed on the S2 subunit of the 5 genotypes of IBV in present study. Subsequently, we selected 7 sites to generate mutants and assessed their impact on viral virulence, replication ability, and antigenicity. Our finding revealed that only 2 substitutions, N545S and K717N, increased the viral replication titer and antigenicity, and ultimately the pathogenicity in chicks. To delve into the mechanisms underlying this increased pathogenicity, we discovered that K717N can change the structure of antigenic epitopes. The N545S substitution not only influenced antigenic epitope structure, but also enhanced the ability of the virus to enter CEKs during the early stages of viral replication. These results suggest that the enhanced viral pathogenicity associated with N545S and K717N substitutions is multifaceted, with acceleration of the viral membrane fusion process and alterations in epitope structure representing crucial factors in the capability of N-glycosylation modifications to boost viral virulence. These insights provide valuable guidance for the efficient development of live attenuated vaccines.
Collapse
Affiliation(s)
- An-Dong Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yu-Xi Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shu-Yun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Meishan Vocational & Technical College, Meishan, Sichuan 620010, PR China
| | - Hai-Li Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Di Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhong-Wei Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ya-Mei Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
2
|
Zhao J, Huang Y, Liukang C, Yang R, Tang L, Sun L, Zhao Y, Zhang G. Dissecting infectious bronchitis virus-induced host shutoff at the translation level. J Virol 2024; 98:e0083024. [PMID: 38940559 PMCID: PMC11265393 DOI: 10.1128/jvi.00830-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
Viruses have evolved a range of strategies to utilize or manipulate the host's cellular translational machinery for efficient infection, although the mechanisms by which infectious bronchitis virus (IBV) manipulates the host translation machinery remain unclear. In this study, we firstly demonstrate that IBV infection causes host shutoff, although viral protein synthesis is not affected. We then screened 23 viral proteins, and identified that more than one viral protein is responsible for IBV-induced host shutoff, the inhibitory effects of proteins Nsp15 were particularly pronounced. Ribosome profiling was used to draw the landscape of viral mRNA and cellular genes expression model, and the results showed that IBV mRNAs gradually dominated the cellular mRNA pool, the translation efficiency of the viral mRNAs was lower than the median efficiency (about 1) of cellular mRNAs. In the analysis of viral transcription and translation, higher densities of RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) reads were observed for structural proteins and 5' untranslated regions, which conformed to the typical transcriptional characteristics of nested viruses. Translational halt events and the number of host genes increased significantly after viral infection. The translationally paused genes were enriched in translation, unfolded-protein-related response, and activation of immune response pathways. Immune- and inflammation-related mRNAs were inefficiently translated in infected cells, and IBV infection delayed the production of IFN-β and IFN-λ. Our results describe the translational landscape of IBV-infected cells and demonstrate new strategies by which IBV induces host gene shutoff to promote its replication. IMPORTANCE Infectious bronchitis virus (IBV) is a γ-coronavirus that causes huge economic losses to the poultry industry. Understanding how the virus manipulates cellular biological processes to facilitate its replication is critical for controlling viral infections. Here, we used Ribo-seq to determine how IBV infection remodels the host's biological processes and identified multiple viral proteins involved in host gene shutoff. Immune- and inflammation-related mRNAs were inefficiently translated, the translation halt of unfolded proteins and immune activation-related genes increased significantly, benefitting IBV replication. These data provide new insights into how IBV modulates its host's antiviral responses.
Collapse
Affiliation(s)
- Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yahui Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chengyin Liukang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruihua Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lihua Tang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Jiang Y, Cheng X, Gao M, Yu Y, Dou X, Shen H, Tang M, Zhou S, Peng D. Two mutations on S2 subunit were critical for Vero cell tropism expansion of infectious bronchitis virus HV80. Vet Microbiol 2024; 294:110134. [PMID: 38820725 DOI: 10.1016/j.vetmic.2024.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Infectious bronchitis virus (IBV) restricts cell tropism. Except for the Beaudette strain, other IBVs cannot infect mammalian cell lines. The limited cell tropism of other IBVs has hindered IBV vaccine development and research on the mechanisms of IBV infection. A novel Vero cell-adapted strain, HV80, has been previously reported. In this study, we constructed recombinants expressing the chimeric S glycoprotein, S1 or S2 subunit of strain H120 and demonstrated that mutations on S2 subunit are associated with the strain HV80 Vero cell adaptation. R687P or P687R substitution recombinants were constructed with the genome backbone of strains HV80 or H120. We found that the RRRR690/S motif at the S2' cleavage site is crucial to the Vero cell adaptation of strain HV80. Another six amino acid substitutions in the S2 subunit of the recombinants showed that the Q855H mutation induced syncytium formation. A transient transfection assay demonstrated the S glycoprotein with the PRRR690/S motif at the S2' cleavage site induced low-level cell-cell fusion, while H855Q substitution hindered cell-cell fusion and blocked cleavage event with S20 product. This study provides a basis for the construction of IBV recombinants capable of replicating in Vero cells, thus contributing to the advancement in the development of genetically engineered cell-based IBV vaccines.
Collapse
Affiliation(s)
- Yi Jiang
- College of Veterinary Medicine, Yangzhou University, 225009, China; Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Xu Cheng
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Mingyan Gao
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Yan Yu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Xinhong Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Haiyu Shen
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Mengjun Tang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Sheng Zhou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Falchieri M, Coward VJ, Reid SM, Lewis T, Banyard AC. Infectious bronchitis virus: an overview of the "chicken coronavirus". J Med Microbiol 2024; 73:001828. [PMID: 38771617 PMCID: PMC11184965 DOI: 10.1099/jmm.0.001828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Infectious bronchitis virus (IBV) is a highly contagious avian Gammacoronavirus that affects mainly chickens (Gallus gallus) but can circulate in other avian species. IBV constitutes a significant threat to the poultry industry, causing reduced egg yield, growth and mortality levels that can vary in impact. The virus can be transmitted horizontally by inhalation or direct/indirect contact with infected birds or contaminated fomites, vehicles, farm personnel and litter (Figure 1). The error-prone viral polymerase and recombination mechanisms mean diverse viral population results, with multiple genotypes, serotypes, pathotypes and protectotypes. This significantly complicates control and mitigation strategies based on vigilance in biosecurity and the deployment of vaccination.
Collapse
Affiliation(s)
- Marco Falchieri
- Avian Virology, Animal and Plant Health Agency (APHA)-Weybridge, Woodham Lane, Addlestone, KT15 3NB, UK
| | - Vivien J. Coward
- Avian Virology, Animal and Plant Health Agency (APHA)-Weybridge, Woodham Lane, Addlestone, KT15 3NB, UK
| | - Scott M. Reid
- Avian Virology, Animal and Plant Health Agency (APHA)-Weybridge, Woodham Lane, Addlestone, KT15 3NB, UK
| | - Tom Lewis
- Avian Virology, Animal and Plant Health Agency (APHA)-Weybridge, Woodham Lane, Addlestone, KT15 3NB, UK
| | - Ashley C. Banyard
- Avian Virology, Animal and Plant Health Agency (APHA)-Weybridge, Woodham Lane, Addlestone, KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
- School of Biological Sciences, University of West Sussex, Falmer, West Sussex, UK
| |
Collapse
|
5
|
Wang C, Hou B. A pathogenic and recombinant infectious bronchitis virus variant (CK/CH/GX/202109) with multiorgan tropism. Vet Res 2023; 54:54. [PMID: 37400928 DOI: 10.1186/s13567-023-01182-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/26/2023] [Indexed: 07/05/2023] Open
Abstract
Despite vaccine use, novel strains and variants of infectious bronchitis virus (IBV) have emerged continuously, leading to economic losses to the poultry industry worldwide. This study aimed to characterize the IBV isolate CK/CH/GX/202109 from three yellow broilers in Guangxi, China. Recombination was shown to have occurred in regions of the 1ab gene. Compared to the whole genome of ck/CH/LGX/130530, which is genotypically related to tl/CH/LDT3-03, the 202109 strain had 21 mutations. The pathological assessment showed that this variant caused 30% and 40% mortality in 1-day-old chicks infected with oral and ocular inoculum, respectively. Nephritis, enlarged proventriculus, inflammation of the gizzard, and atrophy of the bursa of Fabricius were also observed at both 7 and 14 days post-infection (dpi). Viral loads in the trachea, proventriculus, gizzard, kidney, bursa, and cloacal swabs were higher at 7 dpi than at 14 dpi. Clinicopathological and immunohistochemical analyses revealed that this virus exhibited multiple organ tropisms capable of infecting the trachea, proventriculus, gizzard, kidney, bursa, ileum, jejunum, and rectum. Almost none of the 1-day-old infected chicks seroconverted until 14 dpi. While the virus was found in the ileum, jejunum, and rectum in the 28-day-old ocular group, the majority of 28-day-old infected chickens seroconverted at 10 dpi. These study findings demonstrate that recombination events and mutations during the evolution of IBV may greatly alter tissue tropism and emphasize the need for the continued surveillance of novel strains and variants in order to control this infection.
Collapse
Affiliation(s)
- Chenyan Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Animal Disease Control Technology Development Center, Fuzhou, 350013, Fujian Province, China
| | - Bo Hou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Animal Disease Control Technology Development Center, Fuzhou, 350013, Fujian Province, China.
| |
Collapse
|
6
|
Jiang Y, Xue M, Tang M, Zhang D, Yu Y, Zhou S. Adaptation of the infectious bronchitis virus H120 vaccine strain to Vero cell lines. Vet Microbiol 2023; 280:109709. [PMID: 36870205 DOI: 10.1016/j.vetmic.2023.109709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Infectious bronchitis virus (IBV) has restricted cell and tissue tropism. IBVs, except the Beaudette strain, can infect and replicate in chicken embryos, primary chicken embryo kidneys, and primary chicken kidney cells, only. The limited viral cell tropism of IBV substantially hinders in vitro cell-based research on pathogenic mechanisms and vaccine development. Herein, the parental H120 vaccine strain was serially passaged for five generations in chicken embryos, 20 passages in CK cells and 80 passages in Vero cells. This passaging yielded a Vero cell-adapted strain designated HV80. To further understand viral evolution, serial assessments of infection, replication, and transmission in Vero cells were performed for the viruses obtained every tenth passage. The ability to form syncytia and the replication efficiency significantly after the 50th passage (strain HV50). HV80 also displayed tropism extension to DF-1, BHK-21, HEK-293 T, and HeLa cells. Whole genome sequencing of viruses from every tenth generation revealed a total of 19 amino acid point mutations in the viral genome by passage 80, nine of which occurred in the S gene. The second furin cleavage site appeared in viral evolution and may be associated with cell tropism extension of HV80.
Collapse
Affiliation(s)
- Yi Jiang
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125, China; Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 225009, China
| | - Mei Xue
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengjun Tang
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Yu
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Sheng Zhou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
7
|
Li SY, Shen YX, Xiang XL, Li YX, Li NL, Wang AD, Cui M, Han XF, Huang Y, Xia J. The conserved L1089 in the S2 subunit of avian infectious bronchitis virus determines viral kidney tropism by disrupting virus-cell fusion. Vet Microbiol 2023; 277:109619. [PMID: 36525909 DOI: 10.1016/j.vetmic.2022.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
The virulence of avian gamma-coronavirus infectious bronchitis viruses (IBV) for the kidney has led to high mortality in dominant-genotype isolations, but the key sites of viral protein that determine kidney tropism are still not fully clear. In this study, the amino acid sequences of the S2 subunit of IBVs with opposing adaptivity to chicken embryonic kidney cells (CEKs) were aligned to identify putative sites associated with differences in viral adaptability. The S2 gene and the putative sites of the non-adapted CN strain were introduced into the CEKs-adapted SczyC30 strain to rescue seven mutants. Analysis of growth characteristics showed that the replacement of the entire S2 subunit and the L1089I substitution in the S2 subunit entirely abolished the proliferation of recombinant IBV in CEKs as well as in primary chicken oviduct epithelial cells. Pathogenicity assays also support the decisive role of this L1089 for viral nephrotropism, and this non-nephrotropic L1089I substitution significantly attenuates pathogenicity. Analysis of the putative cause of proliferation inhibition in CEKs suggests that the L1089I substitution affects neither virus attachment nor endocytosis, but instead fails to form double-membrane vesicles to initiate the viral replication and translation. Position 1089 of the IBV S2 subunit is conservative and predicted to lie in heptad repeat 2 domains. It is therefore reasonable to conclude that the L1089I substitution alters the nephrotropism of parent strain by affecting virus-cell fusion. These findings provide crucial insights into the adaptive mechanisms of IBV and have applications in the development of vaccines and drugs against IB.
Collapse
Affiliation(s)
- Shu-Yun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Yu-Xi Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Xue-Lian Xiang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Yong-Xin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Nian-Ling Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - An-Dong Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Xin-Feng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan 611130, P. R. China.
| |
Collapse
|
8
|
Li S, Fan S, Li N, Shen Y, Xiang X, Chen W, Xia J, Han X, Cui M, Huang Y. The N1038S Substitution and 1153EQTRPKKSV 1162 Deletion of the S2 Subunit of QX-Type Avian Infectious Bronchitis Virus Can Synergistically Enhance Viral Proliferation. Front Microbiol 2022; 13:829218. [PMID: 35432239 PMCID: PMC9006875 DOI: 10.3389/fmicb.2022.829218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The S2 subunit of infectious bronchitis virus (IBV) plays a critical role in the process of IBV infection. A comparison between the S2 subunit sequence of chicken embryo kidney cell (CEK) adapted virulent QX-like IBV strain SczyC30 (hereafter referred to as zy30) and its CEK-attenuated strain, SczyC100, revealed an N1038S substitution in S2 subunit and a 1154EQTRPKKSV1162 residue deletion in the C-terminus of the S2 subunit. In order to explore whether these two mutations are related to changes in the biological characteristics of IBV, we firstly constructed an infectious clone of zy30 using a bacterial artificial chromosome (BAC), which combines the transcription of infectious IBV genomic RNA in non-susceptible BHK-21 cells with the amplification of rescued virus rzy30 in CEK cells. Then, three recombinant viruses, including an rzy30S2-N1038S strain that contained the N1038S substitution, an rzy30S2-CT9△ strain that contained the 1154EQTRPKKSV1162 deletion, and an rzy30S2-N1038S-CT9△ strain that contained both mutations, were constructed using rescued virus rzy30 as the backbone. The results showed that each mutation did not significantly affect the replication titer in CEK cells but reduced pathogenicity in chickens, while in combination, the N1038S substitution and 1154EQTRPKKSV1162 deletion improved the proliferation efficiency in CEK cells and reduced pathogenicity, compared to rzy30 strain. The contribution made by the 1154EQTRPKKSV1162 deletion in reducing pathogenicity was higher than that of N1038S substitution. Our results revealed that the N1038S substitution and 1154EQTRPKKSV1162 deletion in S2 subunit were deeply involved in the replication efficiency of IBV and contributed to reduction of viral pathogenicity.
Collapse
Affiliation(s)
- Shuyun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shunyi Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Nianning Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuxi Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuelian Xiang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wen Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Peng S, Wang Y, Zhang Y, Song X, Zou Y, Li L, Zhao X, Yin Z. Current Knowledge on Infectious Bronchitis Virus Non-structural Proteins: The Bearer for Achieving Immune Evasion Function. Front Vet Sci 2022; 9:820625. [PMID: 35464391 PMCID: PMC9024134 DOI: 10.3389/fvets.2022.820625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Infectious bronchitis virus (IBV) is the first coronavirus discovered in the world, which is also the prototype of gamma-coronaviruses. Nowadays, IBV is widespread all over the world and has become one of the causative agent causing severe economic losses in poultry industry. Generally, it is believed that the viral replication and immune evasion functions of IBV were modulated by non-structural and accessory proteins, which were also considered as the causes for its pathogenicity. In this study, we summarized the current knowledge about the immune evasion functions of IBV non-structural and accessory proteins. Some non-structural proteins such as nsp2, nsp3, and nsp15 have been shown to antagonize the host innate immune response. Also, nsp7 and nsp16 can block the antigen presentation to inhibit the adapted immune response. In addition, nsp13, nsp14, and nsp16 are participating in the formation of viral mRNA cap to limit the recognition by innate immune system. In conclusion, it is of vital importance to understand the immune evasion functions of IBV non-structural and accessory proteins, which could help us to further explore the pathogenesis of IBV and provide new horizons for the prevention and treatment of IBV in the future.
Collapse
|
10
|
Genetic and Pathogenic Characteristics of a Novel Infectious Bronchitis Virus Strain in Genogroup VI (CK/CH/FJ/202005). Vet Microbiol 2022; 266:109352. [DOI: 10.1016/j.vetmic.2022.109352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/19/2022]
|
11
|
Fang P, Fang L, Zhang H, Xia S, Xiao S. Functions of Coronavirus Accessory Proteins: Overview of the State of the Art. Viruses 2021; 13:1139. [PMID: 34199223 PMCID: PMC8231932 DOI: 10.3390/v13061139] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus accessory proteins are a unique set of proteins whose genes are interspersed among or within the genes encoding structural proteins. Different coronavirus genera, or even different species within the same coronavirus genus, encode varying amounts of accessory proteins, leading to genus- or species-specificity. Though accessory proteins are dispensable for the replication of coronavirus in vitro, they play important roles in regulating innate immunity, viral proliferation, and pathogenicity. The function of accessory proteins on virus infection and pathogenesis is an area of particular interest. In this review, we summarize the current knowledge on accessory proteins of several representative coronaviruses that infect humans or animals, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with an emphasis on their roles in interaction between virus and host, mainly involving stress response, innate immunity, autophagy, and apoptosis. The cross-talking among these pathways is also discussed.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huichang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Upregulation of DUSP6 impairs infectious bronchitis virus replication by negatively regulating ERK pathway and promoting apoptosis. Vet Res 2021; 52:7. [PMID: 33431056 PMCID: PMC7798014 DOI: 10.1186/s13567-020-00866-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/02/2020] [Indexed: 11/10/2022] Open
Abstract
Elucidating virus-cell interactions is fundamental to understanding viral replication and identifying targets for therapeutic control of viral infection. The extracellular signal-regulated kinase (ERK) pathway has been shown to regulate pathogenesis during many viral infections, but its role during coronavirus infection is undetermined. Infectious bronchitis virus is the representative strain of Gammacoronavirus, which causes acute and highly contagious diseases in the poultry farm. In this study, we investigated the role of ERK1/2 signaling pathway in IBV infection. We found that IBV infection activated ERK1/2 signaling and the up-regulation of phosphatase DUSP6 formed a negative regulation loop. Pharmacological inhibition of MEK1/2-ERK1/2 signaling suppressed the expression of DUSP6, promoted cell death, and restricted virus replication. In contrast, suppression of DUSP6 by chemical inhibitor or siRNA increased the phosphorylation of ERK1/2, protected cells from apoptosis, and facilitated IBV replication. Overexpression of DUSP6 decreased the level of phospho-ERK1/2, promoted apoptosis, while dominant negative mutant DUSP6-DN lost the regulation function on ERK1/2 signaling and apoptosis. In conclusion, these data suggest that MEK-ERK1/2 signaling pathway facilitates IBV infection, probably by promoting cell survival; meanwhile, induction of DUSP6 forms a negative regulation loop to restrict ERK1/2 signaling, correlated with increased apoptosis and reduced viral load. Consequently, components of the ERK pathway, such as MEK1/2 and DUSP6, represent excellent targets for the development of antiviral drugs.
Collapse
|
13
|
Moharam I, Sultan H, Hassan K, Ibrahim M, Shany S, Shehata AA, Abo-ElKhair M, Pfaff F, Höper D, EL Kady M, Beer M, Harder T, Hafez H, Grund C. Emerging infectious bronchitis virus (IBV) in Egypt: Evidence for an evolutionary advantage of a new S1 variant with a unique gene 3ab constellation. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104433. [PMID: 32622080 PMCID: PMC7327463 DOI: 10.1016/j.meegid.2020.104433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
Infectious bronchitis virus (IBV), a gamma-coronavirus, causes infectious bronchitis (IB), a major respiratory disease of chicken. Its high mutation rate in conjunction with recombination of the RNA genome constantly creates IBV variants that are difficult to control by currently available vaccines. In this study, we addressed the question whether small-scale holdings might harbor IBV variants that serve as a reservoir for newly emerging variants. Egyptian IBV isolate EGY/NR725/2016 (NR725/16) from a small-scale broiler farm was assigned to genotype I, clade 23 (S1:GI-23), based on partial S1 gene sequences and corroborated by full genome sequencing. Analysis of the S1 gene established three subclades for historical IBV strains (S1:GI-23.1, S1:GI-23.2.1 and S1:GI-23.2.2) and confirmed NR725/16 as being part of a separate fourth subclade (S1:GI-23.3). Samples from the years 2018 and 2019 revealed that the new subclade prevails in Egypt, carrying fixed mutations within the hypervariable regions (HVR) 1-3 of the S1 protein that affect two neutralization sensitive epitopes at sites 294F, 297S and 306Y (48.2) and 329R (62.1). In addition, recombination was recognized in isolate NR 725/16, with intra-subtype mixing for the entire genes 3ab and E and inter-subtype mixing for the entire gene 6b with a close match to QX like viruses of genotype GI-19. Further analysis of gene 3ab detected the homologous gene pool to NR725/16 in samples from 2013 (3ab:C) and closely related 3ab genotypes in IBV Egyptian isolates from 2016, 2018 and 2019. These data prove a flourishing exchange between poultry holdings with a common gene pool. The continued circulation of viruses harboring genes S1:GI-23.3 and 3ab:C indicates an evolutionary advantage of this combination possibly by combining antigenic escape with modulated pathogenicity to facilitate IBV spread in the vaccinated poultry population in Egypt.
Collapse
Affiliation(s)
- Ibrahim Moharam
- Institute of Diagnostic Virology Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany,Department of Birds and Rabbits Medicine, University of Sadat City, Monufia, Egypt
| | - Hesham Sultan
- Department of Birds and Rabbits Medicine, University of Sadat City, Monufia, Egypt
| | - K. Hassan
- Institute of Diagnostic Virology Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany,Department of Poultry Diseases, Beni-Suef University, Beni-Suef, Egypt
| | - Mahmoud Ibrahim
- Department of Birds and Rabbits Medicine, University of Sadat City, Monufia, Egypt
| | - Salama Shany
- Department of Poultry Diseases, Beni-Suef University, Beni-Suef, Egypt
| | - Awad A. Shehata
- Department of Birds and Rabbits Medicine, University of Sadat City, Monufia, Egypt
| | | | - Florian Pfaff
- Institute of Diagnostic Virology Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Magdy EL Kady
- Department of Poultry Diseases, Beni-Suef University, Beni-Suef, Egypt
| | - Martin Beer
- Institute of Diagnostic Virology Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Timm Harder
- Institute of Diagnostic Virology Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Hafez Hafez
- Institute of Poultry Disease, Freie Universität Berlin, Germany
| | - Christian Grund
- Institute of Diagnostic Virology Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany.
| |
Collapse
|